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Abstract As a generalization of the fractional Fourier transform (FRFT), the linear
canonical transform (LCT) plays an important role in many fields of optics and signal
processing. Many properties for this transform are already known, but the correlation
theorem, similar to the version of the Fourier transform (FT), is still to be determined.
In this paper, firstly, we introduce a new convolution structure for the LCT, which is
expressed by a one dimensional integral and easy to implement in filter design. The
convolution theorem in FT domain is shown to be a special case of our achieved
results. Then, based on the new convolution structure, the correlation theorem is de-
rived, which is also a one dimensional integral expression. Last, as an application,
utilizing the new convolution theorem, we investigate the sampling theorem for the
band limited signal in the LCT domain. In particular, the formulas of uniform sam-
pling and low pass reconstruction are obtained.
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1 Introduction

The linear canonical transform (LCT) [6, 13, 15, 16, 25] is an integral transform with
three free parameters. It was introduced in 1970s and many transforms such as the
Fourier transform (FT), the fractional Fourier transform (FRFT), the Fresnel trans-
form (FST) and the scaling operations are all special cases of the LCT [3, 15]. In some
papers, the LCT is also known as the affine Fourier transform [1], the generalized
Fresnel transform [9], the ABCD transform [6] and Moshinsky-queue-transform [25],
among other things.

Recently, along with applications of the FRFT in the signal processing community,
the rote of the LCT for signal processing has also been noticed. Comparing to the
FRFT with one extra degree of freedom and FT without a parameter, the LCT is
more flexible for extra three degree of freedom. It has found many applications in
optics, phase retrieval, radar system analysis, signal separation, filter design, pattern
recognition and many other areas [5, 7, 15, 16, 18, 23].

With intensive research of the LCT, many properties have been found including
time shift, phase shift, scaling, differentiation, integration, energy conservation and
so on [15]. Simultaneously, as the generalization of FT, the relevant theory of LCT
has been developed including the convolution theorem, uncertainty principle, sam-
pling theory and so on [7, 8, 10, 19–21, 23, 28], which are generalizations of the
corresponding properties of the FT and FRFT [4, 14, 17, 24, 26, 27]. However, the
correlation theorem for the LCT still yet remains unknown.

Convolution and correlation operations are fundamental in the theory of linear
time-invariant (LTI) system [15]. The output of any continuous time LTI system is
found via the convolution of the input signal with the system impulse response. Cor-
relation, which is similar to convolution, is another important operation in signal
processing, as well as in optics, in pattern recognition, especially in detection appli-
cations [2, 11, 12, 22]. As the LCT has found wide applications in signal processing
fields, it is theoretically interesting and practically useful to consider the convolution
and correlation theory in the LCT domain. In this paper, firstly, we introduce a new
convolution structure for the LCT, which is expressed by a simple integral and easy to
implement in filter design. Then, based on the new convolution structure, we obtain
a one dimensional integral expression of the correlation for LCT. Since the correla-
tion of two functions is no more than their convolution after one of the two functions
has been axis-reversed and complex conjugated, the property of the new convolution
results in the property of the correlation. Last, as an application, utilizing the new
convolution theorem, we study the sampling theorem for the band limited signal in
the LCT domain. The formulas of uniform sampling and reconstruction are obtained.

2 Preliminaries

2.1 The Linear Canonical Transform

The LCT of a signal f (t) with parameter A = (a, b, c, d) is defined [6, 13, 15, 16, 25]
as

FA(u) = LA[f (t)](u) =
{∫ +∞

−∞ f (t)KA(u, t) dt, b �= 0,√
dej (cd/2)u2

, b = 0,
(1)
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where

KA(u, t) = BAej 1
2 [ a

b
t2−( 2

b
)tu+ d

b
u2], (2)

where BA = √
1/(j2πb), a, b, c, d are real numbers satisfying ad − bc = 1. The

inverse of the LCT is given by

f (t) =
∫ +∞

−∞
FA(u)K∗

A(u, t) du, (3)

where superscript “∗” denote complex conjugation.
It should be noted that, when b = 0, the LCT of a signal is essentially a chirp

multiplication and it is of no particular interest to our objective in this work. There-
fore, from now on, we shall confine our attention to LCT for b �= 0. When A =
(cosα, sinα,− sinα, cosα), the LCT reduces to the FRFT; when α = π/2, it reduces
to FT.

The LCT has the following important space shift and phase shift properties [15],
which are used to derive the new convolution and correlation theorems for LCT in
this paper.

Before presenting the properties of LCT, we define some operators. We denote Sk

(k ∈ R) a translation operator, defined by

Skf (t) = Sk[f ](t) = f (t − k), (4)

Pk (k ∈ R) is a linear phase shift operator, defined by

Pkf (t) = ejktf (t). (5)

Let τ and v be two real numbers and consider the function PvSτf (t), such that

PvSτf (t) = ejtvf (t − τ). (6)

In order to express simple, we use (4) and (5) as the notation expression. Then, based
on the definition of the LCT, we present the following important space shift and phase
shift properties of LCT [6, 13, 15, 16, 25].

Property 1 The space shift property

LA

[
Sτf (t)

]
(u) = LA

[
f (t − τ)

]
(u) = e−jacτ 2/2+jcτuFA(u − aτ). (7)

Property 2 The phase shift property

LA

[
Pvf (t)

]
(u) = LA

[
ejtvf (t)

]
(u) = e−jbdv2/2+jdvuFA(u − bv). (8)

Property 3 The space and phase shift property

LA

[
PvSτf (t)

]
(u) = LA

[
ejtvf (t − τ)

]
(u)

= e−j [acτ 2+bdv2]/2+j (cτ+dv)u−bcτvFA(u − aτ − bv), (9)
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where τ , v represent the space and phase shift parameters, respectively. For further
details of the definition and properties of the LCT, the reader may refer to [15].

2.2 The Convolution and Correlation Theory

Convolution and correlation operations are fundamental in the theory of LTI system.
Moreover, convolution and correlation are widely used in signal processing, as well
as in optics, in pattern recognition or in the description of image formation with
incoherent illumination [2, 4, 11, 12, 14, 15, 22, 27]. The convolution and correlation
theorems in FT domain are defined as

(f ⊗ g)(t) =
∫ +∞

−∞
f (τ)g(t − τ) dτ, (10)

f (t) ⊗ g(t)
FT←→ F(u)G(u), (11)

f (t) 
 g(t) =
∫ +∞

−∞
f (τ)g∗(τ − t) dτ, (12)

where ‘⊗’ and ‘
’ denote the conventional convolution and correlation operations,
respectively.

Based on the expression for the generalized translation in the LCT domain, the
generalized convolution theorem has been derived in the LCT domain [23], which
preserves the elegance and simplicity comparable to that of the FT:

(f �g)(t) =
∫ +∞

−∞
f (τ)g(tθτ ) dτ, (13)

f (t)�g(t)
LCT←→ FA(u)GA(u), (14)

where θ in the argument of the function g(tθτ ) is the generalized delay operator
for the generalized translation. This shows that the generalized convolution of two
signals in time domain is equivalent to simple multiplication of their LCTs in the LCT
domains. However, the result is a triple integral. So, it is complicated to reduce the
expression of the generalized convolution to a single integral form as in the ordinary
convolution expression.

3 Convolution and Correlation Theorems for the LCT

In this section, firstly, we propose a convolution structure for the LCT, which is dif-
ferent from the generalized convolution structure [23]. Moreover, it can be expressed
by a simple one dimensional integral. This result is an extension of the convolution
theorem from the FT to the LCT domain, and can be more useful in practical ana-
log filtering in the LCT domain. Then, a natural definition of a correlation would be
derived using the new convolution theorem. And more important, we can also obtain
a one dimensional integral expression of the linear canonical correlation. In Sect. 4,
the derived convolution structure will be applied to analyze the sampling in the LCT
domain.



Circuits Syst Signal Process (2012) 31:301–312 305

3.1 New Convolution Structure for the LCT

Theorem 1 For any function f (t), g(t), let FA, GA denote the LCT of f (t), g(t),

respectively. Then

[
f

A⊗ g
]
(t) = BALA−1

[
FA(u)GA(u)e−jdu2/(2b)

]
(t), (15)

where operator ‘
A⊗’ is defined by

[
f

A⊗ g
]
(t) = B2

A

∫ +∞

−∞
f (τ)g(t − τ)e−jaτ(t−τ)/b dτ. (16)

Proof Let τ and v be two real numbers; based on (6) we have

PvSτf (t) = ejtvf (t − τ). (17)

Then, using the space shift and phase shift property of LCT (9), we obtain

LA

[
PvSτf (t)

]
(u) = e−j [acτ 2+bdv2]/2+j (cτ+dv)u−bcτvFA(u − aτ − bv). (18)

From (18), we see that both LA[PvSτf (t)] and LA[f (t)] depend on the same
parameter if we choose τ and v such that

aτ + bv = 0. (19)

According to (19), we get v = −aτ/b. Substituting v = −aτ/b into (18), equation
(18) then reduces to

LA

[
P−τa/bSτ f (t)

]
(u) = e−jaτ 2/(2b)−jτu/bLA

[
f (t)

]
(u). (20)

Making use of the generalized convolution of the LCT, we have

LA[f �g](u) = LA[f ](u)LA[g](u) = FA(u)GA(u). (21)

Then, using the definition of the LCT, we have

FA(u)GA(u) = LA[g](u)BAej du2
2b

∫ +∞

−∞
ej aτ2

2b
−j uτ

b f (τ ) dτ

= BAej du2
2b

∫ +∞

−∞
ej aτ2

2b
−j uτ

b LA[g](u)f (τ) dτ. (22)

According to (20), we get

LA

[
f (t)

]
(u)e−juτ/b = ejaτ 2/(2b)LA

[
P−τa/bSτf (t)

]
(u). (23)

Similarly, we can get

e−juτ/bLA

[
g(t)

]
(u) = ejaτ 2/(2b)LA

[
P−τa/bSτ g(t)

]
(u)

= ejaτ 2/(2b)LA

[
e−jatτ/bg(t − τ)

]
(u). (24)



306 Circuits Syst Signal Process (2012) 31:301–312

Substituting (24) into (22), we can obtain

FA(u)GA(u) = BAejdu2/(2b)

∫ +∞

−∞
ejaτ 2/(2b)

× (
ejaτ 2/(2b)LA

[
e−jatτ/bg(t − τ)

]
(u)

)
f (τ) dτ. (25)

Using the integral form of LA[e−jatτ/bg(t − τ)](u), we rewrite (25) as

FA(u)GA(u) = B2
Aejdu2/(2b)

∫ +∞

−∞
f (τ)ejaτ 2/bejdu2/(2b)

×
∫ +∞

−∞
ejat2/(2b)e−j tu/b

(
e−jatτ/bg(t − τ)

)
dt dτ. (26)

Let h be such that

h(t) = BA

∫ +∞

−∞
f (τ)g(t − τ)e−jaτ(t−τ)/b dτ. (27)

From (21) and (26), we get

LA[f �g](u) = ejdu2/(2b)LA[h](u). (28)

From (27) and (28), we see that the function h(t) could be a good candidate to be

a new convolution of f and g for the LCT. For that reason, we denote by
A⊗ a new

convolution, defined by (15) as

[
f

A⊗ g
]
(t) = BALA−1

[
FA(u)GA(u)e−jdu2/(2b)

]
(t). (29)

Let y(t) = BAh(t), we have

YA(u) = LA

[
y(t)

]
(u) = BAHA(u) = BAFA(u)GA(u)e−jdu2/(2b). (30)

Therefore

HA(u) = FA(u)GA(u)e−jdu2/(2b). (31)

Moreover, (27) and (28) can lead to

[
f

A⊗ g
]
(t) = B2

A

∫ +∞

−∞
f (τ)g(t − τ)e−jaτ(t−τ)/b dτ. (32)

�

Further, based on the conventional convolution operator, we can express the new
convolution as

[
f

A⊗ g
]
(t) = B2

Ae−jat2/(2b)
(
f (t)ejat2/(2b)

) ∗ (
g(t)ejat2/(2b)

)
. (33)
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Fig. 1 Convolution for the LCT

See Fig. 1 for realization of the convolution operation ‘
A⊗’.

When (a, b, c, d) = (0,1,−1,0), (33) reduces to the ordinary convolution theo-
rem of the FT. From the convolution theorem for the LCT defined by (29) and (32),
we see that (29) is similar to (14), up to a quadratic phase factor and a multiplica-
tive factor. However, the new convolution structure is different from the generalized
convolution introduced in [23]. The generalized convolution is a triple integral. It is
complicated to reduce the expression of the generalized convolution to a single inte-
gral form as in the ordinary convolution expression. Indeed, the advantage of the new
convolution structure is that it can be expressed by a simple one dimensional integral.
Moreover, it can be more useful in practical analog filtering in the LCT domain.

We also notice that the definition of the new convolution is identical to the one
proposed by Tao [7], up to a multiplicative factor. However, we came to such a def-
inition in a different way, and more important, we obtain a one dimensional integral
expression of the linear canonical convolution, (32) that does not explicitly appear in
Tao’s paper and cannot be so easy deduced from Tao’s reasoning. Such an integral
expression is useful for actual derivations and applications as will be shown later on.

The convolution theory is widely used in signal processing, as well as in optics.
The new convolution can be useful in practical analog filtering in the LCT domain as
discussed in [7, 23]. Equation (31) is particularly useful in filter design. For example,
if we are interested only in the frequency spectrum of the LCT in the region [u1, u2]
of a signal f , we choose the filter impulse response, g, so that GA is constant over
[u1, u2], and zero or of rapid decay outside that region. Passing the output of the filter
through the chirp multiplier, e−jdu2/(2b), yields that part of the spectrum of f over
[u1, u2]. In Sect. 4, as another application of new convolution for LCT, it is applied
to reconstruct a uniform sampling for bandlimited signal in LCT domain.

3.2 Correlation Theory for the LCT

Correlation, which is similar to convolution, is another important operation in signal
processing. Since the correlation of two functions is no more than their convolution
after one of the two functions has been axis-reversed and complex conjugated, the
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property of the new convolution results in the property of the correlation. On the
basis of (14), a natural definition of a correlation in the LCT domain could be

f
A

� g = LA−1

[
LA[f ]L∗

A[g]]. (34)

From (34), we see that the correlation in the LCT domain is also triple integral.
Nevertheless, we are looking for a correlation that is expressible by a simple inte-
gral. Using the new convolution structure, we introduce a new correlation in the LCT
domain defined by

[
f

A
 g
]
(t) = BALA−1

[
LA[f ](u)L∗

A[g](u)ejdu2/(2b)
]
(t). (35)

We can introduce the integral form of the correlation as follows

Theorem 2 For any function f (t), g(t), the correlation operator ‘
A
’ can also be

defined by

[
f

A
 g
]
(t) = BAB∗

A

∫ +∞

−∞
f (τ) g∗(τ − t)ejat (τ−t)/b dτ. (36)

Equation (36) is equivalent to (35).

Proof Now, we prove that (36) is equivalent to (35). From (36), using the definition
of LCT, we get

LA

[
f

A
 g
]
(u)

= B2
AB∗

Aejdu2/(2b)

∫ +∞

−∞
ejat2/(2b)−j tu/b

∫ +∞

−∞
f (τ)g∗(τ − t)ejat (τ−t)/b dτ dt

= B2
AB∗

Aejdu2/(2b)

∫ +∞

−∞
f (τ)

∫ +∞

−∞
e−jat2/(2b)e−j t (u−aτ)/bg∗(τ − t) dτ dt

= B2
AB∗

Aejdu2/(2b)

∫ +∞

−∞
f (τ)ejd(u−aτ)2/(2b)e−jd(u−aτ)2/(2b)

×
∫ +∞

−∞
e−jat2/(2b)ejt (aτ−u)/bg∗(τ − t) dτ dt

= B2
Aejdu2/(2b)

∫ +∞

−∞
f (τ)ejd(u−aτ)2/bL∗

A[Sτ g̃]dτ, (37)

where g̃ is the axis-reversed version of g. According to the space shift and phase shift
property of LCT (9), we get

LA[Sτ g̃](x) = e−jacτ 2/2+jxcτLA[g̃](x − aτ). (38)

Then, we have

L∗
A[Sτ g̃](aτ − u) = ejacτ 2/2−j (aτ−u)cτL∗

A[g̃](−u) (39)
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and using LA[g̃](−u) = LA[g](u), (37) becomes

LA

[
f

A
 g
]
(u)

= B2
Aejdu2/(2b)

∫ +∞

−∞
f (τ)ejd(u−aτ)2/bejacτ 2/2e−jcτ(aτ−u)L∗

A[g](u) dτ

= B2
AL∗

A[g](u)ejdu2/(2b)

∫ +∞

−∞
f (τ)ejdu2/(2b)ejaτ 2/(2b)e−juτ/b dτ

= BALA[f ](u)L∗
A[g](u)ejdu2/(2b) (40)

which is once more (35). �

4 Analysis of Sampling in the LCT Domain Based on the Convolution Theorem

The sampling process is central in almost any domain and it explains how to sample
continuous signals without aliasing. The sampling theorem expansions for the LCT
have been derived in [8, 10, 20, 28], which provides the link between the continuous
signals and the discrete signals, and can be used to reconstruct the original signal
from their samples satisfying the Nyquist rate of that domain. Here, utilizing the new
derived convolution theorem, sampling of bandlimited signals in the LCT domain is
further investigated. In particularly, the formulas of uniform sampling and low pass
reconstruction are obtained.

Firstly, we define a linear canonical Dirac comb with period T and parameter A

by

CT ;A = T

n=+∞∑
n=−∞

δnT e−ja(nT )2/(2b). (41)

We will use the following result [15]:

LA[δnT ](u) = BAej(du2+a(nT )2)/(2b)e−junT/b. (42)

Based on the Poisson formula, we obtain

LA[CT ;A](u) = T BAejdu2/(2b)
n=+∞∑
n=−∞

e−junT/b

= BAbπejdu2/(2b)
n=+∞∑
n=−∞

δ(u − nπb/T )

= T BACb/T ;A−1(u). (43)

Now, we consider a function whose LCT has a finite support [−Ω/2,Ω/2]. Let
Γ be the function made up of translated replicas of LA[f ], defined by

Γ = 1

Ω
LA[f ] A−1

⊗ CΩ;A−1 . (44)
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Then, according (29) and (43), we obtain

LA−1[Γ ](t) = B∗
Af (t)Cb/Ω;A(t)ejdu2/(2b)

= B∗
A

πb

Ω

n=+∞∑
n=−∞

f

(
nπb

Ω

)
δ

(
t − nπb

Ω

)
. (45)

From (45), we see that LA−1[Γ ] is a sampled version of f . Next, we can obtain
LA[f ] through a low pass filter HΩ satisfying

HΩ =
{

1, |u| ≤ Ω/2,

0, |u| > Ω/2.
(46)

Then LA[f ](u) = Γ HΩ(u) and

LA[f ](u) = Γ HΩejdu2/(2b)e−jdu2/(2b). (47)

Using the new convolution definition, (47) becomes

f = LA−1 [Γ ] A⊗ LA−1[ΨΩ ], (48)

where

ΨΩ = HΩ(u)ejdu2/(2b). (49)

Using the LCT of function ΨΩ , we obtain

LA−1[ΨΩ ](t) = BA

sin(tΩ/b)

tΩ/b
e−jat2/(2b). (50)

Finally, using the definition of the new convolution and (48), we have

f (t) = e−jat2/(2b)
n=+∞∑
n=−∞

f (nTA)eja(nTA)2/(2b) sin[Ω(t − nTA)/b]
Ω(t − nTA)/b

, (51)

where TA is sampling period and satisfies TA = πb/Ω . Equation (51) provides the
values of f (t), in terms of sampled values of f , and constitutes the sampling theorem
for LCT.

5 Conclusion

In this paper, we have introduced expressions for the LCT of a convolution and a
correlation of two functions. Firstly, we propose a new convolution structure for the
LCT using the space shift and phase shift properties of the LCT. Moreover, it can
be expressed by a simple one dimensional integral. This result is an extension of the
convolution theorem from the FT to the LCT domain, and can be more useful in
practical analog filtering in the LCT. Then, using the new convolution theorem, we



Circuits Syst Signal Process (2012) 31:301–312 311

also obtain a one dimensional integral expression of the correlation for LCT. Since
the correlation of two functions is no more than their convolution after one of the
two functions has been axis-reversed and complex conjugated, the property of the
new convolution results in the property of the correlation. Last, utilizing the new
convolution theorem derived in this paper, sampling of band limited signals in the
LCT domain has been further investigated. The formulas of uniform sampling and
low pass reconstruction are obtained.
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