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Abstract In this paper, the robust filter design problem is studied for a class of uncer-
tain dynamical systems with finite-step correlated process noises and missing mea-
surements. The dynamical system under consideration is subject to both deterministic
norm-bounded uncertainties in the measurement output and stochastic uncertainties
on the system states. The process noises are assumed to be finite-step correlated. The
missing measurement phenomenon is modeled as a binary switching sequence. Based
on the min-max game theory, a recursive robust filter is designed that is suitable for
online application. A particular feature is that, as the proposed robust filters work in
a recursive fashion, there is no need to investigate the existence issue of the filters.
A simulation example is presented to illustrate the usefulness of the proposed filter.
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1 Introduction

The renowned Kalman filter is the optimal linear state-space filter in the least mean
squares sense. As is well recognized now, the performance of the Kalman filter
is highly sensitive to the model uncertainties since one of the key assumptions in
Kalman filter theory is that a dynamical model has to be exactly known. However,
such a key assumption does not always hold in practical applications due to a variety
of reasons such as model reduction, parameter variation, and unmodeled dynamics.
In order to cope with this problem, over the past decades, considerable research at-
tention has been devoted to develop robust state-space filters including the H∞ filters
[2, 7, 8, 10, 24, 29], mixed H2/H∞ robust filters [2, 6, 10, 29], set-valued filters [1],
and robust mean-square filters [23]. It is worth mentioning that, in [18], a regularized
robust filter was proposed. Compared with other robust filters, the regularized robust
filter developed in [18] has a nice property of circumventing existence conditions for
the filters and is therefore convenient for online operation. Later, an extended version
of the regularized robust filter was designed in [5] where an iterative strategy was
included.

Multiplicative noise, also called state-dependent noise or stochastic uncertainty,
has already received significant research attention in recent years [26, 27]. The main
reason is that models with multiplicative noise are commonly encountered in many
areas of application, such as aerospace systems [14], communication systems [22],
and image processing systems [12, 13, 21], etc. So far, several approaches have been
proposed to deal with the analysis and synthesis problems for systems with multi-
plicative noise, such as the linear matrix inequality approach [9], the game theoretic
method [3, 17], the Riccati equation approach [11, 28], and B-spline expansion [15],
etc. On the other hand, in most of the literature concerning filtering algorithms, the
process noises have been assumed to be uncorrelated across time, which is fairly
unrealistic, as pointed out in [20]. For example, if the system under consideration
is a discretized version of a continuous dynamical system, then the process noises
with discretization errors are inherently correlated across time. Up to now, much at-
tention has been focused on dynamical systems with time-correlated process noises;
see, e.g., [19, 20].

In many practical applications, the phenomenon of missing measurements widely
exists. A typical example is the network control system where, due to the probabilis-
tic network transmission delay or packet loss, the measurement outputs may contain
noises only. Another example is that of the ground target tracking problem. In this
case, if the range rate of the target drops below a special threshold in magnitude, the
measurements will be deliberately suppressed [4]. Due to the practical significance,
both filtering and control problems with missing measurements have been extensively
investigated in the past decade; see [16, 25] for some representative publications.
Summarizing the above discussion, despite its clear engineering importance, the re-
cursive robust filter design problem has not been fully studied for uncertain dynamical
systems with finite-step correlated process noises and/or missing measurements. It is,
therefore, the purpose of this paper to shorten this gap.

In this paper, we aim to study the recursive robust filter design problem for un-
certain dynamical system with time-correlated process noises and missing measure-
ments. The process noises are assumed to be finite-step correlated. The dynamical
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system under consideration is subjected to both deterministic norm-bounded un-
certainties and stochastic uncertainties, where the latter are actually multiplicative
noises. Similar to [16, 25], the missing measurements phenomenon is characterized as
a binary switching sequence satisfying a conditional probability distribution. Based
on the min-max game theory, a recursive robust filter is proposed. Compared with
most of the existing robust filters, the proposed robust filter is not required to have
the existence conditions because of its recursive nature and is therefore very conve-
nient for online operation. The main contribution of this paper is twofold: (1) a new
filtering problem is formulated that takes into account the multiplicative perturbations
on the system states, the missing measurements, and the parameter uncertainties with
finite-step correlated process noises; and (2) a new recursive algorithm is developed
to solve the addressed problem completely. We present a simulation example to illus-
trate the usefulness of the proposed filter.

The remainder of the paper is organized as follows. In Sect. 2, the recursive robust
filter design problem is formulated for a class of uncertain dynamical systems with
finite-correlated process noises and missing measurements. The main results of the
paper are derived in Sect. 3. In Sect. 4, a simulation example is presented to illustrate
the proposed method. We end the paper with some concluding remarks in Sect. 5.

2 Problem Formulation

Consider the following uncertain dynamical system with finite-step correlated pro-
cess noises and missing measurements.

System model: xk+1 =
(

Ak +
m1∑
i=1

Ai,kεi,k

)
xk + Bkωk, (1)

Measurement model: yk = λk(Hk + �Hk)xk + vk, (2)

where xk ∈ R
n is the state of the system to be estimated, yk ∈ R

m is the measured out-
put, ωk ∈ R

q is the finite-step correlated process noise, vk ∈ R
m is the measurement

noise, εi,k ∈ R is the multiplicative noise, Ak,Ai,k,Bk and Hk are known real time-
varying matrices with appropriate dimensions, and �Hk is a norm-bounded uncertain
term of the structure

�Hk = EkΔkMk. (3)

Here, Mk,Ek are known real time-varying matrices of appropriate dimensions and
Δk is a time-varying unknown contraction bounded by ‖Δk‖ ≤ 1. λk ∈ R is a binary
switching sequence with the known conditional probability distribution given below:

Prob{λk = 1} = E {λk} = βk, (4)

Prob{λk = 0} = 1 − E {λk} = 1 − βk. (5)

The initial state x0 and the noise signals ωk, vk and εi,k are uncorrelated with each
other while having the following statistical properties:
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E (ωk) = 0, E (vk) = 0, E (εi,k) = 0, E (x0) = x̄0,

E
(
εi,kε

T
j,l

) = δi−j δk−l , E (vkvj ) = Rkδk−j ,

E
[
(x0 − x̄0)(x0 − x̄0)

T
] = P0/0,

E
(
ωkω

T
j

) = Qkδk−j +
ek∑

t=1

Qk,j δk−j+t +
fk∑
t=1

Qk,j δk−j−t ,

(6)

where E stands for the mathematical expectation operator, and ek and fk are, respec-
tively, the numbers of steps forward and backward correlated with Qk,j = QT

k,j . δi−j

is the Kronecker delta function, which is equal to unity for i = j and zero for i �= j .

Remark 1 From the last equality in (6), one can see that the process noise at time k

is correlated with the process noises at time steps k − 1, k − 2, . . . , k − fk as well as
k + 1, k + 2, . . . , k + ek with covariance Qk,k−1, Qk,k−2, . . . , Qk,k−fk

and Qk,k+1,
Qk,k+2, . . . , Qk,k+ek

, respectively.

Most optimal filter recursive algorithms can be generally described in two stages,
that is, time update and measurement update. In the time update stage, the optimal
state prediction at k + 1 is obtained using the system dynamics and the optimal state
estimate at time k. In the measurement update stage, the newly obtained measure-
ments are used to improve the accuracy of the state prediction. We follow the same
method to develop a filter that is robust against the system uncertainties, correlated
process noise, and missing measurements. In particular, the min-max game theory
is intensively utilized to design the desired robust filters ensuring the recursion and
optimality for the benefits of online operation. For convenience of later development,
it can be calculated that

E
(
xkω

T
k

) = E
[(

Ak−1xk−1 +
m1∑
i=1

Ai,k−1εi,k−1xk−1 + Bk−1ωk−1

)
ωT

k

]

= Ak−1 E
(
xk−1ω

T
k

) +
m1∑
i=1

Ai,k−1 E (εi,k−1)E
(
xk−1ω

T
k

) + Bk−1Qk−1,k

= Ak−1 E
[(

Ak−2xk−2 +
m1∑
i=1

Ai,k−2εi,k−2xk−2 + Bk−2ωk−2

)
ωT

k

]

+ Bk−1Qk−1,k

= Ak−1Ak−2 E
(
xk−2w

T
k

) + Ak−1Bk−2Qk−2,k + Bk−1Qk−1,k

...

= Bk−1Qk−1,k +
fk∑
t=2

(
t∏

j=2

Ak+1−j

)
Bk−tQk−t,k. (7)
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Remark 2 In the classical Kalman filtering, a standard assumption is that the process
noise sequence is uncorrelated across time and, therefore, Qk,j is equal to zero and
the states xk , xk−1, . . . , xk−fk+1 are uncorrelated with the process noise ωk . Unfor-
tunately, in many practical applications, such a standard assumption does not hold.
As can be seen in (7), the states xk , xk−1, . . . , xk−fk+1 are correlated with the pro-
cess noise ωk and Qk,j is no longer zero. In our later filter performance analysis, the
relationship (7) will be widely used in our computation.

3 Main Results

3.1 Time Update Stage

Noticing that the multiplicative noise εi,k and process noise ωk are both zero-mean
random process sequences, the state prediction can be obtained as follows:

x̂k+1/k = Akx̂k/k, (8)

where x̂k/k is the state estimate and x̂k+1/k is the state prediction. Thus, the prediction
error covariance Pk+1/k can be described as follows:

Pk+1/k = E
[
(xk+1 − x̂k+1/k)(xk+1 − x̂k+1/k)

T
]

= E
{[

Ak(xk − x̂k/k) +
m1∑
i=1

Ai,kεi,kxk + Bkωk

]

×
[
Ak(xk − x̂k/k) +

m1∑
i=1

Ai,kεi,kxk + Bkωk

]T }

= AkPk/kA
T
k + BkQkB

T
k +

m1∑
i=1

Ai,kXkA
T
i,k + AkLkB

T
k + BkL

T
k AT

k , (9)

where Pk/k is the state estimate error covariance at time k, Xk = E (xkx
T
k ), and Lk =

E [(xk − x̂k/k)ω
T
k ]. Note that, when deriving the last equality in (9), we have used the

facts that (i) xk and x̂k/k are correlated with ωk ; and (ii) εi,k and ωk are zero-mean
random processes uncorrelated with each other.

It follows from (1) and (7) that

Xk+1 = E
(
xk+1x

T
k+1

)

= E
[(

Akxk +
m1∑
i=1

Ai,kεi,kxk + Bkωk

)(
Akxk +

m1∑
i=1

Ai,kεi,kxk + Bkωk

)T ]

= AkXkA
T
k +

m1∑
i=1

Ai,kXkA
T
i,k + BkQkB

T
k + Ak E

(
xkω

T
k

)
BT

k + Bk E
(
ωkx

T
k

)
AT

k
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= AkXkA
T
k +

m1∑
i=1

Ai,kXkA
T
i,k + BkQkB

T
k

+ Ak

[
Bk−1Qk−1,k +

fk∑
t=2

(
t∏

j=2

Ak+1−j

)
Bk−tQk−t,k

]
BT

k

+ Bk

[
Bk−1Qk−1,k +

fk∑
t=2

(
t∏

j=2

Ak+1−j

)
Bk−tQk−t,k

]T

AT
k (10)

with initial value

X0 = x̄0x̄
T
0 + P0/0. (11)

Remark 3 The last three terms in (9) result from the inclusion of multiplicative noises
and finite-step correlated process noises in the filter design. Indeed, these three terms
make the difference between the prediction error covariance in this paper and that in
the standard Kalman filtering algorithm. Furthermore, the summation (third) term in
(9) caused by multiplicative noises constitutes the main difference of the prediction
error covariance between our work and the work of [20].

3.2 Measurement Update Stage

At this stage, let us use the min-max game theory, the aim of which is to minimize
the estimate error under maximum uncertainties, to design the measurement update
equations. For the addressed system and measurement model, by using the min-max
game theory, the problem of measurement update can be described as follows:

x̂k+1/k+1 = arg min
xk+1

max‖mk+1‖≤αk+1

{‖xk+1 − x̂k+1/k‖2
Pk+1/k

+ ∥∥yk+1 − βk+1ŷk+1(mk+1)
∥∥2

S̃k+1

}
, (12)

where ŷk+1(mk+1) = Hk+1x̂k+1/k + Ek+1mk+1, Pk+1/k is the prediction error co-
variance, αk+1 is a known time-varying scalar, S̃k+1 is a weighting matrix that will
be defined later, and mk+1 has the following form:

mk+1 = Δk+1Mk+1x̂k+1/k (13)

with the special norm function being defined as

‖ · ‖2
P = (·)T P −1(·). (14)

Remark 4 In [5], the parameter uncertainties in the measurement model have been
considered. In our work, we have taken one step further to consider both the multi-
plicative noises and the probabilistic missing measurements phenomenon.
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The solution of (12) relies on solving the constrained maximization problem of
the form

u∗ = arg max‖u‖≤α
‖x − Bu‖2

P , (15)

where P is a positive definite weighting matrix and α is a known scalar.
The following two lemmas are useful in deriving our main results.

Lemma 1 [5] When x �= 0, the solution to (15) is

u∗ = α
(
β∗I + αBT P −1B

)−1
BT P −1x, (16)

where β∗ ∈ M � {β+,−β−} and β∗ satisfies

β∗ = arg max
β∈M

∥∥∥∥P

(
P + α

β
BBT

)−1

x

∥∥∥∥
2

P

. (17)

The maximum value of the objective function is

max‖u‖≤α
‖x − Bu‖2

P = ‖x − Bu∗‖2
P =

∥∥∥∥P

(
P + α

β∗ BBT

)−1

x

∥∥∥∥
2

P

. (18)

In the above equations, β+ and β− satisfy, respectively,

∥∥(
β+I + αBT P −1B

)−1
BT P −1x

∥∥ = 1, (19)

det
(
β+I + αBT P −1B

) �= 0 (20)

and ∥∥(
β−I − αBT P −1B

)−1
BT P −1x

∥∥ = 1, (21)

det
(
β−I − αBT P −1B

) �= 0. (22)

Lemma 2 [5] When x = 0, u∗ is simply an eigenvector of BT P −1B which generates
the maximum error.

Now, we are in a position to complete the measurement update. Based on Lem-
mas 1 and 2, it can be seen that

max‖mk+1‖≤αk+1

∥∥yk+1 − βk+1ŷk+1(mk+1)
∥∥2

S̃k+1

= max‖mk+1‖≤αk+1
‖ỹk+1 − Ēk+1mk+1‖2

S̃k+1

=
∥∥∥∥S̃k+1

(
S̃k+1 + αk+1

βm

Ēk+1Ē
T
k+1

)−1

ỹk+1

∥∥∥∥
2

S̃k+1

, (23)
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where βm is defined and calculated as in Lemma 1, ỹk+1 = yk+1 − βk+1Hk+1x̂k+1/k

is the nominal predicted output without considering the uncertainty in the model,
Ēk+1 = βk+1Ek+1, and S̃k+1 is defined as follows:

S̃k+1 = Hk+1Pk+1/kH
T
k+1 + Rk+1 + (1 − βk+1)

2Hk+1Σk+1H
T
k+1, (24)

where Σk+1 = Ak E (x̂k/kx̂
T
k/k)A

T
k .

Substituting (23) into (12), taking the derivative of (12) with respect to xk+1, and
then letting the derivative be zero, we can obtain the following measurement update
equations:

x̂k+1/k+1 = x̂k+1/k + Wk+1ỹk+1, (25)

where

Wk+1 = Pk+1/kH
T
k+1S

−1
k+1 (26)

with

Sk+1 = S̃k+1 + 2
αk+1

βm

Ēk+1Ē
T
k+1 + α2

k+1

β2
m

Ēk+1Ē
T
k+1S̃

−1
k+1Ēk+1Ē

T
k+1. (27)

Also, the estimation error covariance is calculated as

Pk+1/k+1 = Pk+1/k − Wk+1Sk+1W
T
k+1. (28)

Next, let us determine Lk . According to (25), we have

x̂k/k = x̂k−1/k + Wkỹk = x̂k/k−1 + Wk(yk − βkHkx̂k/k−1)

= Gkx̂k/k−1 + Wkyk, (29)

where Gk = I − βkWkHk . Then, Lk can be determined as follows:

Lk = E
[
(xk − x̂k/k)ω

T
k

]
= E

[
(xk − Gkx̂k/k−1 − Wkyk)ω

T
k

]
= E

[
(xk − Gkx̂k/k−1 − WkHkxk − Wkvk)ω

T
k

]
= (I − WkHk)E

(
xkω

T
k

) − GkAk−1

×E
[
(Gk−1x̂k−1/k−2 + Wk−1Hk−1xk−1 + Wk−1vk−1)ω

T
k

]
= (I − WkHk)E

(
xkω

T
k

) − GkAk−1Wk−1Hk−1 E
(
xk−1ω

T
k

)
− GkAk−1Gk−1 E

(
x̂k−1/k−2ω

T
k

)
...

= (I − WkHk)

[
Bk−1Qk−1,k +

fk∑
t=2

(
t∏

j=2

Ak+1−j

)
Bk−t,kQk−t,k

]
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−
fk∑
t=2

{[(
t∏

j=2

Gk+2−jAk+1−j

)
Wk+1−tHk+1−t

]

×
[
Bk−tQk−t,k +

fk∑
j1=t+1

(
j1∏

j2=t+1

Ak+1−j2

)
Bk−j1Qk−j1,k

]}
. (30)

To this end, we have finished the design of the desired recursive robust filters for
the addressed system and measurement models.

The algorithm of the recursive robust filtering can be outlined as follows.
1. The time update stage
When k = 0, ignoring the correlation between the process noises and using the

given initial values, we have

x̂1/0 = A0x̂0/0,

P1/0 = A0P0/0A
T
0 + B0Q0B

T
0 +

m1∑
i=1

Ai,0X0A
T
i,0. (31)

When k > 0, the time update is given by

x̂k+1/k = Akx̂k/k,

Xk+1 = AkXkA
T
k +

m1∑
i=1

Ai,kXkA
T
i,k + BkQkB

T
k

+ Ak

[
Bk−1Qk−1,k +

fk∑
t=2

(
t∏

j=2

Ak+1−j

)
Bk−tQk−t,k

]
BT

k (32)

+ Bk

[
Bk−1Qk−1,k +

fk∑
t=2

(
t∏

j=2

Ak+1−j

)
Bk−tQk−t,k

]T

AT
k ,

Pk+1/k = AkPk/kA
T
k + BkQkB

T
k +

m1∑
i=1

Ai,kXkA
T
i,k + AkLkB

T
k + BkL

T
k AT

k ,

where Lk is determined by (30).
2. Measurement update stage

x̂k+1/k+1 = x̂k+1/k + Wk+1ỹk+1,

Wk+1 = Pk+1/kH
T
k+1S

−1
k+1,

Sk+1 = S̃k+1 + 2
αk+1

βm

Ēk+1Ē
T
k+1 + α2

k+1

β2
m

Ēk+1Ē
T
k+1S̃

−1
k+1Ēk+1Ē

T
k+1,

Pk+1/k+1 = Pk+1/k − Wk+1Sk+1W
T
k+1.

(33)
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Fig. 1 MSE1 (β = 1)

Fig. 2 MSE2 (β = 1)

Remark 5 When k = 0, for the time update stage, it is reasonable to ignore the corre-
lation between the process noises simply because the process noises ω−1, ω−2, . . . ,
ω−fk

do not exist, and thus the process noise ω0 is not correlated with x0 and x̂0/0.
When k > 0, also for the time update stage, if k < fk , we can set fk = k because
ω−1, ω−2, . . . , ω−(fk−k) do not exist.

4 An Illustrative Example

As an illustrative example, let us apply the developed new recursive robust filter to
the following target tracking system:

xk+1 =
([

0.98 T

0 0.98

]
+ εk

[
0.005 0

0 0.01

])
xk +

[
0.8
0.6

]
ωk, (34)
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Fig. 3 MSE1 (β = 0.9)

Fig. 4 MSE2 (β = 0.9)

yk = λk

[
1 0
0 1 + 0.1 sin(k)

]
xk + vk, (35)

ωk = ηk + ηk−1, (36)

where T is the sampling period, the first component of xk is the position of the target,
and the second component of xk is the velocity of the target. vk ∈ R

2, εk ∈ R and ηk ∈
R are zero-mean Gaussian noises with variance I2, 1 and 0.5, respectively. Without
loss of generality, the process noise ωk is assumed to obey (36); that is, the process
noise is one-step correlated with statistic properties as follows:

E (ωk) = 0, E
(
ωkω

T
j

) = δk−j + 0.5δk−j−1 + 0.5δk−j+1. (37)

In the simulation, we set the initial value as x̂0/0 = x̄0 = E (x0) = [100 − 2]
and P0/0 = diag(3,1). The sampling period is chosen as 0.1 and αk is chosen as
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Fig. 5 MSE1 (β = 0.85)

Fig. 6 MSE2 (β = 0.85)

0.005. The stochastic variable λk ∈ R is a binary switching sequence taking the value
of 0 and 1 with Prob{λk = 1} = E {λk} = β ∈ {1,0.9,0.85}. The classical Kalman
filter and the recursive robust filter developed in this paper are compared in the
simulation. Let MSE1 denote the mean square error for the estimate of the posi-
tion, i.e., (1/K)

∑K
k=1{[1 0](xk − x̂k/k)}2, where K is the number of the samples.

Similarly, MSE2 is the mean square error for the estimation of the velocity, i.e.,
(1/K)

∑K
k=1{[0 1](xk − x̂k/k)}2.

When β = 1, i.e., there is no missing measurement phenomenon, the simulation
results are given as Figs. 1 and 2. It can be seen that our method has better estimation
accuracy than the classical Kalman filter. This is due to the fact that efforts have been
made to compensate the uncertainties and correlated process noises.

When β = 0.9 and β = 0.85, that is, when the missing measurement phenomenon
does exist, it can be seen from Figs. 3–6 that our method performs much better than
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the classical Kalman filter. This is not surprising, as our method has the mechanism
to compensate the missing measurement phenomenon, uncertainties, as well as corre-
lated process noises. Nevertheless, as can be observed from Figs. 3–6, our method is
slightly worse than the classical Kalman filter in the initial period because our method
is a bit more conservative in order to tolerate the possible missing measurement phe-
nomenon, which causes a trade-off between the robustness and the accuracy.

5 Conclusions

In this paper, we have designed a novel recursive robust filter for uncertain dynamical
systems with finite-step correlated process noise and missing measurements. The dy-
namical system under consideration is subjected to both deterministic norm-bounded
uncertainties and stochastic uncertainties. The process noise is assumed to be finite-
step correlated, and the missing measurements phenomenon is assumed to be a bi-
nary switching sequence satisfying a conditional probability distribution. Based on
the min-max game theory, we have derived a recursive robust filter for the addressed
uncertain dynamical system. Compared with most of the existing robust filters, the
proposed recursive robust filter does not require existence conditions and is therefore
convenient for online operation. An illustrative example has been presented to show
the effectiveness of the proposed recursive robust filter.
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