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Abstract The stochastic stabilization problem of Markovian jump systems subject
to both partial unknown transition probabilities and actuator saturation is considered
in this paper. Different from the previous results where complete knowledge on the
transition probabilities is available, a new controller synthesis scheme is proposed as
well as an estimate of the domain of attraction in mean square sense. A sufficient
condition is first established to guarantee the stochastic stability of the closed-loop
system. An optimization problem with LMI constraints is then formulated to deter-
mine the largest contractively invariant set in mean square sense. Finally, a numerical
example is provided to show the effectiveness of our method.

Keywords Markovian jump systems · Partial unknown transition probabilities ·
Actuator saturation · Domain of attraction in mean square sense

1 Introduction

Markov jump systems (MJS) is a class of systems that has been an attractive subject
of research during the last decades; to mention a few references, we refer to [3, 4].
This class of system is very appropriate to model plants whose structure is subject
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to random abrupt changes due to, for instance, random component failures, abrupt
environment disturbance, changes of the operating point of a linearized model of a
nonlinear system, etc. Many fundamental results for deterministic systems have been
extended to stochastic systems [2, 6, 10, 13, 14].

There is a common assumption made in most of the existing literature, that is,
a complete knowledge of the transition probabilities has to be available precisely a
priori. However, it is now recognized that only partial transition probabilities can be
obtained in some practical situations. This leads to another interesting topic concern-
ing MJS: robust stability, robust stabilization and robust performance for Markovian
jump systems with uncertain switching probabilities. Xiong et al. studied the robust
controller design problem for systems involving parameter uncertainties in both sys-
tem matrices and mode transition probability matrix [15]. Recently, an interesting
result was proposed in [16], where the stability and stabilization problems are ad-
dressed for MJS with partly unknown transition probabilities.

On the other hand, nearly all practical control problems involve plants whose actu-
ators or sensors are limited by inherent physical constraints. It is well known that such
nonlinearities can produce significant performance degradation and possible instabil-
ity for the closed-loop systems. Because of its practical and theoretical importance,
stability analysis and synthesis for control systems with actuator or sensor saturation
has been studied by many researchers for a long time, for example [1, 7, 9, 11, 17–
19]. However, as far as we know, there is little research on MJS subject to actuator
saturation. Boukas considered the output feedback control for uncertain time-delay
systems with saturating actuators [5]. In [8], the quadratic optimal control problem
of a discrete-time MJS with constraints on the state and control variables was pre-
sented. Liu et al. [12] studied the control design problem for MJS subject to actuator
saturation based on the work of [9].

Since both actuator saturation and uncertainty in transition probabilities are often
encountered in practice, it is of great importance to study the robust stochastic stabi-
lization for MJS subject to both undesirable phenomena. To the best of our knowl-
edge, there is no relevant document concerning all the factors mentioned above which
motivates our study.

In this paper, we are concerned with designing state feedback controller for MJS
in the presence of both partial unknown transition probabilities and saturating actu-
ators. A sufficient condition is first established to guarantee the stochastic stability
of the closed-loop system. An optimization problem with LMI constraints is then
formulated to determine the largest contractively invariant set in mean square sense.
Finally, a numerical example is provided to show the effectiveness of our method.

Notation: In this paper, the superscript “T ” stands for matrix transposition, Rn de-
notes the n dimensional Euclidean space, Rn×m is the set of all n × m real matrices
and N+ represents the sets of positive integers, respectively. For notation (Ξ,Υ,Θ),
Ξ represents the sample space, Υ is the σ -algebra of subsets of the sample space
and Θ is the probability measure on Υ . The notation P > 0 (respectively, P ≥ 0)
means that P is symmetric and positive definite (respectively, positive semi-definite).
diag{M1,M2, . . . ,MN } denotes a block diagonal matrix with diagonal blocks being
the matrix M1,M2, . . . ,MN . G + GT is denoted as G + (·)T for simplicity. In sym-
metric block matrices, we use � as an ellipsis for terms that are induced by symmetry.
Matrices, if not explicitly stated, are assumed to have compatible dimensions.
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2 Problem Statement and Preliminaries

Let us consider the following dynamic system defined in a probability space
(Ξ,Υ,Θ):

ẋ(t) = A(γ (t))x(t) + B(γ (t))σ (u(t)) (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input. The continuous-
time, discrete-state homogeneous Markov jumping process {γ (t), t ≥ 0} takes dis-
crete values in a given finite set S = {1,2, . . . , s} and has the following mode transi-
tion rates:

P {γ (t + Δ) = k|γ (t) = i} =
{

λikΔ + o(Δ) i �= k

1 + λiiΔ + o(Δ) i = k

where Δ > 0, λik ≥ 0 for i �= k and λii = −∑s
k=1,k �=i λik for each mode i,

o(Δ)/Δ → 0 as Δ → 0. For γ (t) = i ∈ S, the system matrices of the ith mode are
denoted by Ai, Bi . On the other hand, the transition rates of the Markov jumping
process are considered to be partially known. That is, some elements in the transition
rate matrix are not accessible. For example, for system (1) with four operation modes,
the transition rate matrix may be of the form

Λ =

⎡
⎢⎢⎣

λ11 ? ? λ14
? λ22 λ23 ?
? λ32 ? λ34

λ41 ? λ43 ?

⎤
⎥⎥⎦

where “?” represents the inaccessible elements. Note that this kind of more general
expression of transition rate was first proposed in [16]. For the simplicity of presen-
tation, let us introduce the following notations. For all i ∈ S, let

S = Si
κ + Si

uκ

with

Si
κ � {k : λik is known}

Si
uκ � {k : λik is unknown} (2)

In addition, if Si
κ �= ∅, then Si

κ can be also rewritten as

Si
κ = (κi

1, . . . , κ
i
m

)
, ∀ 1 ≤ m ≤ s (3)

where κi
m ∈ N+ represents the mth known element with the index κi

m in the ith row
of matrix Λ. Moreover, we denote λi

κ �
∑

k∈Si
κ
λik in the following discussion.

The function σ(·) : Rm → Rm is the standard saturation function, i.e.,

σ(u) = [σ(u1) σ (u2) · · · σ(um) ]T

where

σ(ui) = sign(ui)min{1, |ui |}
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Remark 1 In probability theory, a continuous-time Markov process is a stochastic
process {γ (t), t ≥ 0} that satisfied the Markov property and takes values from a given
set. The process is characterized by “transition rates” λij between states i and j .
The transition rates λij are typically given as the ij th elements of the transition rate
matrix Λ (also known as an intensity matrix). Since the transition rate matrix contains
rates, the rate of departing from one state to arrive at another should be positive. On
the other hand, the rates for a given state should sum to zero, yielding the diagonal
elements to be

λii = −
∑
j �=i

λij

As a result, the rate that the system remains in a state should be negative.

Our aim is to design mode-dependent state feedback controller

u(t) = F(γ (t))x(t) (4)

where Fi ∈ Rm×n (∀ γ (t) = i ∈ S) is the controller gain to be determined, such that
the closed-loop system is stochastically stable. Moreover, an estimate of the domain
of attraction in mean square sense will also be provided.

The following definition will be adopted in the rest of this paper.

Definition 1 [12] A set $ ⊂ Rn is called the domain of attraction in mean square
sense of system (1), if for any initial mode γ0 ∈ S and initial state x0 ∈ $, the solution
x(t, x0, γ0) of (1) satisfies

lim
Tf →∞E

{∫ Tf

0
xT (t, x0, γ0)x(t, x0, γ0) dt | x0, γ0

}
≤ xT

0 Υ x0

for some matrix Υ > 0.

As pointed out in [12], if the initial state x0 is located in the domain of attraction
in mean square sense, then the closed-loop system will be stochastically stable at the
origin.

Let the j th row of the matrix Fi be fij . We define the following symmetric poly-
hedron:

L(Fi) = {x ∈ Rn : −1 ≤ fij x ≤ 1, j = 1,2, . . . ,m
}

For any matrix Pi > 0, one can define the ellipsoid

Ω(Pi) = {x ∈ Rn : xT Pix ≤ 1
}

Let D be the set of m × m diagonal matrices whose diagonal elements are either
1 or 0. It is obvious that there are 2m elements in D. In the case of m = 2,

D =
{[

0 0
0 0

]
,

[
0 0
0 1

]
,

[
1 0
0 0

]
,

[
1 0
0 1

]}
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Denote each element of D as Dj, j = 1, . . . ,2m, and let D−
j = I −Dj . Note that D−

j

is also an element of D if Dj ∈ D.
In order to obtain our main result in this paper, the following lemma is needed.

Lemma 1 [9] For given matrices F,H ∈ Rm×n, if x ∈ L(H), we have

σ(Fx) ∈ Co{DjFx + D−
j Hx} j = 1, . . . ,2m

Hence, σ(Fx) can be expressed as

σ(Fx) =
2m∑
j=1

ηj (DjF + D−
j H)x (5)

where
∑2m

j=1 ηj = 1 and ηj ≥ 0.

3 Main Results

In this section, we design state feedback controller of the form (4) that will stochas-
tically stabilize system (1) with partial unknown transition rates (2).

Theorem 1 Given system (1) with partly unknown transition probabilities (2), if there
exist matrices Hi , and symmetric positive definite matrices Pi with appropriate di-
mensions such that for all i = 1,2, . . . , s, j = 1,2, . . . ,2m

(
1 + λi

κ

){[
Ai + Bi(DjFi + D−

j Hi)
]T

Pi + (·)T }+∑
k∈Si

κ

λikPk < 0 (6)

[
Ai + Bi(DjFi + D−

j Hi)
]T

Pi + (·)T + Pk ≥ 0, ∀ k ∈ Si
uκ , k = i (7)

[
Ai + Bi(DjFi + D−

j Hi)
]T

Pi + (·)T + Pk ≤ 0, ∀ k ∈ Si
uκ , k �= i (8)

and

Ω(Pi) ⊂ L(Hi) (9)

then the set of intersection of ellipsoids Ω(Pi), i.e.,
⋂s

i=1 Ω(Pi) is contained in the
domain of attraction in mean square sense of the closed-loop system under the con-
troller (4).

Proof Consider system (1) with the controller (4), and let the mode γ (t) = i ∈ S

and Pi > 0. Let us choose a stochastic Lyapunov function candidate V (x(t), γ (t) =
i) = xT (t)Pix(t). The weak infinitesimal operator ∇ of the stochastic process
{x(t), γ (t), t} is

∇V (x(t), γ (t) = i)

= xT (t)

{
s∑

k=1

λikPk

}
x(t) + 2[Aix(t) + Biσ (Fix(t))]T Pix(t)
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From (9), it follows that if x(t) ∈ ⋂s
i=1 Ω(Pi), then x(t) ∈ L(Hi). Using

Lemma 1, we have

∇V (x(t), γ (t) = i)

= 2xT (t)

[
Ai + Bi

2m∑
j=1

ηj (DjFi + D−
j Hi)

]T
Pix(t) + xT (t)

{
s∑

k=1

λikPk

}
x(t)

=
2m∑
j=1

ηj xT (t)Γij x(t)

with

Γij = [Ai + Bi(DjFi + D−
j Hi)
]T

Pi + (·)T +
s∑

k=1

λikPk

By the fact that
∑

k∈S λik = 0, we can rewrite Γij as

Γij �
[
Ai + Bi(DjFi + D−

j Hi)
]T

Pi + (·)T +
s∑

k=1

λikPk

+
∑
k∈S

λik

{[
Ai + Bi(DjFi + D−

j Hi)
]T

Pi + (·)T }

To decompose the transition rate matrix into the known and the unknown parts,
one has

Γij =
(

1 +
∑
k∈Si

κ

λik

){[
Ai + Bi(DjFi + D−

j Hi)
]T

Pi + (·)T }+∑
k∈Si

κ

λikPk

+
∑

k∈Si
uκ

λik

{[
Ai + Bi(DjFi + D−

j Hi)
]T

Pi + (·)T }+ ∑
k∈Si

uκ

λikPk

= (1 + λi
κ)
{[

Ai + Bi(DjFi + D−
j Hi)
]T

Pi + (·)T }+∑
k∈Si

κ

λikPk

+
∑

k∈Si
uκ

λik

{[
Ai + Bi(DjFi + D−

j Hi)
]T

Pi + (·)T + Pk

}

Note that ∀ k ∈ Si
uκ and if i ∈ Si

κ , we can get Γij < 0 by conditions (6), (8) and the fact
λik ≥ 0 (∀ i, k ∈ S, i �= k). On the other hand, in the case of ∀ k ∈ Si

uκ and if i ∈ Si
uκ ,

one can obtain

Γij = (1 + λi
κ)
{[

Ai + Bi(DjFi + D−
j Hi)
]T

Pi + (·)T }+∑
k∈Si

κ

λikPk

+
∑

k∈Si
uκ ,κ �=i

λik

({[
Ai + Bi(DjFi + D−

j Hi)
]T

Pi + (·)T }+ Pk

)
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+ λii

{[
Ai + Bi(DjFi + D−

j Hi)
]T

Pi + (·)T + Pk

}

From the definition of transition rate matrix, it follows that λii = −∑s
k=1,k �=i λik < 0.

Therefore, from (6)–(8), we can also get Γij < 0. Therefore, one has

∇V (x(t), i) ≤ −min
i∈S

{
λmin

(
−

2m∑
j=1

ηjΓij

)}
xT (t)x(t)

By Dynkin’s formula, we know

E [V (x(t), i) ] − V (x0, γ0)

= E
[∫ t

0
∇V
(
x(θ), γ (θ)

)
dθ
]

≤ −min
i∈S

{
λmin

(
−

2m∑
j=1

ηjΓij

)}
× E

[∫ t

0
xT (θ)x(θ) dθ | (x0, γ0)

]

which, in turn, implies

min
i∈S

{
λmin

(
−

2m∑
j=1

ηjΓij

)}
× E

[∫ Tf

0
xT (t)x(t) dt | (x0, γ0)

]

≤ V (x0, γ0) − E [V (x(t), i)]

≤ V (x0, γ0)

This leads to

E

[∫ Tf

0
xT (t)x(t) dt | (x0, γ0)

]
≤ V (x0, γ0)

mini∈S{λmin(−∑2m

j=1 ηjΓij )}
Thus

lim
Tf →∞E

[∫ Tf

0
xT (t)x(t) dt | (x0, γ0)

]
≤ xT

0
λmax(Pi)I

mini∈S{λmin(−∑2m

j=1 ηjΓij )}
x0

Consequently,

lim
Tf →∞E

[∫ Tf

0
xT (t)x(t) dt | (x0, γ0)

]
≤ xT

0 Υ x0

where

Υ = λmax(Pi)I/min
i∈S

{
λmin

(
−

2m∑
j=1

ηj Γij

)}

This implies that the set
⋂s

i=1 Ω(Pi) is contained in the domain of attraction in mean
square sense of the closed-loop system. This completes the proof of Theorem 1. �
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Remark 2 It is noted that for some applications the complete access for the jump-
ing mode is not available. In such a case, it is of great interest to design a mode-
independent state feedback control. To solve this problem, we just need to add the
constraints Fi = F, Hi = H,Pi = P (i = 1,2, . . . , s) in Theorem 1.

Theorem 1 just presents a sufficient condition to ensure the stochastic stability of
the closed-loop system. In what follows, we will design a stabilizing feedback con-
troller (4) for system (1). More specifically, we will convert the condition in Theorem
1 into LMI, which can be solved efficiently by interior-point method.

Here we assume that the initial state is a guaranteed region of the state space X0
with X0 ∈ Co{x1

0 , . . . , xw
0 }, where x1

0 , . . . , xw
0 are some given points in Rn. In order

to find the largest estimate of the domain of attraction which includes X0 in mean
square sense, we present the following optimization problem:

sup
Pi>0,Fi ,Hi

α

s.t. (a) αxl
0 ∈

s⋂
i=1

Ω(Pi) l = 1,2, . . . ,w

(b) Inequalities (6)–(8)

(c) |hij x(t)| ≤ 1, ∀ x(t) ∈
s⋂

i=1

Ω(Pi)

(10)

where hij denote the j th row of Hi . Note that (c) holds if and only if (9) holds. If
the computed maximal α is greater than 1, then the initial state X0 is located in the
domain of attraction in mean square sense. Now, we introduce the following trans-
formation:

β = α−2, Xi = P −1
i , Yi = FiXi, Zi = HiXi. (11)

It is observed that condition (a) is equivalent to α2(xl
0)

T Pix
l
0 ≤ 1, which can be

further expressed as

[−β �

xl
0 −Xi

]
≤ 0 l = 1,2, . . . ,w, i = 1,2, . . . , s. (12)

The expression in (6)–(8) is nonlinear in the design parameter Pi for every i ∈ S.
To cast it into an LMI, let us pre- and post-multiply (6) by Xi . Using Schur comple-
ment, we get the following conditions by considering two different cases:

[
(1 + λi

κ){AiXi + BiDjYi + BiD
−
j Zi + (·)T } + λiiXi ℵi

κ

� −χi
κ

]
< 0

∀ i ∈ Si
κ (13)[

(1 + λi
κ){AiXi + BiDjYi + BiD

−
j Zi + (·)T } ℵi

κ

� −χi
κ

]
< 0

∀ i �∈ Si
κ (14)
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where

ℵi
κ �
(√

λiκi
1
Xi, . . . ,

√
λiκi

m
Xi

)

χi
κ � diag

{
Xκi

1
, . . . ,Xκi

m

}

Using Schur complement and performing a similar procedure, we can also convert
(7), (8) into their equivalent form

AiXi + BiDjYi + BiD
−
j Zi + (·)T + Xk ≥ 0,

∀k ∈ Si
uκ , k = i (15)[

AiXi + BiDjYi + BiD
−
j Zi + (·)T Xi

� −Xk

]
≤ 0

∀k ∈ Si
uκ , k �= i (16)

On the other hand, by using the similar technique in [9], (c) is equivalent to

[−Xi �

ziq −1

]
≤ 0, i = 1,2, . . . , s; q = 1,2, . . . ,m (17)

where ziq is the qth row of Zi . In summary, the optimization problem (10) can trans-
formed as

inf
Xi>0,Yi ,Zi

β

s.t. Inequalities (12)–(17)
(18)

If βmin < 1 (which in turn implies that αmax > 1), then the initial state is located
in the domain of attraction in mean square sense and the designed controller can be
obtained by u(t) = Fix(t) with the gain Fi = YiX

−1
i .

Theorem 2 Given system (1) with partly unknown transition rates (2), if there exist a
scalar β > 0, matrices Yi , Zi , and Xi > 0 with appropriate dimensions such that for
all i = 1,2, . . . , s there exists an optimal solution for the optimization problem (18),
then we can design mode-dependent state feedback controller (4) with the maximal
domain of attraction

⋂s
i=1 Ω(X−1

i ) in mean square sense. Furthermore, the feedback
gains are computed by

Fi = YiX
−1
i , i = 1,2, . . . , s (19)

4 Example

In this section, a numerical example is given to demonstrate the effectiveness of our
method presented in this paper.
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Fig. 1 Mode evolution

Consider a system described by (1) with the following parameters: S = {1,2,3,4},
r0 = 2,

A1 =
[−0.75 −0.75

1.50 −1.50

]
, A2 =

[−0.15 0.49
1.50 −2.10

]

A3 =
[−0.30 −0.15

1.50 −1.80

]
, A4 =

[−0.90 −0.34
1.50 −1.65

]

B1 =
[

5
−1

]
, B2 =

[
2

−1

]
, B3 =

[
1

−1

]
, B4 =

[
3

−1

]

Λ =

⎡
⎢⎢⎣

−1.3 0.2 ? ?
? ? 0.3 0.3

0.6 ? −1.5 ?
0.4 ? ? ?

⎤
⎥⎥⎦ , x0 =

[−1
0.5

]

To design the mode-dependent state feedback controller of the form (4) such that
the closed-loop system with both partial unknown transition probabilities and actua-
tor saturation is stochastically stable, we solve the optimization problem (18) to get
β = 0.5758, and the stabilizing gain matrices are computed as

F1 = [−0.2065 0.1216 ], F2 = [0.3941 −0.4641 ]
F3 = [−1.0565 0.8280 ] × 104, F4 = [0.4823 −0.3291 ]

Giving a possible system mode evolution as in Fig. 1, the state trajectories of the
closed-loop system and the corresponding control input are shown in Fig. 2 and Fig. 3
(see the solid curve). Obviously, the system is stochastically stable in the presence of
partial unknown transition probabilities and actuator saturation. For comparison, we
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Fig. 2 The state trajectories of
the closed-loop system

Fig. 3 The control input

also consider the fully known transition matrix case with

Λ∗ =

⎡
⎢⎢⎣

−1.3 0.2 0.2 0.9
0.3 −0.9 0.3 0.3
0.6 0.3 −1.5 0.6
0.4 0.1 0.9 −1.4

⎤
⎥⎥⎦

The corresponding feedback gains are computed as

F ∗
1 = [0.0528 −0.1408 ], F ∗

2 = [−0.1286 −0.6112 ]
F ∗

3 = [−0.0645 −0.9204 ], F ∗
4 = [−0.0889 −0.9256 ]

Furthermore, the state trajectories and the control input with fully known transition
probability matrix Λ∗ are also plotted in Fig. 2 and Fig. 3 (see the dotted curve). As
we can see, the convergence speed of fully known transition probability matrix to
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the origin is faster than that of partial known transition probability matrix, which is
reasonable.

Remark 3 It is noted that there exist some computational complexity met in practice
for our results. One is that we need to obtain the complete access for the jumping
mode γ (t) during the operating process, which may not be possible for some appli-
cations. Another one is that the complexity will grow exponentially with the increase
of the dimension of input m since there are 2m elements in D.

5 Conclusion

In this paper, we have presented an approach designing of mode-dependent state
feedback control law for Markov jumping linear system in the presence of partial
unknown transition rate probabilities and saturating actuators. Such a problem has
been converted into an optimization problem with LMI constraints. Simulations are
given to illustrate the usefulness of our result. Possible future research directions in-
clude real-life application of the proposed models and the related stability results, and
further extensions of the present result to networked control systems.
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