Circuits Syst Signal Process (2011) 30:1595-1616
DOI 10.1007/s00034-011-9288-7

Existence and Global Asymptotic Stability of Fuzzy
Cellular Neural Networks with Time Delay

in the Leakage Term and Unbounded Distributed
Delays

P. Balasubramaniam - M. Kalpana -
R. Rakkiyappan

Received: 16 August 2010 / Revised: 9 March 2011 / Published online: 29 March 2011
© Springer Science+Business Media, LLC 2011

Abstract Fuzzy cellular neural network (FCNN) structures are based on the un-
certainties in human cognitive processes and in modeling neural systems, and they
provide an interface between a human expert and classical cellular neural networks
(CNNs). In this paper, an existence and global asymptotic stability analysis of the
equilibrium point of FCNNs with time delay in the leakage term and unbounded dis-
tributed delays is investigated. Based on the Lyapunov-Krasovskii functional with
free-weighting matrix, and using the homeomorphism mapping principle and lin-
ear matrix inequalities (LMIs), a new set of stability criteria for FCNNSs is obtained
with time delay in the leakage term, time-varying delays and unbounded distributed
delays. The proposed results can be easily checked via the LMI Control Toolbox
in MATLAB. Moreover, it is well known that the stability behavior of FCNNs is
very sensitive to the time delay in the leakage term. In the absence of the leakage
term, a new stability criterion is also derived by employing a Lyapunov-Krasovskii
functional using an LMI approach. Numerical examples are provided to illustrate the
effectiveness and reduced conservativeness of the developed techniques.

Keywords Global asymptotic stability - Fuzzy cellular neural networks - Leakage
delay - Unbounded distributed delays - Linear matrix inequality - Homeomorphism

mapping
1 Introduction

Since the rebirth of interest in artificial neural networks (ANNSs) in 1982 [2, 8, 13],
many different implementations for this concept have been developed. ANNs have
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found extensive applications in pattern recognition, real time image processing, signal
processing, and control, etc. The major disadvantage of most neural network imple-
mentations however is the number of interconnections between neurons. In order to
reduce the number of interconnections by keeping the advantages of parallel process-
ing, Chua and Yang proposed a cellular neural network (CNN) in 1988 [6, 7] where
neurons were only connected to other neurons within a certain neighborhood. Also, a
CNN can easily be extended without having to re-adjust the entire network because a
cell is not connected to every other cell in the network but rather to cells within a cer-
tain neighborhood. So far, there are two basic CNN structures being proposed. The
first one is the traditional CNN. The second one is the fuzzy cellular neural network
(FCNN) [28, 29], which integrates fuzzy logic into the structure of a traditional CNN
and maintains local connectedness among cells. Unlike previous CNN structures, the
FCNN has fuzzy logic between its template and input and/or output besides the “sum
of product” operation.

The existence of time delays may lead to instability or bad performance of sys-
tems [23]. So, it is of prime importance to consider the delay effects on the dynam-
ical behavior of systems. Recently, FCNNs with various types of delay have been
widely investigated by many authors; see [5, 9, 14, 15, 20-22, 25, 26, 30]. For in-
stance, Liu et al. [22] investigated the novel stability criteria of a new FCNN with
time-varying delays. In [25], Tan investigated the global asymptotic stability of FC-
NN with unbounded distributed delays. However, so far, there is very little existing
work on neural networks (NNs) with time delay in the leakage (or “forgetting”) term
[1, 10, 11, 16-19, 24]. This is due to some theoretical and technical difficulties [10].
In fact, time delay in the leakage term also has great impact on the dynamics of NNs.

Almost all the models of the FCNNs are variations of the following system of
differential equations:

xXi(t) = —dix; (t) + Zaijfj(xj(t)) + Zbijuj +1; + /\Ol,'jfj(x]'(t - ‘L'))

Jj=1 j=1 j=1

n n n
+ \/ﬂijfj(x]'(l‘—‘[))-i- /\Tijuj + \/H,-juj, i=1,2,...,n,

j=1 j=1 j=1

in which the first term of the right side of the above equation corresponds to a stabiliz-
ing negative feedback of the system which acts instantaneously without time delay;
this kind of term is variously known as a “forgetting” or leakage term. As pointed
out by Gopalsamy [11], time delay in the stabilizing negative feedback term has a
tendency to destabilize a system. Moreover the effects of leakage delay on FCNNs
cannot be ignored.

To the best of the authors’ knowledge, there are only a few results on FCNNs
with time delay in the leakage term. Our results indicate that the stability behavior of
FCNNS is very sensitive to the time delay in the leakage term. This implies that the
effects of leakage delay on FCNNSs cannot be ignored. Three numerical examples are
given to show the effectiveness of our result.
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2 Model Description

Notation R" denotes the n-dimensional Euclidean space. For any matrix A =
[@ijlnxn, let AT and A~ denote the transpose and the inverse of A, respectively.
|A] = [laijllnxn- Let A >0 (A < 0) denote the positive definite (negative-definite)
symmetric matrix, respectively. / denotes the identity matrix of appropriate dimen-
sion, and A ={1,2, ..., n}. x denotes the symmetric terms in a symmetric matrix.

Consider the following FCNNs with leakage delay and unbounded distributed de-
lays:

Xi(t) = —dixi(t — o) + Za,-jfj(xj(t)) + Zbijfj(Xj(t — ‘L’(l))) + Zcijuj + I;

j=1 Jj=1 j=1
n t n t
+/\ot,-j/ kj(t—s)fj(xj(s))ds—i—\/ﬁij/ kj(t—s)fj(xj(s))ds
j=r 0T j=r T
+/\§ijuj+\/8ijuj, ieA, D
j=1 j=1

where «;;, B;;, ¢ij and §;; are the elements of the fuzzy feedback MIN template, fuzzy
feedback MAX template, fuzzy feedforward MIN template and fuzzy feedforward
MAX template, respectively; a;;, b;; are the elements of the feedback template and
c;j is the element of the feedforward template; A,V denote the fuzzy AND and
fuzzy OR operation, respectively; x;, u; and I; denote the state, input and bias of the
ith neuron, respectively; d; is a diagonal matrix, d; represents the rates with which the
i-th neuron will reset its potential to the resting state in isolation when disconnected
from the networks and external inputs; f;(-) is the activation function; k;(s) > 0 is
the feedback kernel and satisfies

fook,-(s)dszL ieA. @
0

In this paper, we make the following assumptions.

(A1) The neuron activation function f;(-) is Lipschitz continuous; that is, there exist
constants /; > 0 such that

|fiED) — fi&)] <1j|& — &, forall&,& e R E #6&.
(A2) The transmission delay t(¢) is a time-varying delay, and it satisfies 0 <

7(¢) < T, where t is a positive constant.
(A3) The leakage delay satisfies o > 0.

We shall consider system (1) with the initial condition
x(s) =¢(s), s€(—00,0].
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Assume that x* = [x], xJ, ..., x;f]T is an equilibrium point of FCNNs (1). By the

transformation y; = x; — x; one can transform (1) into the following system:

yi(t) = —diyi(t — o)+ Zai.jgj (vi@®)+ Zbijgj (vi(t—7®))

j=1 j=1

+/\a,,/ k(= 9) £ (v (5) + %) ds

j=l1

n t
— /\ Olij/ kj(t—s)f; (x;‘) ds 3)
j=1 T
\/,3,,/ kj(t — s)fj(y.,-(s)+x;‘)ds
n t
-V ﬁ,;;/ kj(t —s)fi(x?)ds
j=1 0T
y() =g¢(s) —x*, s (—00,0]

where g;(y;(s)) = fj(yj(s) +x7) = f;(x]).
Using a simple transformatlon system (3) has an equivalent form as follows:

d t
E[)’i(l) —d; /t_a yi(s)ds}
=—d;yi(t) + Zaijgj (vj®) + Zb[jgj (yi(t —t®))
j=1 =1
n t
+/\06ijf kit —5)fi(yj(s) +x7)ds
Jj=1 -
n t
_ /\aijf kj(t—s)fj(x;)ds 4)
j=t I
n t
+\/,3ij/ kj(t—s)fj(yj(s)+x;-‘)ds
j=1 7T
n t
_\/,Bij/ kj(t —s) fi(x7)ds
Jj=1 -
y(s) =¢(s) —x*, se(—00,0].
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In the following, we use the notation: y(¢) = [yl(t),yz(t),...,yn(t)]T, K
diag{klak27"'7kl‘l}v D - diag{dladZa"'adn}v A - [aij]an9 B - [bz/]nxns o =
(i 1nxns B=1[Bijlnxn, (@) =[81(y1(1)), g2(y2()). ..., gn(yu (NI

Definition 2.1 [4] A map H : R" — R" is a homeomorphism of R" onto itself if H
is continuous and one-to-one and its inverse map H~! is also continuous.

Lemma 2.1 (Schur Complement [3]) The linear matrix inequality (LMI)

[ SQT((’;)) ,iﬁii] > 0, where Q(x) = QT (x), R(x) = R” (x), is equivalent to

Rx)>0 and Q(x)—Sx)R 'x)ST(x)>0.

Lemma 2.2 For any x,y € R", € > 0 and positive definite matrix Q € R"*", the
following matrix inequality holds:

2Ty <exT Ox +671yTQ*1y.

Lemma 2.3 [27] Let z, 7’ be two states of system (1); then we have

n

< > laijl| £1@ = f5()];

j=1

/\ @ij fj(z) — /\ aij fi(2)
j=1

j=1

V Bi i =\ Bi fi (@)

j=1 j=1

<Y 1Bl fi@ = £i()]-

j=1

Lemma 2.4 [22] For any x € R", for any constant matrix A = [a;jlyxn With a;j > 0,
the following matrix inequality holds:

xTAT Ax < nxTASTAsx,
. n n n
where Ag =diag{} "} ai1, ) ;1 ai2, ... D i_| din}-

Lemma 2.5 [12] Given any real matrix M = MT > 0 of appropriate dimension, a
scalar n > 0, and a vector function w(-) : [a,b] — R" such that the integrations
concerned are well defined, we have

b T b b
[/ a)(s)dsi| M|:/ w(s)ds:|§(b—a)/ a)T(s)Ma)(s)ds.

Lemma 2.6 [4] Let H : R" — R" be continuous. If H satisfies the following condi-
tions:

(1) H(u) is injective on R",
2) |H@)|| = o0, as ||u|| — oo, then H is a homeomorphism.
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3 Existence and Uniqueness of the Equilibrium Point

In order to study the existence and uniqueness of the equilibrium point, we consider
the following equations associated with system (1):

—dix; + Za,'jfj(x.,') + Zb,’jfj()cj) + Zcijuj +I; + /\Oé,'jf,'(x/')

j=1 j=1 j=1 j=1

+\/ Bii i)+ N\ Gijuj+ \/ sijuj =0.
j=1

j=1 j=1

Define the maps H and H* respectively as follows:

Hi(x) = —dixi + Y _aij fj))+ Y bijfix) + > cijuj+ L+ [\ eij f(x))

j=1 j=1 j=1 j=1

+\/ Bisfic) + N\ G+ \/ Sijuj

j=1 j=1 j=1

and

n

Hi(x) = —dixi + Y aij (£ (x)) = £30) + D bij (fix)) — f;(0))

j=1 j=1

+ Naijfieep) = N i fiO+\/ Bijfix) = \/ Bij £;(0).

j=1 j=1 j=1 j=1

Theorem 3.1 Under assumptions (A1)—(A3), the FCNN (1) has a unique equilib-
rium point if there exist n X n positive diagonal matrices P, R, Uy, Ua, some n X n
positive definite symmetric matrices N, Q1, Q2, Z1, Z2, W, two constants 11 > 0,
u2 >0, and a 2n x 2n matrix ( Til 2;) > 0 such that the following LMI has a feasible
solution:

£2i; F]T FzT
Q= » —un'I 0 <0, 3)
* * —pon~ I

where i, j =1,2,...,9 with
211 =-2PD+P+Q\+Q0r—Z —Zy+0>N+LU\L, 21, =27\,
§$213=-WD + Z,, 214=TP, 215=—-W, 216=D"PD,
§$217=PA+ WA, §$218=PB+ WB, £21,9=0,
$r02=—01— 71, £2,3=0, 2,4=0,
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£225=0, §£226=0, $£2,7=0, £228 =0,
§229=0, §$233=—02— 2, 234=0,
235=—D"WT, £236=0, §237=0, 235 =0, £239 =0,
Q244=1T —2TL +LUL,  $245=0, 246=0,
§£247 =0, §248 =0, £249=0,
Qs5=1Tn —2W +1°Z1 +0%2,, §256=0,

257 =WA, §253 =WB, §259 =0,
26=—N+D'PD,  2¢7=-D"PA,
263=—-DTPB, 269=0, $£277=R-1Uj,
§£273=0, §279=0, 288 =—Us, §2309=0,
209=2nSTPS + 114 sl — R,

n n n

laels Zdiag{ZIOéill,Zlaizl, -.-,Zlainl},
i=1 i=1 i=1
n n n

1Bl =diag{z Birl, Y 1Bials - n Y |ﬂin|,,
i=1 i=1 i=1

S=lals+1ls. I =[(W$T00000000]",
rf=[0000wWs)"00000]".

Proof We will first prove that if x # x then H(x) # H(x) holds for any x, x € R".
Now suppose H(x) = H(x), that is,

—d; (x; —fi)—i-zaij(fj(xj) — fi(x)) +Zbij(fj(xj) — fi(x))

Jj=1 j=I1
+ Neijfiap = N £;G)+ N Bij £ =\ Bij £;G)) =0.
j=1 j=1 j=1 j=1
From Lemma 2.3, we obtain
—D@ =)+ (A+ B)(f(0) = f@) + (el +1BI) (£ () = (D) 20,
G =OT2P+W)] x |-D(x — %) + (A + B)(f(x) — f(X))
+ (Il + 1B (f () = f (D))} =0,
By using Lemmas 2.2 and 2.4, we obtain

(x =) [-2PD —2WD](x — %) + (x =) [2(PA+ PB+ WA+ WB)]
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x (f) = F®)+ =D Px—5) +2n(f(x) = £@) (lels + 1Bl5) P
x (Jels + 1BLe) (£ @) = F®) +n — DT W (jerls + 1B1s) ey (lels + 181)
x WT(x =)+ (f0) = f@) mi(f@) - (@) =0. ©)
By assumption (A;), we get
0<—(f() — F@) Ui(f&) = F@) + (x = DT LUIL(x — 5,
0<—(f() = F@®) Va(f &) = F@) + (x = DT LU L(x — 0).
This, together with inequality (6), gives us
7 (x, ©)OE(x, %) = 0, @)
where
5B ={r—EfW-fOF .,  6=[0lms,
O =-2PD-2WD+ P+ LU L+ LU>L,
®p,=PA+PB+ WA+ WB, Oiz=WS§s,
Oy =—-U; —U2+2nSTPS + 11, On =0, O3 =—puin "1,

On the other hand, pre- and post-multiplying §2 by

I I I I 00 O0O0O0O0O
0 000 O0O0OTT I I 00O
0 0000 O0OOO0OTO0OTIO

3x11

and its transpose, respectively, we obtain
e) +diag{02N + 11, u2l,0} <0.

Note that 0 >0, 7 >0, N > 0, T11 > 0, up > 0, thus ® < 0. Obviously, this con-
tradicts with (7). The contradiction implies that H (x) # H (x). Hence, the map H is
injective.

Next, we show that || H(x)|| — oo as ||x|| — oo. To prove this, it suffices to show
that ||H*(x)|| — oo as ||x|| = oo, where H*(x) = H(x) — H(0). Similarly to the
aforementioned proof, noticing that X, (®) < 0, we obtain

2[xT (P + W) H* (x) <&T (x,000&(x, 0) < Ay (@)ET (x, 0)&(x, 0) < Ay (O)]Ix|1%.
By the Schwarz inequality, we have

= @) x* =2 xT (P + W) x | H* @)
<2(lx[l - IPI + ]l - IW ) | H* () |
<2(IPII+ IWI)lIx]l - || H* @) .-
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That is,

EC)
H* 0| = =5 —2 x|,
] ey el

for ||x|| # 0. Itis easy to see that || H*(x)|| — o0 as ||x|| — oo, which directly implies
that || H(x)|| — oo as ||x|| — oco. By Lemma 2.6, H is a homeomorphism on R",
which implies that FCNN (1) has a unique equilibrium point x* such that H (x*) =0
This completes the proof. O

4 Main Results

Theorem 4.1 The unique equilibrium point of FCNN (1) is globally asymptotically
stable provided the conditions of Theorem 3.1 are satisfied.

Proof Consider the following Lyapunov-Krasovskii functional

8
Vi)=Y Vi), ®)

i=1

where

t T t
Vi) = [y(t) - Df y(s)ds} P[y(t) - D/ y(s)ds}
t—o t—o

n

t 2
= Pi(yi(t)—di/ yi(S)dS> :
i=1 1—o
t t
Va(1) = / Y ()Q1y(s)ds + / V() 02y () ds,
t—7 t—o
0 t
v3<r)=rff 37()Z13(s) ds do,
—t Jt+6

0 t
Vi) =0 / / 37()Z23(s) ds o,
—o Jt+6
Vs(r)_Zr,f kj (9)/ 2(vi(s))dsas,
Vot) =0 f / 3T (5)Ny(s) ds do.
t—o JO
t u T
_ y(u —t(u)) Ty T || yu——1t@)
V7(’)‘/0 /u_,(u>[ 3(s) ] [* TzzH 3(s) ]d”l”’
0 t
Vg(t)Z/ / T ()T y(s)ds du.
—1t Jrt+u
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From Lemma 2.3, we obtain

n t n t
/\a,»jf kj(t—s)fj(yj(s)—i—x;f)ds—/\aij/ kj(t —s) fi(x7)ds
j=1 T j=1 T

/ k=) (£ (v ) +x3) — £5(7)) ds

n
< el
j=1

t
f kj(t—s)gj(yj(s))ds

—00

n
=Z|Oéij|
j=l1

By calculating the time derivation of V; along the trajectory of system (1), we get

. n t n
Vit)y=2) " pi (yi (t)—d; / Yi(s) ds) {—d,-yi 0+ _aijg;(v;(®)
i—1 t—o =1

n n t
+Zb,'jgj(yj(t — ‘C(t))) + /\Oll'.,'/ kj(t —s)fj(yj(s) +x;‘) ds

j=1 j=1
n t
— /\Ol,'j/ kj(t —S)fj (x;‘) ds
j=1 0T

t

+\/,3,~j/ kj(t =) fi(vj(s) +x7)ds
j=1

—00
t

- \/ ,Bij/
j=1 T

kj(l - S)fj (x;k) ds}

t T
< 2[y(t) - D/ y(s) dS} P[—Dy(t) + Ag(y(®)) + Bg(y(t — t(1)))]
1—o

t T

+2‘y([) —D[ y(s)ds
t

—0

t
P(|a|+|ﬂ|)‘ [ k=5t as
<-2yT)PDyt) +2y" ()P Ag(y(®)) +2y" (1) PBg(y(t — T (1))

t

+2yT(t)DTPD/

t—o

T
y(s)ds—Zl:/t y(s)dsi| DT PAg(y(®)
t—o

t T
—2[/ y(s)dsi| DTPBg(y(t—r(t)))+yT(t)Py(t)
t—o

t T t
+ |:/ y(s) dsi| DTPD[/ y(s) ds:|
t—o t—o
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t

T
+2[y@) +y0O] W[=3@) + 3] +2n (/ K@t —s)g(y(s)) ds)

t
x (Il + 1B15)" P(larls + |,8|s)</ K(t —S)g(y(S))dS)

<-23")PDyt) +2y" ()PAg(y(®)) +2y" (1) PBg(y(t — T (1))

t

t T
+2yT(t)DTPD/ y(s)ds—Z[/ y(s)dsi| DT PAg(y(®)
1—o

t—o

t T
—2[/ y(s)dsi| DTPBg(y(t—r(t)))+yT(t)Py(t)
t—o

t T t
+ U y(s)dsi| DTPD[/ y(s)dsi|
t—o t—o

t T
+2n</ K(t—S)g(y(S))dS> (Il + 1B15)" P(jels +1B15)

—0o0

t
x ( f K(t—5)g(y()) ds) — 2T (OWy@) —2yT ()WDy(t — o)

+2yT (W Ag(y(®)) +2yT (1YW Bg(y(r — T (1)))

+ i nyT OW (lals + 181s) (1l + 181s) T WTy@)
t T t
+m</ K(t—s)g(ym)ds) (/ K(r—s>g(y<s>)ds>

23T W) — 25T 1)WDy(t — o) + 25T ()W Ag(y(1))
+25TWBg(y(r — t(®)) + u5 'ni” (1)

x W (Jals + 1815) (leels + 1815) W7 3(0)

t T t
+m(/ K(t—s)g(y(s))ds) (/ K(r—s)g(ym)ds), ©)

Vo) =y" () 01y(1) —yT (1 =) Q1y(t — 7)

+yT ) 02y(1) — y" (1 = 0) 02y (t — 0), (10)
0 0
\'@(r):r[ y'T(t)Zl)'i(t)dQ—r/ vt +6)Z1y@t+6)do

-7 -7
t

< 25T () Z13(1) — /

t—T

t
¥ (s)dsZ, / ¥(s)ds
-7

<237 Z13(0) — yT (1) Z1y (1)

+2yT ) Z1y(t — 1) =yt — D) Z1y(t — 1), (11)
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Va(t) < 0?37 (1) Zo3 (1) — yT (1) Zay (1)
+2yT () Zoy(t — o) =y (t —0) Zay(t — o), (12)

Vs(t)=zrj/0 kj(e)gﬁ(yj(z))de—zr,-/o k;j(0)g3(y;(t —0))do
j=1 j=1

=gT(y<r))Rg(y(r))—Zr,-/0 kJ-(e)defO kj(0)g3(yj(t —6))do
j=1

t

<g" (y®)Rg(y(1)) — (/ K (1 —S)g(y(s))ds>T

—00

t
X R(/ K(t—s)g(y(s))ds), (13)

t
Vo(t) = o>y (t)Ny(1) — o f ¥y (s)Ny(s)ds
t—o

T
SozyT(t)Ny(t)—[ft y(S)dS} N[/l y(S)dS} (14)
t—o t—o

! y(l—f(l))]T[Tu le}[y(l—f(l))}
V7(’)‘f,_rm[ $(5) o | s "
=ty (t — 1)) Tuy(t — 1) + 29T (OThy(t — T(0))

t
oy (=) Thy(t — o)) + / 57 (5) oo (s) dis

t—1(t)
<yt —c®)[cTi1 =275y (t — v () + 20" OTLy(t — T (1))
t
+/ v () Ty (s)ds, (15)
-7
. 0
V() = 157 (1) Toa (1) — / 5T+ ) T3 (¢ + ) du

-7

t
— 3T () T 3(0) — / §7 ()T (s) ds. (16)
t—T

In addition, for any n x n diagonal matrices U; > 0, U > 0, we can get from as-
sumption (A1) that

0<—¢"(y®)Uig(y®) +y" (LU Ly(t), (17)
0<—g" (y(t—7®))V2g(y(t —(®)) + " (t — = (®)) LU Ly(t — T(1)). (18)
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Hence, from (8)—(18) we have
V() <e" 02+ I py'nh+ 0 py D)) =67 0260, (19)

where

t
E(t) = [yT(z>,yT<r—r>,yT(t—o>,yT(r—r<t)),y‘T<r>,/ yl(s)ds, g (y(0)),
1—o

t

T
K(t—s)g" (y(s)) ds] ,

¢ 0 x). |

—0o0
=2 ;+ I p'nh+ 0 py'nh.
By (5), this yields

V() < —eT(1)2%@), >0,

where 2% = -2 > 0.
Thus, it can be deduced that

t
V(t)+/ eT()2%E(s)ds <V(0) <00, >0, (20)
0

where

0 T 0 0
V() = [y(O) —D/ y(S)dS} P[y(O)—D/ y(S)dS} +/ Y ($)Qiy(s)ds

—0 —0 —-T

0 0 0
+ / Y ($)Q2y(s)ds + 1 / / V1 ($)Z1y(s)ds do
o —1J6
0 0 n 00 0
+a/ /}'}T(S)Zg)')(s)dsde—f-er/ k.,(e)/ g7 (yj(s))dsdo
- Jo = o -6

0 0 0 0
+a/ / yT(s)Ny(s)dsd9+/ / ()T y(s)ds du
—o JO —T

u

< {Z)Lmax(P)(l +021i23}¥ di) + TAmax (Q1) + 0 Amax (Q2) + T3)¥max(zl)

n 00
3 2
+ 07 Amax(Z2) + E lrjkjl}lea/)x(lj/() 0k;(0)do
]:

+ U3)¥maxN + TZ)\max(TZZ) } ”(py ”2 < 0.

From the definition of V»(¢) and Lemma 2.5, we have

t 2 t T t
/ y@©)ds| = [/ y(S)dS] [/ y(s) dS}
t—o t—o t—o
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t
< o/ Yy ()y(s)ds
1—o

= /‘\'mn QZ /t ( )Q ( )
y (s BAAC) ds
i ( ) t—o Y

Vi =~

),

o o
< \%
- )Lmin(QZ) min(QZ)

which, together with the definition of Vi (¢), yields

[ Vi)
+ )Lmin(P)

V(0)
)\min(P)

i vV (0).
; Amin(Q2) +\/;(P)}m

This implies that the equilibrium point of model (1) is locally stable. Next we shall
prove that || y(¢)|| — 0 as t — oo.
First, for any constant 6 € [0, 1], it follows from (8) and Lemma 2.5 that

9 t+0. T t+9.
y -y = y(s)ds y(s)ds
Iyt +6) — )| [/ ()d} [/ <>d}
t t

t+6
<0 f T ($)5(s) ds
t

t
Iy < D/ V(s)ds
1—o

IA

t
D/ y(s)dsH +
t—o

IA

t+1
< / Y ()y(s)ds
t

1 /H—l r
<— EN(s)R%E(s)ds - 0 ast— oo,
kmin(g*) t
which implies that for any € > 0, 6 € [0, 1], there exists a 71 = T1(¢) > 0 such that
€
HMEENOIEEEEIE 1)

On the other hand, from (8) we have

1+1 2 t+1 T 141
/ ws)ds| = [ f y(s)ds} [ / y(s)ds}
t t t

t+1
< / Yy (s)y(s)ds
t

1 t+1 -
< — ($)2*E(s)ds — 0 ast — oo,
Amin(g*) /; é g
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which implies that, for any € > 0, there exists a 7> = T>(¢) > 0 such that

t+1
‘ / y(s)ds
t

Note that y(s) is continuous on [z,¢ + 1], £ > 0. Applying the integral mean value
theorem, there exists a vector 8, = (8,1, &2, ..., 8m)L € R", 8;j € [t,t + 1], such that

€
<=, t>T1.
2

€

t+1
Hy(at)n=H/ y@)ds| <5, 1> (22)
t

By (21) and (22), we obtain that for any € > 0, there exists a T = max{T7, T2} > 0
such that r > T implies

[y = [y =@ + [y = 5 +5 =<
This proves that | y(¢)|| — 0 as t — oo. Therefore, we can conclude that the model
(1) has a unique equilibrium point which is globally asymptotically stable. This com-
pletes the proof.
When there is no time delay in the leakage term, that is 0 = 0, FCNN (1) becomes
the following:

xi (1) = —dix; (t) + Zaijfj(x]'(t)) + Zbijfj(xj(f — T(t))) + Zcijuj + I;

j=l1 j=1 j=1

t

n t n
+/\a,-,-/ kj(t—s)fj(x,-(s))dw\/ﬁ,-j/ kj(t —s) fi(x;(s))ds
j=r T

j=r T

n n
~|—/\Cijuj+\/5ijuj- (23)
j=1 j=1

In the following corollary, we will discuss the global asymptotic stability criteria
for FCNNs (23). O

Corollary 4.1 Under assumption (A1), the equilibrium point of (23) is globally
asymptotically stable if there exist n x n positive diagonal matrices P, R, Uy, Ua,
some n X n positive definite symmetric matrices Q, Z, W, two constants 1 > 0,
n2 >0, and a 2n x 2n matrix (T*” ;2'5) > 0 such that the following LMI has a feasi-
ble solution:

$2i FIT Fzr
x  —un~ I 0 <0, (24)
* * —pon~ I

wherei, j=1,2,...,7 with

211=-2PD+P—-2WD+Q—Z+LU|L, 212=72, 213=TPh,
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214=—W-DTWT, R215=PA+ WA,

$£216=PB+ WB, £217=0,

$Hr2=—-0-1Z7, 2,3=0, 254=0,

§225=0, $226=0, §2,7=0,

233=1T1 — 2T}, + LU>L, 234 =0,

§235=0, £236=0, §£237=0,

Q44=1Tn —2W +1°Z, 245=WA, 246=WB,

£247=0, 255=R—Uj, 256=0, 257=0, 266 =—Un,
267 =0, 277=nSTPS+ I+ usl — R,

las|, |Bsl, S, are defined in Theorem 4.1,

rf=[wsT000000]", rF=[000Ws)T0000]".

Proof Consider the following Lyapunov-Krasovskii functional:

6
V(=) Vi), (25)

i=1

where

Vi) =y" () Py(t) =) piy} (1),
i=1

t
Va(t) = / yT (s)Qy(s)ds,
t—T

0 t
o=t [ [ 3T0ziedsde.
—T Jt+6
n 00 t
V4(t)=2rj/0 kj(e)/ 0g§(yj(s))dsd9,
j=1 "~

o y(u—f(u))]T[Tn TnHym—r(u))]
VS(’)‘/Ofu_,(u)[ 3(s) o | YO s

0 t
Vor = [ [ 37T dsau
—T Jt+tu
The proof of this corollary follows immediately from Theorem 4.1. U
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Table 1 The MAUB 7 for

different values of o Theorem 4.1 o =0.05 o=0.1 o =0.15 o >0.17

T 2.2945 1.5148 0.7606 -

5 Numerical Examples

Example 5.1 Consider the FCNN (1) with parameters defined as

A=|:O.5 0.5]’ B:[_O'25 0.125:|’ D=|:4 0]’

05 05 —0.15 —0.25 0 4
CT132 —1/32 (132 132
“=li3 1y |t Py 13l

Letting f;(x;) = %(|x + 1] — |x — 1]), j = 1, 2, which satisfies assumption (Aj),
we get [; =1 and then L = /. The time-varying delays are chosen as t(t) =
1.5148| sin(?)|, which means that the maximum allowable upper bound (MAUB) is
T = 1.5148 when o = 0.1. By using the MATLAB LMI Toolbox to solve the LMI
(5), we obtain the MAUB t for different values of o as given in Table 1.

Also, it can be found that the LMI (5) is feasible for t = 1.5148 when ¢ = 0.1,
and

p_ 86.7515 0 R— 17.0341 0
- 0 67.3143 |’ - 0 15.8206 |’

414775 0.0074
N =10 ><[0.0074 0.9382 |

0.0068  —0.0054 140.9593  —0.6705
Q1= , 02= ;

—0.0054 0.0111 —-0.6705 62.7850

W= 11.0698 —0.0148
[ —0.0148 6.6178 |’

71— 10-3 5 [ 0:0443  —0.0447  [283.5831  0.7636
= —0.0447 0.1132 |’ 27| 07636 175.7859 |°
;o _ [ 1.8820  —0.0420 7| 31226 0.0287

=1 _0.0420 0.9653 |° 271 -0.0952 1.6859 |

7, _ [ 51818 0.0030
2=10.0030 2.9502 |’

u. _ [87.7862 0 U, [3:0895 0
1= 0 106.1375 | 270 o 1.7005 |

w1 =1.7008, 1o =9.9092.
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(a)
g ot =
S ,
2 o} x1(t) [
E Yy x2(t
_2 Il Il Il Il
0 2 4 6 8 10
time(sec)
(b)
3 ot =
Ef .
S ok x1(t) [
E Y x2(t
_2 Il Il Il Il
0 2 4 6 8 10
time(sec)
(c)
x10"° x1(t)
3 S T T e x2(t)
2 AR
£ 0 WV
g -
© -5 I I I I
0 20 40 60 80 100
time(sec)

Fig. 1 (a) State trajectory for system (1) converges to unique equilibrium point (1.6933, 1.6245) when
o = 0.0, (b) state trajectory for system (1) converges to unique equilibrium point (1.6933, 1.6245) when
o = 0.1, (c) state trajectory for system (1) is unstable when o = 0.4

Therefore, it follows from Theorem 4.1 that the FCNN with leakage delay (1) is

globally asymptotically stable. The response of the state dynamics for the delayed
FCNN (1) is shown in Fig. 1.

Remark 5.1 Figures 1(a), 1(b) show that the state trajectory for system (1) converges
to a unique equilibrium point (1.6933, 1.6245) when o = 0.0, 0.1, Fig. 1(c) shows
that the state trajectory for system (1) is unstable when o = 0.4.

Example 5.2 [25] Consider the FCNN (23) with parameters defined as

02 03 025 12 0 0
A=B=|-015 02 -01|. D=|o0 12 o0 |,
035 —015 02 0 0 12
R T R R
a=—|—-1 1 1|, B=—|-1 1
517 1 2 R I

Letting fj(x;) = %(|x + 1| — |x — 1]), j = 1, 2, which satisfies assumption (A1),
we get [; = 0.5 and then L = 0.5 x I. The time-varying delays are chosen as
7(t) =0.3926]sin(¢)|. By using the MATLAB LMI Toolbox to solve the LMI (24) in
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Corollary 4.1, it can be found that the LMI is feasible and

1.8361 0 0

P =10* x 0 1.3461 0 ,
0 0 1.6812 |
5.5651 0 0 ]

R=10%x 0 47259 0 ,
.o 0 5.2976 |
1.7540  0.0043 —0.3393

W=10°x| 00043 2.0664 0.2218 |,
| —0.3393 0.2218  1.8933
0.8905 —0.2216 —1.0532

0=10°x | —0.2216 2.7528  1.2400
| —1.0532  1.2400  1.6007
1.0327 0.2568 —1.0356

Z=10°x | 02568 22230 0.5242 |,
| —1.0356 0.5242  1.3234
3.5432  —0.1171 —0.8151]

T =10° x | —0.1171  4.1398  1.0336
| —0.8151 1.0336  3.7237 |
3.1649  —0.1570 —0.1584]

T, =103 x | 0.0318 29119 03764
| —0.3626  0.2042  3.1330 |
3.2241 —0.1188 —0.22547]

Ty, =10° x | —0.1188  3.0971  0.1445
| —0.2254 0.1445 33571 |
[2.4278 0 0

U = 10* x 0 1.8270 0 ,
0 0 2.2376 |
[1.1927 0 0

U, = 10* x 0 0.8627 0 ,
.o 0 1.0886 |

w1 = 976.0683, wo = 1415 4.

)

Therefore, it follows from Corollary 4.1 that the FCNN without leakage delay (23) is
globally asymptotically stable. Also, the state trajectory for system (23) converges to
a unique equilibrium point (5.0194, 4.3527, 4.7277).

Remark 5.2 In [25], the author studied delay-independent stability results of FCNNs
with discrete and unbounded distributed delays. This paper proposes delay-dependent
stability results of FCNNs with discrete and unbounded distributed delays. The re-
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sults obtained in this paper are less conservative than the results presented in [25]
based on the general theory of delay dependence. The maximum allowable upper
bound t = 0.3926 is calculated for solving LMI (24) by using the MATLAB LMI
Control Toolbox.

Example 5.3 [25] Consider the FCNN (23) with parameters defined as

0.7 0.6 00 10
Az[—o.s 0.4] Bz[o 0] Dz[o 1]’
_[0.05 -0.05 g [ 005 005
*=loos 005 |’ ~[-0.05 0.05]

Letting f;(x;) = %(|x + 1| — |x — 1]), j =1, 2, which satisfies assumption (Aj),
we get[; = 0.5 and then L = 0.5 x I. The time-varying delays are chosen as 7(t) =
| sin(¢)|. By using the MATLAB LMI Toolbox to solve the LMI (24) in Corollary 4.1,
it can be found that the LMI is feasible and

p_[43829 0 R | 14207 0

L 0 9.0476 ) | 0 24489
w — [0-2517 0.0828] o [0091 o.1118

~ [ 0.0828 0.9194 | ~lo.1118 0.8628 ]
4 _ [0.0642 0.0272] . [0.0362 0.0446

~ 00272 0.2343 | 171 0.0446 03449 |’
7., _ [0:0406 0.0381] 7, _ [0-0781 0.0483
27 10.0302 03478 | 2710.0483 05416 |
u [80727 0 u, — [0:0740 0
Tl 0 134899 | T o 06251]
i1 =04332, o =0.4819.

Therefore, it follows from Corollary 4.1 that the FCNN without leakage delay (23) is
globally asymptotically stable. Also, the state trajectory for system (23) converges to
the unique equilibrium point (5.5222, 4.9222).

Remark 5.3 The results proposed in this paper are less conservative than those dis-
cussed in [13] by considering the above Example 5.2.

6 Conclusion

In this paper, a class of FCNNs with time delay in the leakage term and unbounded
distributed delays is considered. By using homeomorphism theory and an LMI ap-
proach, the existence and uniqueness of the equilibrium point of FCNNs with time-
varying delays and unbounded distributed delays have been derived. To the best of
the authors’ knowledge, there are very few results in the literature on the existence,
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uniqueness and stability behavior of FCNNs with time delay in the leakage term. The
proposed results indicate that the stability behavior of FCNNs is very sensitive to
the time delay in the leakage term. Further, in the absence of leakage delay, the re-
sults are derived by employing a Lyapunov-Krasovskii functional and using an LMI
approach. The effectiveness of the proposed results has been demonstrated through
three numerical examples.
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