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Abstract This paper addresses the parameter and state estimation problem in the
presence of the observer gain perturbations for Lipschitz systems that are linear in
the unknown parameters and nonlinear in the states. A nonlinear adaptive resilient
observer is designed, and its stability conditions based on the Lyapunov technique are
derived. The gain for this observer is derived systematically using the linear matrix
inequality approach. A numerical example and a physical setup are provided to show
the effectiveness of the proposed method.

Keywords Nonlinear systems · Resilient observer · Nonlinear observer · Adaptive
observer · Robust estimation · Linear matrix inequality

1 Introduction

One of the major difficulties in the design of practical observers for most physical sys-
tems are their model uncertainties due to either constant or slow changes of unknown
quantities such as unknown physical parameters. Adaptive observers have been used
to cope with the lack of knowledge on the system parameters in state estimation prob-
lems.

For nonlinear systems with unknown parameters, various adaptive observers have
been introduced [19–22]. In [1], the authors reported early results on adaptive ob-
servers for nonlinear systems, namely observers estimating the entire state vector
using an on-line adaptation for the unknown parameters. The authors in [20–23] fo-
cused on a class of nonlinear systems which are transformable by a global parameter-
independent state-space diffeomorphism into a system whose dynamics are linear in
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unmeasured states and nonlinear in inputs and measurable outputs. Then they de-
signed an adaptive observer for the new system such that the state and parameter
estimates both converge asymptotically under the persistence excitation condition.
In these works, nonlinear terms are assumed to be related only to the input and the
measured output, and disturbances are neglected.

This design method has been extended in [5] and [26] to cover the slightly more
general case of systems where the nonlinear terms depend on the input and the entire
state vector (not just measured outputs) with the nonlinearities satisfying Lipschitz
conditions. In this work, a systematic algorithm is provided to check the feasibility
of an asymptotically stable adaptive observer. An arbitrarily small disturbance may
force the parameter estimates to drift toward infinity, while the state estimation error
remains small [16, 23]. Several techniques have been introduced to modify the adap-
tive observer structure to prevent parameter estimation drift. For instance, in [16] and
[23], this goal has been achieved by designing robust adaptive observers assuming
that the nonlinear terms only depend on the input and the measured outputs.

In [9], a robust adaptive observer for sensorless induction-motor drives was de-
signed based on the linearized dynamic equation and linear matrix inequality (LMI)
method. The motor’s dynamic equations are formulated in the form of a very spe-
cial class of nonlinear system which is linear in feed-forward and nonlinear in the
feedback. The stability conditions and the observer gain are obtained by solving the
corresponding LMIs. In [15] an adaptive observer based fault diagnosis for satel-
lite attitude control systems is used. In [24], LMI technique was used to design an
observer for Lipschitz nonlinear systems. The design offers extra degrees of freedom
over the classical static gain structure. Another LMI-based observer design for a class
of Lipschitz nonlinear dynamical systems can be found in [28]. The differential mean
value theorem allows the nonlinear error dynamics to be transformed into a linear pa-
rameter varying system. The authors introduced a general Lipschitz-like condition on
the Jacobian matrix for differentiable systems. To ensure asymptotic convergence of
the state estimation error, sufficient conditions are expressed in terms of LMIs. How-
ever, for large values of the Lipschitz constant, the stability conditions may become
infeasible.

An observer for which the estimation error diverges by a small perturbation in
the observer gain is referred to as fragile or non-resilient [12]. Since the observer
gains are usually obtained from offline calculations, in many practical applications
the gain may have slow drifts; thus, it is necessary that the observer tolerates some
perturbations in its coefficients. The authors in [17] have shown that even vanishingly
small perturbations in the control coefficients may destabilize the closed-loop system.
Afterwards, more researchers concentrated their attention on this subject. In [6] an
overview of the resilient design technique is presented. In [7], synthesis of a resilient
regulator for the linear systems is provided. In [27], a robust resilient Kalman filter
design for a class of linear systems with norm-bounded multiplicative uncertainties
in the filter gain is introduced. In reference [13], an observer is designed using LMI
approach to maintain disturbance attenuation performance in the case of randomly
varying perturbations in the observer gain. In [14], an LMI solution for nonlinear
resilient observer design is presented.

In this paper, we consider a fairly general class of nonlinear systems in which the
nonlinearities are assumed to be Lipschitz, containing uncertain piecewise constant
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parameters in the presence of bounded perturbation on the observer gains. Our objec-
tive is to find an LMI-based adaptive observer gain for this class of nonlinear systems
that is robust not only against perturbations in the gain matrix but also against per-
turbations in system parameters at the same time. The proposed observer stabilizes
the state estimation error. Moreover, when the persistent excitation condition holds,
the parameter estimation vector converges to its true value. Unlike [23], we allow the
nonlinear terms in the system to depend on the input and all the states, in general,
and we modified the adaptive law to overcome some drawback in parameter estima-
tion. We also show that the proposed design is feasible for much larger values of the
Lipschitz constants compared to those of the design in [5].

The rest of the paper is organized as follows: Sect. 2 provides the problem state-
ment. In Sect. 3, the proposed resilient adaptive observer is presented. A numerical
example is provided in Sect. 4. A synchronous generator setup is discussed in Sect. 5
as a case study for the method proposed. Finally, the conclusion remarks are given in
Sect. 6.

2 Problem Statement

Consider an uncertain nonlinear system of the form:

ẋ = Ax + φ(x,u) + bf (x,u)θ

y = Cx
(1)

where x ∈ �n,u ∈ �q, y ∈ �m, and θ ∈ �p are the state, input, output, and parameter
vectors, respectively, b ∈ �n×m,C ∈ �m×n are constant matrices, and f : [�n �q ] →
�m×p , φ : [�n �q ] → �n are nonlinear functions which are Lipschitz in x with
Lipschitz constants γ1 and γ2, respectively, i.e.:

∥
∥φ(x1, u) − φ(x2, u)

∥
∥< γ1‖x1 − x2‖ (2)

and
∥
∥f (x1, u) − f (x2, u)

∥
∥< γ2‖x1 − x2‖ (3)

for all x1, x2 ∈ Rn. System (1) is linear in θ and nonlinear in x with Lipschitz nonlin-
earities. This is a fairly general class, since, in most cases, nonlinearities are bounded
in a Lipschitz manner if the states are bounded. We assume that the unknown piece-
wise constant parameter vector and its distance from nominal parameter vector θ0 are
both bounded in the following sense:

‖θ‖ ≤ γ3 (4)

‖θ − θ0‖ ≤ M (5)

Lemma 1 (Schur complement [3]) The LMI:
[

Q(x) S(x)

ST(x) R(x)

]

> 0 (6)
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where Q(x) = QT(x), R(x) = RT(x), and S(x) affinely depend on x, is equivalent
to

{

R(x) > 0
Q(x) − S(x)R−1(x)ST(x) > 0

(7)

Lemma 2 ([4]) Let x, y be real vectors of the same dimension. Then, for any scalar
ε > 0, the following inequality holds:

2xTy ≤ εxTx + ε−1yTy (8)

3 Resilient Adaptive Observer Design

Consider a nonlinear adaptive observer of the form [5]

˙̂x = Ax̂ + φ(x̂, u) + bf (x̂, u)θ̂ + [L + �(t)
]

(y − Cx̂) (9)

where x̂ and θ̂ are the state and parameter estimates, respectively, L is the observer
gain and the resilient term �(t) is an additive perturbation on the gain with known
bound ‖�(t)‖ ≤ r for all t .

Then, the observer error dynamic equation is obtained as

˙̃x = (A − LC − �C)x̃ + φ(x,u) − φ(x̂, u) + bf (x,u)θ − bf (x̂, u)θ̂ (10)

where x̃ = x − x̂ is the state estimation error.
The following theorem provides sufficient conditions for the stability of the robust

adaptive observer (9).

Theorem 1 Consider the following parameter adaption law:

˙̂
θ = Γ −1(f (x̂, u)TCx̃

)− σΓ −1(θ̂ − θ0) (11)

where Γ = Γ T > 0 is an arbitrary constant matrix and:

σ =

⎧

⎪⎨

⎪⎩

0 if ‖θ̂ − θ0‖ < M

σ0(
‖θ̂−θ0‖

M
− 1) if M ≤ ‖θ̂ − θ0‖ ≤ 2M

σ0 if ‖θ̂ − θ0‖ > 2M

(12)

with positive constants scalars M and σ0. If there exist positive real numbers ε1, ε2, ε3
and matrices P = P T > 0 and S, such that Pb = CT and

⎡

⎢
⎣

Λ P P P

P −ε1I 0 0
P 0 −ε2I 0
P 0 0 −ε3I

⎤

⎥
⎦< 0 (13)

where

Λ = ATP − CTS + PA − STC + (ε1γ
2
1 + ε2γ

2
2 γ 2

3 ‖b‖2)I + r2ε3C
TC
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with γ1, γ2, and γ3 defined in (2), (3), and (4), respectively, then the observer gain
L = P −1STstabilizes the state estimation error dynamics in (10) while the parameter
estimation error remains bounded. Moreover, if the following persistency excitation
condition holds ∀t0,∃ξ, δ > 0 such that:

∫ t0+δ

t0

bf
(

x(τ), u(τ )
)

f T(x(τ), u(τ )
)

bT dτ > ξI (14)

then, the parameter estimate vector converges to its true value for all disturbances
satisfying ‖�(t)‖ ≤ r .

Proof Consider the following Lyapunov function candidate for error dynamic (10):

V = x̃TP x̃ + θ̃TΓ θ̃ (15)

where θ̃ = θ − θ̂ is the parameter estimation error. Taking the derivative of (15) and
using (10), results in

V̇ = x̃T[(A − LC − �C)TP + P(A − LC − �C)
]

x̃ + 2
[

φ(x,u) − φ(x̂, u)
]T

P x̃

+ 2
[

bf (x,u)θ − bf (x̂, u)θ̂
]T

P x̃ + 2θ̃TΓ
˙̃
θ (16)

Using Lemma 2 and inequality (2) on the second term, and substituting θ̂ = θ − θ̃ in
the third term of (16) result in

V̇ ≤ x̃T[(A − LC)TP + P(A − LC)
]

x̃ − 2x̃TCT�TP x̃

+ x̃T(ε1γ
2
1 + ε−1

1 PP
)

x̃ + 2
[

bf (x,u)θ − bf (x̂, u)θ
]T

P x̃

+ 2
[

bf (x̂, u)θ̃
]T

P x̃ + 2θ̃TΓ
˙̃
θ (17)

Again, applying Lemma 2 to the second and the fourth term of inequality (17) with
ε3 and ε2, respectively, and using (3) and (4) and ‖�(t)‖ ≤ r it follows that

V̇ ≤ x̃T[Ω + ε−1
1 PP + ε−1

2 PP + ε−1
3 PP

]

x̃ + ε3r
2x̃TCTCx̃

+ 2
[

bf (x̂, u)θ̃
]T

P x̃ + 2θ̃TΓ
˙̃
θ (18)

where

Ω = (A − LC)TP + P(A − LC) + ε1γ
2
1 I + ε2γ

2
2 γ 2

3 ‖b‖2I.

Since θ is piecewise constant, thus, we assume θ̇ = 0 and thus ˙̃
θ = −˙̂

θ . Using this
fact, substituting (11) in (18), and using bTP = C yield

V̇ ≤ x̃T[Ω + (ε−1
1 + ε−1

2 + ε−1
3

)

PP + ε3r
2CTC

]

x̃ + 2σ θ̃T(θ̂ − θ0
)

(19)

Then, using (5) it follows that
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σ θ̃T(θ̂ − θ0
) = σ

[

θ − θ̂
]T(

θ̂ − θ0
)

= σ(θ − θ0)
T(θ̂ − θ0

)− σ
(

θ̂ − θ0
)T(

θ̂ − θ0
)

≤ σM
∥
∥θ̂ − θ0

∥
∥− σ

∥
∥θ̂ − θ0

∥
∥2

≤ N (20)

where:

N = σ
∥
∥θ̂ − θ0

∥
∥
(

M − ∥∥θ̂ − θ0
∥
∥
)

(21)

If condition (12) holds, the derived upper bound N in (20) is always is non-positive,
because of the following. For ‖θ̂ − θ0‖ < M , since σ = 0, we have N = 0. For M ≤
‖θ̂ −θ0‖ ≤ 2M , we have N = −σ0

M
‖θ̂ −θ0‖(M −‖θ̂ −θ0‖)2 ≤ 0. For ‖θ̂ −θ0‖ > 2M ,

we have N ≤ −σ0M‖θ̂ − θ0‖ ≤ 0.
Therefore, it follows that

2σ θ̃T(θ̂ − θ0) ≤ 0 (22)

Substituting the above inequality in (19), the sufficient condition for V̇ < 0 is

[

Ω + (ε−1
1 + ε−1

2 + ε−1
3

)

PP + r2ε3C
TC
]

< 0 (23)

To convert the above inequality to LMI, using Schur complement, we rewrite it as

⎡

⎢
⎣

Ω + r2ε3C
TC P P P

P −ε1I 0 0
P 0 −ε2I 0
P 0 0 −ε3I

⎤

⎥
⎦< 0 (24)

Thus LMI (13) is obtained whereS = LTP and Λ = Ω + r2ε3C
TC.

The inequality (23) follows:

[

Ω + (ε−1
1 + ε−1

2 + ε−1
3

)

PP + r2ε3C
TC
]≤ −αI (25)

Substituting (25) and (22) into (19), yields:

V̇ ≤ −αx̃Tx̃ (26)

Integrating both sides of inequality (26) from t = 0 to t = tf it follows that

V (tf ) ≤ V (0) − α

∫ tf

0
x̃T(τ )x̃(τ ) dτ (27)

Since V (x, θ) ≥ 0 and is non-increasing, V ∈ L∞. Consequently, from the defini-
tion (15) it follows that x̃ ∈ L∞ and θ̃ ∈ L∞. Moreover, (27) implies that x̃ ∈ L2.
Moreover, since both φ(x,u) and f (x,u) are Lipschitz, (10) yields ˙̃x ∈ L∞. With
x̃ ∈ L∞, x̃ ∈ L2 and ˙̃x ∈ L∞, and using Barbalat’s lemma [17] it follows that
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limt→∞ x̃(t) = 0, and consequently, it can also be concluded that limt→∞ ˙̃x(t) = 0.
Therefore, considering (10), we have

lim
t→∞

(

bf (x,u)θ − bf
(

x̂, u
)

θ̂
)= 0 (28)

Since limt→∞ x̂ = x, (28) reduces to

lim
t→∞

(

bf (x,u)
(

θ − θ̂
))= 0 (29)

Thus if the persistency excitation condition (14) holds, we can say that the parameter
estimates converge to their true values (θ̂ → θ) for all gain perturbations satisfying
‖�(t)‖ ≤ r . �

Remark 1 The second term in (11) is added as leakage modification which modifies
the adaptive law so that the time derivative of the Lyapunov function remains negative
in the parameter estimate space when these parameters exceed certain bounds [11].
As we have shown, if the persistency excitation condition (14) holds, this bound
shrinks to a point, which is the true parameter vector.

Remark 2 From the theorem, since (27) is non-increasing, we have

x̃TP x̃ + θ̃TΓ θ̃ ≤ V (0) (30)

This implies that

θ̃TΓ θ̃ ≤ V (0)

≤ x̃T(0)P x̃(0) + θ̃T(0)Γ θ̃(0) (31)

Using the Rayleigh–Ritz inequality in (31) gives

‖θ̃‖ ≤
√

λmax(P )‖x̃(0)‖2 + λmax(Γ )‖θ̃ (0)‖2

λmin(Γ )
(32)

where λmin(·), λmax(·) denote the minimum and maximum singular values of its argu-
ment, respectively. By increasing λmin(Γ ), dependency of the parameter estimation
error bound to the initial state estimation decreases. However, increasing Γ slows
down the convergence of parameter estimate vector (11). Therefore, the trade off in
selecting Γ should be considered in the design. For the case that the persistent excita-
tion condition is not met, (32) gives the resulting worst case bound on the parameter
estimation error.

Remark 3 Assume that Lipschitz constants in (2) and (3) are defined in the local
regions such that ‖x1‖ ≤ ε and ‖x2‖ ≤ ε are always satisfied; then we have

V̇ < 0, V = x̃TP x̃

V > 0, V̇ < 0 ⇒ V (t) < V (0)
(33)
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thus

λmin(P )‖x̃‖2 ≤ V (t) < V (0) (34)

This implies that

‖x̃‖ ≤
√
√
√
√ V (0)

λmin(P )
≤ ∥∥x̃(0)

∥
∥

√

λmax(P )

λmin(P )
(35)

We know ‖x̂‖ ≤ ‖x̃‖ + ‖x‖, thus in order to guarantee the ‖x̂‖ ≤ ε, x should satisfy
‖x̃‖ + ‖x‖ ≤ ε, and thus

‖x‖ ≤ ε − ∥∥x̃(0)
∥
∥

√

λmax(P )

λmin(P )
(36)

Inequality (36) shows the region of stability of the observer.

Remark 4 The equality constraint bTP = C is restrictive. However, the LMI toolbox
and Yalmip package among others can efficiently solve the combination of equality
and inequality constraints. Alternatively one can find a set of matrices {Pi} which
form a basis for P such that bTPC⊥ = 0. This set of Pi can then be used to check if
they make LMI (13) feasible.

4 Numerical Example

Consider the following nonlinear system:
[

ẋ1
ẋ2

]

=
[

0 1
−5 −6

][

x1
x2

]

+
[

0
− sin(x2) + 4u(t)

]

+ 2θ

[− cos(x2) + sin(0.5t)

0

]

y = [1 0]x
with a unit step function input as u(t), and unknown parameter θ = 3 for 0 ≤ t < 20,
with abrupt change to θ = 5 for t ≥ 20. Moreover, consider that at time t = 20 and
t = 25 to the observer gain are added values of −0.8 and −3.2, respectively, as an ad-
ditive perturbation. The design parameters are chosen as γ 2

1 = 0.3, γ 2
2 = 0.2, γ 2

3 = 5,
Γ = 0.1, M = 5, θ0 = 2.5, σ0 = 0.1. Moreover, ‖�(t)‖ ≤ 3.5 is considered as an
uncertainty bound in the design. Using YALMIP toolbox as parser [19] and LMI
Control Toolbox in MATLAB as solver [8], the solution is derived as S = [6.97 2.33]
and P = [ 1 0

0 0.73

]

, and ε1 = 3.0, ε2 = 3.1, ε3 = 2.98. Hence, the observer gain is ob-
tained as L = [6.97 3.18]T. For comparison purposes, we also implement the design
method in [5] for the above system.

As is shown in Fig. 1, the gain obtained from the proposed resilient observer de-
sign causes the estimator to accurately track the system states while the method in [5]
yields an unstable state estimation due to gain perturbation. Figure 2 shows that the
parameter estimate in the proposed method also converges to its true value despite the
abrupt changes of the real parameter. As we can see from the figures, when the strong
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Fig. 1 Actual states (solid), state estimates of the proposed method (dashed), state estimates of [5] (dot-
ted)

Fig. 2 Parameter estimate
using the proposed adaptive
observer (dashed) vs. the
method in [5] (dotted)

gain perturbation at t = 25 s occurs, the proposed design remains robust, while the
conventional adaptive observer [5] become unstable. As is expected, the gain pertur-
bation at t = 25 s does not have much effect on the estimation in the proposed method
because in the observer dynamics (9), the observer gain is multiplied by output error,
and since the estimation error in the proposed method converges to zero the effect of
gain perturbation is omitted. Moreover, Fig. 3 shows that the feasibility region of the
LMI for the proposed method is much larger than that of the method in [5] for the
changes of the Lipschitz constants γ1 and γ2.
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Fig. 3 LMI Feasibility space of Lipschitz constants: a the proposed method, b method in reference [5]

5 Synchronous Generator Setup

We use a model of a single machine connected to an infinite bus through a reactive
transmission lines to the rest of the network, which is represented by an infinite bus.
According to reference [2], the mechanical equation and the electrical equation of the
synchronous machine can be expressed as follows:

Mgδ̈ + Dδ̇ + Pg = Pm (37)

T ′
doĖ

′
q + Xd

X′
d

E′
q = −

(
X′

d − Xd

X′
d

)

V cos(δ) + Ef d (38)

Pg = 1

X′
d

E′
qV sin(δm) + 1

2

(
1

Xq

− 1

X′
q

)

V 2 sin(2δm) (39)

Ef d = ω0Mf√
2rf

vf (40)

where the parameters are defined in Table 1. The state-space model of the system can
be written as [2]

δ̇ = ω − ω0

ω̇ = ω0

2Hg

Pm − ω0

2Hg

(
V

x′
d

)

sin(δ)E′
q − ω0

2Hg

V 2
(

1

xq

− 1

x′
d

)

cos(δ) sin(δ)

− D

2Hg

(ω − ω0)

Ė′
q = −

(
xd

T ′
dox

′
d

)

E′
q +

(
xd − x′

d

T ′
dox

′
d

)

V cos(δ) + 1

T ′
do

Ef

(41)

The equilibrium points of the above system are solutions of
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Table 1 Parameter definitions for the synchronous machine

Parameter Definition

δ Generator rotor angle referred to the infinite bus power angle

ω Rotor angular speed

Mg Per unit inertia constant

E′
q Transient voltage of armature

D Per unit damping constant

T ′
do Open circuit transient time constant

Pm Constant mechanical power supplied by the turbine

xd Direct axis reactance

xq Quadrature axis reactance

x′
d

Transient direct axis reactance

xl Line reactance

Xd = xd + xl Augmented reactance

X′
d

Transient augmented reactance

Xq Quadrature axis augmented reactance

Pg Generated power

Ef d Equivalent EMF in the excitation coil

vf Field excitation voltage

V Infinite bus voltage

Mf Mutual inductance between stator and rotor windings

rf Field resistance

ω∗ − ω0 = 0

m1 − m2 sin
(

δ∗)E′∗
q − m3 cos

(

δ∗) sin
(

δ∗)− m4
(

ω∗ − ω0
)= 0 (42)

−m5E
′∗
q + m6 cos

(

δ∗)+ m7E
∗
f d = 0

where the parameters mi depend on the machine type, the transmission-line parame-
ters, the rotor inertia and the infinite bus voltage, which are constant values depending
on the operating point. These constants are defined as follows:

m1 = Pm

Mg

, m2 = V

M ′
d

, m3 = V 2

Mg

(
1

Xq

− 1

X′
d

)

,

m4 = D

Mg

, m5 = Xd

T ′
doX

′
d

, m6 =
(

Xd − X′
d

T ′
doX

′
d

)

, m7 = 1

T ′
do

.

(43)

For a given constant field voltageEfd = E∗
f d , the generator has two equilibrium

points: one stable and one unstable point. In the following analysis and design, the
stable equilibrium point, which we denote by [δ∗ ω∗ E′∗

q ]T is considered. The system

equations in terms of the set point error variables δ̃ = δ − δ∗, ω̃ = ω − ω∗, Ẽ′
q =

E′
q − E′∗

q and u = E′
f d − E∗

f d are written as follows:
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˙̃
δ = ω̃

˙̃ω = m1 − m2 sin
(

δ̃ + δ∗)(Ẽ′
q + E′∗

q

)− m3

2
sin
(

2
(

δ̃ + δ∗))− m4ω̃ (44)

˙̃
E′

q = −m5
(

Ẽ′
q + E′∗

q

)+ m6 cos
(

δ̃ + δ∗)+ m7
(

u + E∗
f d

)

We assume that synchronous generator’s electrical parameters such as resistances,
reactances, and time constants either can be obtained from the manufacturer data-
sheet or can be measured by the standard test procedures such as SSFR tests [10, 25]
and only the mechanical power (Pm) supplied by the turbine is an unknown parame-
ter. Therefore m1 has been taken as an uncertain parameter and the other parameters
mi (i = 2, . . . ,7) are considered as fixed known parameters. Moreover, ω and ar-
mature’s voltage are assumed as available measurements and the generator’s power
angle is bounded. Considering the states and parameters: x = [δ̃, ω̃, E′

q ]T, θ = m1,
we can write (44) in the form of (9) as

(
ẋ1
ẋ2
ẋ3

)

=
(0 1 0

0 −m4 0
0 0 −m5

)(
x1
x2
x3

)

+
⎛

⎝

0
−m2 sin(x1 + δ∗)(x3 + E′∗

q ) − m3
2 sin 2(x1 + δ∗)

−m5E
′∗
q + m6 cos(x1 + δ∗) + m7(u + E∗

f d)

⎞

⎠+
(0

1
0

)

θ

y = (0 1 1)

(
x1
x2
x3

)

(45)

Now, the proposed adaptive observer can be used for joint estimation of states and
parameters in the synchronous machine given in (45).

Fig. 4 Synchronous generator’s
power angle estimation
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Fig. 5 Synchronous generator’s
rotor speed estimation

Fig. 6 Synchronous generator’s
transient voltage estimation

The synchronous generator parameter values (per unit) for this simulation are con-
sidered to be as follows:

X′
d = 0.5, Xd = 1.1, H = 8, T ′

do = 5.5, Xl = 0.415,

Ef = 1.3, Pm = 1, D = 0.1, ωs = 377

The design parameters Γ = 0.02 and σ0 = 0.1 are arbitrary fixed constants, and as
our analysis shows, they may affect the convergence rates of the signals in the adap-
tive loops. The parameters θ0 = 2 and γ3 = 7 are a priori knowledge of the system,
and M = 6 is chosen such that M > ‖θ0‖. Design parameters γ1 = 2, γ2 = 0.2 are
Lipschitz constants and we assumed that our accuracy in implementation is such that
we can guarantee ‖�1‖ ≤ 2 and ‖�2‖ ≤ 2. Using the proposed method, the observer
gain is obtained as L = [5.12 15.2 0.2].
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Figures 4, 5, and 6 show the states estimation for synchronous generator in the
presence of unknown mechanical power by using proposed resilient adaptive ob-
server.

6 Conclusion

In this paper, we offered a systematic algorithm for designing an adaptive resilient
observer for a class of nonlinear systems containing uncertain time-varying parame-
ters in the presence of a bounded perturbation on the observer’s gain. The resulting
LMIs can systematically obtain the robust adaptive observer gains, which ensures that
state estimates are under a certain bound, however, convergence of all the parameters
depends on the persistency of the excitation.
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