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Abstract The present paper points out that a class of positive polynomials deserves
special attention due to several interesting applications in signal processing, system
analysis and control. We consider positive hybrid polynomials with two variables,
one real, the other complex, belonging to the unit circle. We present several theoret-
ical results regarding the sum-of-squares representations of such polynomials, treat-
ing the cases where positivity occurs globally or on domains. We also give a specific
Bounded Real Lemma. All the characterizations of positive hybrid polynomials are
expressed in terms of positive semidefinite matrices and can be extended to polyno-
mials with more than two variables. On the applicative side, we show how several
problems are numerically tractable via semidefinite programming (SDP) algorithms.
The first problem is the minimax design of adjustable FIR filters, using a modified
Farrow structure. We discuss linear-phase and approximately linear-phase designs.
The second is the absolute stability of time-delay feedback systems with unknown
delay, for which we treat the cases of bounded and unbounded delay. Finally, we dis-
cuss the application of our methods to checking the stability of parameter-dependent
systems. The design procedures are illustrated with numerical examples.
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Spl. Independenţei 313, 060042 Bucharest, Romania
e-mail: bogdand@cs.tut.fi

B.C. Şicleru
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1 Introduction

The current decade has seen an increasing interest in formulating problems in a pos-
itive polynomial setting, leading to a significant number of applications in optimiza-
tion [11, 14], control [10] and signal processing [6]. This large variety of applications
is due to the connection between sum-of-squares polynomials and positive semidefi-
nite matrices, which allows the transformation of optimization problems with positive
polynomials into semidefinite programming (SDP) problems, which are numerically
more easily tractable.

The theory of positive polynomials typically involved polynomials with real vari-
ables and so the first applications [10, 14] addressed feedback control problems deal-
ing with real polynomials. The particular case of trigonometric polynomials [13] was
treated later, with applications in signal processing. In this paper, we concentrate on
positive polynomials with both real and complex variables, the latter lying on the unit
circle. We call such polynomials hybrid, since they inherit features from both real and
trigonometric polynomials. They appear genuinely in some applications and so de-
serve a special treatment. To the best of our knowledge, there is no work dedicated to
the properties and applications of positive hybrid polynomials.

For the sake of simplicity, we present all our results for polynomials with two vari-
ables, one real and the other complex. Appendix C shows the modifications that are
necessary in the situation where more variables are involved. The hybrid polynomial
which is the object of our study has the form

R(t, z) =
n1∑

k1=0

n2∑

k2=−n2

rk1,k2 t
k1z−k2 , (1)

with t ∈ R, z ∈ C. The symmetry relation

rk1,−k2 = r∗
k1,k2

, (2)

which will be supposed to always hold, and implies that the polynomial (1) takes real
values on R × T, where T is the unit circle.

The paper is organized as follows. First, we review some of the properties of pos-
itive hybrid polynomials, starting with the Gram matrix parameterization of hybrid
sum-of-squares described in Sect. 2. We give then, in Sect. 3, conditions for positivity
on semialgebraic domains and also a specific version of the Bounded Real Lemma.
Further, we present two applications in detail and hint to other possible ones. The
first application, discussed in Sect. 4, is the design of adjustable FIR filters using a
Farrow structure; we transform the specifications of a standard lowpass adjustable
filter design problem into positivity conditions on hybrid polynomials, which have
an equivalent SDP form; we treat both the cases of linear-phase and nonlinear-phase
filters and solve the respective design problems without recurring to discretization. In
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Sect. 5, we present the second application, on the absolute stability of systems with
uncertain delay; we tackle two cases, where the delay is unbounded and bounded;
in both cases, we are able to transform (or to approximate) Popov’s absolute stabil-
ity criterion into a condition solvable via an SDP approach. Suggestive for the hybrid
character, the first application is in (discrete-time) signal processing and the second in
the stability analysis of (continuous-time) feedback systems. Finally, Sect. 6 suggests
other stability applications without a detailed investigation.

The notation is standard. Multivariate entities (vectors, matrices) are denoted by
bold characters. XT is the transposed of matrix X and XH is the transposed and
complex conjugated of X. The Kronecker product is denoted by ⊗. For a ∈ R, �a�
is the greatest integer smaller than a. For a ∈ C, �(a) denotes the real part of a. If
H(z) is a polynomial, by H ∗(z) we denote the polynomial whose coefficients are the
complex conjugated of those of H(z).

2 Hybrid Sum-of-Squares

A hybrid polynomial (1) is sum-of-squares if it can be written as

R(t, z) =
ν∑

�=1

H�(t, z)H
∗
�

(
t, z−1). (3)

In this case, the polynomial (1) has an even degree in t ; we denote n1 = 2m1. In (3),
each polynomial H�(t, z) is causal in z (and named simply causal), i.e. it has the
expression (for clarity, we omit the index �)

H(t, z) =
m1∑

k1=0

n2∑

k2=0

hk1,k2 t
k1z−k2 . (4)

We denote

ψn(t) = [
1 t t2 . . . tn

]T (5)

the standard basis for degree n polynomials and

ψm1,n2
(t, z) = ψn2

(z) ⊗ ψm1
(t) (6)

the standard basis for polynomials of two variables. The index (m1, n2) will be omit-
ted when clear from the context. We denote N = (m1 + 1)(n2 + 1) the number of
monomials in the basis. A causal hybrid polynomial (4) can be written as

H(t, z) = ψT(
t, z−1)h, (7)

where h ∈ C
N is a vector containing the coefficients of H(t, z) ordered as corre-

sponding to the basis (6).
A Hermitian matrix Q ∈ C

N×N is called a Gram matrix associated with the hybrid
polynomial (1) if

R(t, z) = ψT(
t, z−1) · Q · ψ(t, z). (8)
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Theorem 1 The relation between the coefficients of the hybrid polynomial (1) and
the elements of the associated Gram matrix is

rk1,k2 = trace[T k1,k2 · Q], (9)

with T k1,k2 = Θk2 ⊗ Υ k1 , where Θk2 ∈ R
(n2+1)×(n2+1) is the elementary Toeplitz

matrix with ones on diagonal k2 and zeros elsewhere, and Υ k1 ∈ R
(m1+1)×(m1+1) is

the elementary Hankel matrix with ones on antidiagonal k1 and zeros elsewhere.

Proof The relation (8) is equivalent to

R(t, z) = trace
[
ψ(t, z) · ψT(t, z−1) · Q]

= trace
[((

ψ(z)ψT(
z−1)) ⊗ (

ψ(t)ψT(t)
)) · Q]

=
n1∑

k1=0

n2∑

k2=−n2

trace
[
(Θk2 ⊗ Υ k1) · Q]

tk1z−k2 .

By identifying this expression with (1), the equality (9) results. �

Theorem 2 A hybrid polynomial (1) is sum-of-squares if and only if there exists a
positive semidefinite matrix Q ∈ C

N×N such that (8) holds.

Proof Using the eigenvalue decomposition of Q, we can write Q = ∑ν
�=1 h�h

H
� .

Inserting this in (8) and using (7) for each vector h�, we obtain (3). The reverse
implication is now obvious. �

Remark 1 Since the real part of a positive semidefinite matrix is also positive semi-
definite, if the sum-of-squares (1) has real coefficients, then the matrix Q � 0 from
the above theorem has also real coefficients.

Theorems 1 and 2 show that sum-of-squares polynomials can be parameterized in
terms of positive semidefinite matrices. The linearity of the relation (9) allows the
transformation of optimization problems involving sum-of-squares into SDP prob-
lems.

Finally, we recall that not all positive hybrid polynomials are sum-of-squares. Al-
though this result is not contained directly in [18], it is clear from there that once
a variable is unbounded (t , in our case), there cannot be equivalence between posi-
tivity and sum-of-squares. This equivalence holds in general only for trigonometric
polynomials [3], where all variables are bounded. For real polynomials it holds only
in three cases: univariate polynomials of any degree, quadratic polynomials of any
number of variables and quartic polynomials of two variables. The first example of
positive polynomial that is not sum-of-squares was given by Motzkin [6, 17]; it has
two variables (three variables in the homogeneous form that mathematicians favor
for presentation) and degree equal to six.
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3 Positivity on Domains

In this section, we study hybrid polynomials that are positive on domains. We define
these domains by the positivity of some polynomials, i.e.

D = {
(t, z) ∈ R × T | D�(t, z) ≥ 0, � = 1 : L}

, (10)

where D�(t, z) are hybrid polynomials defined as in (1). We assume that D is bounded
and thus we have D ⊂ [a, b] × T for some constants a and b. We also assume that
among the polynomials defining D is

DL(t, z) = (t − a)(b − t). (11)

In practice, this polynomial can be explicitly added to those defining (10), if not
already present, so this is not a serious restriction.

Theorem 3 If a polynomial (1) is positive on D, i.e. R(t, z) > 0, ∀(t, z) ∈ D, then
there exist sum-of-squares S�(t, z), � = 0 : L, such that

R(t, z) = S0(t, z) +
L∑

�=1

D�(t, z) · S�(t, z). (12)

If the polynomials R(t, z) and D�(t, z) have real coefficients, then the sum-of-squares
S�(t, z) have also real coefficients.

Proof See Appendix A. �

Remark 2 Conversely, if (12) holds, then R(t, z) is obviously nonnegative on D.

Remark 3 Similarly to the case of real [15] or trigonometric [5] polynomials, the
degrees of the sum-of-squares may be larger than the degree of R(t, z).

Remark 4 In the particular case where D = [a, b] × T, the relation (12) has the form

R(t, z) = S0(t, z) + (t − a)(b − t)S1(t, z). (13)

Remark 5 Using Theorem 2, we express the sum-of-squares appearing in (12) using
the parameterization (9), in terms of positive semidefinite matrices Q�, � = 0 : L.
Accordingly, the relation (12) can be rewritten

rk1,k2 = trace[T k1,k2Q0] +
L∑

�=1

trace[Ψ �,k1,k2Q�], (14)

where

Ψ �,k1,k2 =
∑

i1+j1=k1

∑

i2+j2=k2

(d�)i1,i2T j1,j2 . (15)

By (d�)i1,i2 we have denoted the coefficients of D�(t, z).
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Relation (14) can be used to obtain SDP problems when optimization on polyno-
mials that are positive on domains is involved. At implementation, the sizes of the
matrices Q�, � = 0 : L, are determined by the degrees chosen for the sum-of-squares
S�(t, z).

Another useful result has a typical Bounded Real Lemma (BRL) form.

Theorem 4 Let H(t, z) be a hybrid polynomial that is causal in z, i.e. has the
form (4) (written also as (7)). If the inequality |H(t, z)| < γ , ∀(t, z) ∈ D, holds for D
defined in (10), then there exist matrices Q� � 0, � = 0 : L, such that

γ 2δk1k2 = trace[T k1,k2Q0] +
L∑

�=1

trace[Ψ �,k1,k2Q�], (16)

where δk1k2 is the Kronecker symbol, and

[
Q0 h

hH 1

]
� 0, (17)

where Q0 is a Gram matrix associated with S0(t, z), as in (9). Conversely, (16)
and (17) imply |H(t, z)| ≤ γ , ∀(t, z) ∈ D.

Proof See Appendix B. �

Remark 6 Similarly to the equivalence between (12) and (14), the relation (16) is
equivalent to the polynomial equality

γ 2 = S0(t, z) +
L∑

�=1

D�(t, z) · S�(t, z). (18)

The size of the matrices Q�, � = 0 : L, from (16) depends on the degrees of the sum-
of-squares polynomials that appear in (18). Note that the minimal degree of S0(t, z)

is (2m1, n2).

4 Minimax Design of Adjustable FIR Filters

As a first application of optimization with hybrid polynomials, we discuss the design
of adjustable FIR filters with the transfer function

H(p, z) =
K∑

k=0

(p − p0)
kHk(z), (19)

where Hk(z), k = 0 : K , are FIR filters, p0 ∈ R is a constant and p ∈ R is variable.
The implementation of the adjustable filter (19) is made with the Farrow structure [8]
shown in Fig. 1.
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Fig. 1 Farrow structure for the
implementation of adjustable
filters

The optimization of adjustable filters has been typically performed using a least-
squares criterion, see e.g. [2, 22]. Minimax optimization was employed in [12], using
linear programming, and [24], using SDP. In both the latter papers, the optimization
problem is convex, but the formulations are obtained through discretization. Here, we
present solutions that do not appeal at all to discretization.

4.1 Linear-Phase Designs

We first examine the case where the filters Hk(z) are all symmetric and have the
same length, the same setup as in e.g. [12]. We want to design lowpass filters (19)
whose bandpass width is continuously adjustable via the parameter p. Since only the
magnitude response is optimized, we can assume without losing generality that the
filters Hk(z) are actually zero-phase, i.e.

Hk(z) =
N∑

i=−N

hk,iz
−i , hk,i = hk,−i , (20)

and thus the transfer function (19) is a hybrid polynomial in the variables p and z.
A standard way to present the minimax design problem is as follows. We re-

denote p = θ , as the parameter will represent a frequency. The parameter θ takes
values in a given interval [θl, θu]. The parameter p0 can have any fixed value, e.g.
p0 = (θl + θu)/2; as advocated in [12], this value of p0 makes the coefficients of the
filters (20) have much smaller range of values than with the standard choice p0 = 0,
easing implementation and roundoff error concerns; however, the difficulty of the de-
sign does not depend on the value of p0. The (adjustable) passband of the filter (19)
is [0, θ − �], where � is a constant, while the stopband is [θ + �,π] and so the
transition band has a fixed width of 2�. Setting a prescribed passband error bound
γb , our goal is to minimize the stopband error γs and we obtain the minimax problem

min γs

s.t. 1 − γp ≤ H
(
θ, ejω

) ≤ 1 + γp, ∀ω ∈ [0, θ − �],
− γs ≤ H

(
θ, ejω

) ≤ γs, ∀ω ∈ [θ + �,π].
(21)

This problem has been solved in [12] via linear programming. We have recently pro-
posed a discretization-free method using 2-D trigonometric polynomials [7].

We discuss here a modification of the problem (21) that: (i) for similar design
specifications, it allows us to obtain filters with lower degrees than those resulting
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from (21), and (ii) can be solved using 2-D hybrid polynomials. The new problem is

min γs

s.t. 1 − γp ≤ H
(
p, ejω

) ≤ 1 + γp, ∀ cosω ∈ [
p + �̃,1

]
,

− γs ≤ H
(
p, ejω

) ≤ γs, ∀ cosω ∈ [−1,p − �̃
]
.

(22)

Now the parameter has a different significance, namely p = cos θ̃ . (A somewhat
similar construction was proposed in [23], but in a different context.) As the para-
meter p takes values in the interval [pl,pu], the corresponding frequency θ̃ takes
values in the interval [θ̃l , θ̃u] with pl = cos θ̃u, pu = cos θ̃l . The passband is now
[0, acos(p + �̃)] and the stopband is [acos(p − �̃),π]. The width of the transition
band is acos(p − �̃) − acos(p + �̃) and is no longer constant.

Let us comment on the extent of the passband and stopband with the help of Fig. 2.
We assume that the passband edge ωb has the same values for the problems (21)
and (22), which means that θ − � = acos(p + �̃) and, in particular, the extreme
values of ωb are

θl − � = acos
(
pu + �̃

)
,

θu − � = acos
(
pl + �̃

)
.

(23)

The stopband edge for (21) is ωs = ωb + 2�. The solid line segments from Fig. 2 can
be used to determine the values of ωb and of the stopband edge ωs . A horizontal line
cutting the vertical axis at θ , cuts the two solid line segments in two points whose
abscissas are a passband edge ωb = θ − � and the corresponding stopband edge
ωs = θ + �. The distance between the two points is 2�, the width of the transition
band.

The stopband edge is different for problem (22) and is given by the intersection
of the same horizontal line with the dashed line curve, giving ωs = acos(p − �̃)

(recall that ωb = θ −� = acos(p + �̃)). The problem (22) has the distinctive feature
that the transition band is larger when the passband is narrow (and a good stopband
attenuation is more difficult to obtain). As θ grows (and p decreases), the transition
band becomes narrower. It is easy to choose the constants θl , θu, pl , pu, �, �̃ such
that (23) holds and also the average width of the transition band is the same for
problems (21) and (22), i.e.

1

pu − pl

∫ pu

pl

[
acos

(
p − �̃

) − acos
(
p + �̃

)]
dp = 2�. (24)

An appealing feature of problem (22) is that it can be written in terms of hybrid
polynomials that are positive on domains, as

min γs

s.t. R1(p, z) = H(p, z) − γp + 1 ≥ 0, ∀(p, z) ∈ Dp,

R2(p, z) = γp + 1 − H(p, z) ≥ 0, ∀(p, z) ∈ Dp,

R3(p, z) = H(p, z) + γs ≥ 0, ∀(p, z) ∈ Ds ,

R4(p, z) = γs − H(p, z) ≥ 0, ∀(p, z) ∈ Ds

(25)
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Fig. 2 Example of passband
edge ωb and stopband edge ωs

for the design problems (21),
with constant transition band
width (solid line), and (22), with
variable transition band width
(dashed line)

with domains Dp , Ds defined as in (10),

Dp = {
(t, z) ∈ R × T | Dp�(t, z) ≥ 0, � = 1 : 2

}
,

Ds = {
(t, z) ∈ R × T | Ds�(t, z) ≥ 0, � = 1 : 2

}
,

(26)

by the polynomials (recall that cosω = (z + z−1)/2)

Dp1(p, z) = 1

2

(
z + z−1) − p − �̃,

Ds1(p, z) = −1

2

(
z + z−1) + p − �̃,

Dp2(p, z) = Ds2(p, z) = (p − pl)(pu − p).

(27)

Each of the constraints of (25) can be expressed via (14) as linear equalities involving
positive semidefinite matrices. Hence, the problem (25) becomes an SDP problem.

Example 1 We consider the design data used in [12] for problem (21): θl = 0.3π ,
θu = 0.5π , � = 0.1π , γp = 0.01. For a fair comparison, we force the parameters of
problem (22) to respect (23) and (24), obtaining pl = 0.019, pu = 0.518, �̃ = 0.29.
The passband and stopband edges have the values given in Fig. 2 (see explanations
above); in particular, the stopband edge varies between acos(pu − �̃) = 0.4268π

and acos(pl − �̃) = 0.5874π . The SDP version of the problem (25) has been imple-
mented using SeDuMi [21]. There are three sum-of-squares polynomials in each re-
lation (12) corresponding to a constraint of (25); denoting K̃ = 2�K/2 + 1�, we have
used the degrees (K̃,N) for S0(p, z), (K̃ − 2,N − 1) for S1(p, z) and (K̃ − 2,N)

for S2(p, z); note that the degree in z is minimum; also, the degree in p is minimum
for odd K .

For each value K (there are K + 1 filters in the adjustable filter (19)), we find the
minimal orders N for which the optimal stopband attenuation resulted by solving (25)
is γs ≤ 0.00316 = −50 dB. The results are shown in Table 1; the upper half of the
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Table 1 Minimal orders
satisfying the design data from
Example 1

K N (K + 1)(N + 1)

Problem (21) 2 50 153

solved in [12] 3 18 76

(linear programming) 4 13 70

Problem (22) 2 24 75

solved via (25) 3 15 64

(SDP) 4 13 70

Fig. 3 Frequency responses of
adjustable filters designed in
Example 1 by solving (22), with
K = 3, for 25 values of the
parameter p ∈ [0.019,0.518]

table is taken from [12] and gives the results of solving (21); the lower half shows our
results for (22). The number of fixed multipliers needed to implement the adjustable
filter as in Fig. 1 is (K +1)(N +1), shown in the last column of Table 1. We note that
the modified problem (22), with variable transition width, gives a solution with lower
complexity (both in terms of fixed, 64 vs. 70, and adjustable, 3 vs. 4, multipliers)
than the fixed transition width problem (21). The magnitude responses of the family
of filters obtained for K = 3 is given in Fig. 3; their optimal stopband attenuation is
γs = 0.00303 = −50.37 dB. (Note that the ripples slightly higher than −50 dB are
inside the transition band.)

4.2 Approximately Linear-Phase Designs

We turn now to the case where the filters from (19) have no imposed symmetry and
so they are

Hk(z) =
M∑

i=0

hk,iz
−i . (28)

An interesting problem in this case is to design approximately linear-phase low-delay
filters. Given a desired group delay τ , such a problem with the same frequency band
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Fig. 4 Frequency responses (left) and passband group delays (right) of adjustable filters designed in
Example 2 by solving (29), with K = 4, M = 26, τ = 10, for 25 values of the parameter p ∈ [0.019,0.518]

characteristics as (22) has the form

min γs

s.t.
∣∣H

(
p, ejω

) − e−jωτ
∣∣ ≤ γp, ∀ cosω ∈ [

p + �̃,1
]
,

∣∣H
(
p, ejω

)∣∣ ≤ γs, ∀ cosω ∈ [−1,p − �̃
]
.

(29)

Such a problem can be solved by discretization [24], using SDP. If τ is an integer
then H(p, z) − z−τ is a hybrid polynomial, and so the problem (29) can be solved
using properties of hybrid polynomials, precisely Theorem 4; this kind of solution
involves no discretization. Each of the two constraints from (29) can be expressed
via (16) and (17) and thus (29) is transformed into an SDP problem.

Example 2 We solve (29) using the same data and setup as in Example 1. The order
of the filters (28) are M = 2N , where N has the optimal values determined in Ex-
ample 1; hence, the number of coefficients of the filters (19) and (28) is the same. In
the implementation of (16), we take the overall degree of the equivalent polynomial
equality (18) to be (2(K + 1),N). With M = 26, the best results are now obtained
with K = 4. For τ = 12, we obtain γs = 0.00269 and for τ = 10 we get γs = 0.00285;
in both cases, the optimal stopband attenuation is better than for linear-phase filters.
The magnitude responses and passband group delays of the optimal family of filters
for τ = 10 are shown in Fig. 4.

5 Absolute Stability of Systems with Delays

Positive hybrid real-trigonometric polynomials appear naturally in frequency-domain
absolute stability conditions involving time-delay systems. For illustration, we con-
sider the feedback system (see [16] and Problem 6.6 in [1])

ẋ(t) = −ax(t) + φ
(
y(t)

)
,

y(t) = x(t) + cx(t − τ)
(30)
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where a > 0, c ∈ R, τ > 0 and φ is a sector-type nonlinearity,

0 ≤ φ(σ)

σ
≤ k ≤ ∞. (31)

The developments presented in this section can be easily extended to systems with
linear parts of order larger than one and with multiple delays, but the form (30) allows
a better understanding of the main ideas.

Since the linear part is stable (a > 0), according to the Popov’s absolute stability
criterion, the system (30) is asymptotically stable for every nonlinearity φ satisfy-
ing the sector-type inequality (31) if there exists q ≥ 0 such that Popov’s frequency-
domain condition is verified:

1

k
+ �[

(1 + jωq)G(jω)
]
> 0, ∀ω ∈ R. (32)

Here G(s) is the transfer function of the linear part of the system and is given by

G(s) = 1 + ce−sτ

s + a
. (33)

Our aim is to present SDP methods for verifying (32) and deciding on the stability of
the system (30) in the case where the delay τ is unknown.

5.1 Delay-Independent Stability

We study first the conditions in which (32) holds for all τ > 0, i.e. the absolute sta-
bility is delay independent. After elementary algebraic manipulations, the frequency
condition (32) rewrites as

2(a + jω)(a − jω) + k(1 + jωq)(a − jω)
(
1 + ce−jωτ

)

+ k(1 − jωq)(a + jω)
(
1 + cejωτ

)
> 0, ∀ω ∈ R, τ ≥ 0.

We denote z = ejωτ ; since τ can have any value, the variables z and ω are decoupled;
hence (32) is equivalent to

R(ω, z) = 2
(
a2 + ω2) + H(ω, z) + H

(−ω,z−1) > 0,

∀ω ∈ R, z ∈ T, (34)

where H(ω, z) = k[a + j (aq − 1)ω + qω2](1 + cz−1). Thus, we have obtained a
positivity condition on a hybrid polynomial.

Since each of q and k enter linearly in the coefficients of R(ω, z), one can solve
several types of problems. For instance, one problem is to compute, for given a and c,
the maximum value of k for which there exists q ≥ 0 such that (34) holds. We can
approach this problem in two ways. The first is to take several values of q on a grid
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Fig. 5 Maximal values of
absolute stability sector for
Example 3

G and, for each of them, to compute

kmax(q) = max k

s.t. R(ω, z) − ε ≥ 0,

∀ω ∈ R, z ∈ T (q given)

(35)

for a small given ε ≥ 0. We replace the positivity constraint from (35) with the con-
dition that R(ω, z) − ε is sum-of-squares and then appeal to the parameterization (9)
of sum-of-squares hybrid polynomials; thus, we transform (35) to an SDP problem
whose solution is possibly smaller than kmax(q). We have then a (conservative) esti-
mation of the maximum sector value in kmax = maxq∈G kmax(q).

A second approach is to solve, for given k, the feasibility problem

find q ≥ 0

s.t. R(ω, z) − ε ≥ 0, ∀ω ∈ R, z ∈ T (k given).
(36)

Again, by replacing positivity with a sum-of-squares condition, this can be trans-
formed into a more conservative SDP problem. An estimation of the maximum sec-
tor kmax can be found by a bisection process, in which the value of k is increased or
decreased as the relaxed problem (36) is found feasible or not, respectively.

Example 3 It can be proved [1, Problem 6.6] that the condition (32) holds for any k

if |c| < 1. However, for |c| > 1, the maximal sector of absolute stability kmax has a
finite value. We take c = 1.1 and a = 1. By solving (35) for various values of q (with
ε = 10−6), we obtain the curve kmax(q) from Fig. 5, which suggests that kmax = 10.
Indeed, by solving (36) in a bisection process, we obtain the value kmax = 10 with
an accuracy comparable to the tolerance used for stopping the bisection process (we
used values between 10−3 and 10−6).
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5.2 Robust Stability with Unknown Bounded Delay

We tackle now the case where the delay is still unknown but is upper bounded, i.e. τ ∈
[0, τ̃ ], with given τ̃ . The simple substitution z = ejωτ used in the previous subsection
is no longer useful. Instead, we use the Padé approximation of an exponential. The
m-th order Padé approximation of e−s is

Pm(s) = Qm(s)

Qm(−s)
, with Qm(s) =

m∑

k=0

(2m − k)!m!(−s)k

(2m)!k!(m − k)! . (37)

Lemma 1 [25] Given τ̃ > 0 and ω ≥ 0, we define the sets

Ω(ω, τ̃ ) = {
e−jωτ | τ ∈ [0, τ̃ ]},

Ωo(ω, τ̃ ) = {
Pm(jαmωτ) | τ ∈ [0, τ̃ ]}, (38)

Ω i(ω, τ̃ ) = {
Pm(jωτ) | τ ∈ [0, τ̃ ]},

where αm is a constant whose computation is detailed in [25] (for m = 3,4,5, the val-
ues of αm are 1.2329, 1.0315, 1.00363, respectively). As |Pm(jω)| = 1, the three sets
in (38) are arcs on the unit circle. With the above definitions, the following inclusions
hold:

Ω i(ω, τ̃ ) ⊂ Ω(ω, τ̃ ) ⊂ Ωo(ω, τ̃ ). (39)

(The subscripts i and o stand for inner and outer approximation, respectively; these
names are justified by (39).)

For a small given ε > 0, we replace the absolute stability condition (32) with

1

k
+ �

[
(1 + jωq)

1 + ce−jωτ

jω + a

]
≥ ε, ∀ω ∈ R, ∀τ ∈ [0, τ̃ ]. (40)

Using Lemma 1, we substitute e−jωτ with Pm(jαmωτ), to obtain a more conser-
vative condition (we name it “outer”, in the style of [25]), and with Pm(jωτ), to
obtain a more relaxed condition (named “inner”). In both cases, we end up with poly-
nomial conditions. To reduce the degree of the polynomials, we substitute t = ωτ

and eliminate ω. After some computation (including the elimination of the positive
denominator), the “outer” condition can be written as

R1(t, τ ) = 2(1 − kε)
(
a2τ 2 + t2)Qm(jαmt)Qm(−jαmt)

+ H1(t, τ ) + H1(−t, τ ) ≥ 0, ∀t ∈ R, τ ∈ [0, τ̃ ], (41)

where

H1(t, τ ) = k(τ + jqt)(aτ − j t)
[
Qm(−jαmt) + cQm(jαmt)

]
Qm(jαmt). (42)

Since τ belongs to [0, τ̃ ], we can substitute

τ =
(

1 + z + z−1

2

)
τ̃

2
, z ∈ T. (43)
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Hence R1(t, τ ) is transformed into an hybrid polynomial, denoted here Ro(t, z). Sim-
ilarly, for the “inner” condition we obtain a polynomial Ri(t, z) (note that in (41)
and (42) we only have to replace αm with 1). The degree of these polynomials is
(2(m + 1),2).

We can now solve the same problems as in the delay-independent case, for instance
to compute the maximum sector k̃max for which the system (30) is absolutely stable
∀τ ∈ [0, τ̃ ]. The same two approaches valid in the delay-independent case can be
used, but only for computing approximations of k̃max. For example, for given q , we
can find an “outer” approximation by solving

k̃o
max(q) = max k

s.t. Ro(t, z) − ε is sum-of-squares,

∀t ∈ R, z ∈ T (q given).

(44)

The “inner” approximation k̃i
max(q) is obtained similarly by replacing Ro(t, z) with

Ri(t, z). We always have k̃o
max(q) ≤ k̃max(q), since both Lemma 1 the sum-of-squares

approximation of positivity contribute to the decrease of the computed value. We
probably have k̃max(q) ≤ k̃i

max(q), since the effect of Lemma 1 should be greater than
the effect of sum-of-squares approximation (which is typically negligible).

The feasibility problem (36) can be treated in the same way and “outer” and “in-
ner” approximations can be computed by bisection.

Example 4 We take again a = 1, c = 1.1 and consider several values of the delay
bound τ̃ , namely 0.2, 0.5 and 1. The “outer” (thick lines) and “inner” (thin lines) ap-
proximations obtained by solving (44) (and its “inner” version) for m = 4 are shown
in Fig. 6 (the solid line curve for τ̃ = ∞ is copied from Fig. 5). It is visible that, for
the same value q , the distance between the two approximations is very small. For
example, for τ̃ = 1 we obtain maxq k̃o

max(q) = 12.90 and maxq k̃i
max(q) = 13.05. We

conclude that we obtain a good estimate of the maximum sector given by Popov’s
absolute stability criterion.

6 Other Applications

We mention just in passing other possible applications of our results on positive hy-
brid polynomials. Let us consider the stability of a 2-D continuous-discrete-time sys-
tem whose transfer function has the denominator A(s, z). For the system to be stable,
the denominator must be Hurwitz–Schur, i.e. A(s, z) �= 0, ∀�(s) ≥ 0, |z| ≤ 1. Simi-
larly to the DeCarlo–Strintzis [20] conditions for 2-D discrete-time systems, the test
can be reduced to some 1-D conditions and the 2-D “border” condition A(jt, z) �= 0,
∀t ∈ R, z ∈ T. This condition can be transformed into

R(t, z) = A(jt, z)A
(−j t, z−1) > 0, ∀t ∈ R, z ∈ T, (45)

where R(t, z) has the form (1). Although we cannot test exactly this positivity con-
dition, we can change it into a sufficient condition by requiring that R(t, z) is a
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Fig. 6 Maximal values of
absolute stability sector for
Example 4 (m = 4). Thick lines:
“outer” approximation; thin
lines: “inner” approximation

strictly positive sum-of-squares. Similarly to the multidimensional discrete systems
case treated in [4], we expect that the sum-of-squares condition is practically neces-
sary.

A second problem is that of robust stability. Let us consider the (1-D) discrete-time
system whose transfer function has the denominator

A(τ, z) =
n∑

k=0

pk(τ)z−k, (46)

where pk(τ) are polynomials in the unknown parameter τ ∈ [a, b]. We want to test
if the polynomial is Schur for all admissible values of the parameter, i.e. A(τ, z) �= 0,
∀|z| ≤ 1, ∀τ ∈ [a, b]. Different algorithms for this problem have been proposed in
[9, 19]. As above, we can transform this into a positivity problem, by requiring that
the hybrid polynomial R(τ, z) = A(τ, z)A(τ, z−1) has the form (13) (which is a suffi-
cient condition). Using Remark 5, this condition can be transformed into a feasibility
SDP problem.

The above problems can be easily generalized to more than two variables, for
example in the case where the polynomial coefficients of (46) depend on more than
one parameter.

7 Conclusion

We have presented basic properties of hybrid real-trigonometric polynomials that are
positive globally or on certain domains defined as in (10). The relations with sum-
of-squares polynomials allow the relaxation of optimization problems with positive
hybrid polynomials to SDP problems. Using these properties, we have transformed
adjustable FIR filter design and delay-independent absolute stability problems into
SDP form, thus enjoying the benefits of reliable solutions. Further work will be de-
voted to enlarge the area of applications and to solve problems with higher complex-
ity.
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Appendix A: Proof of Theorem 3

The proof is inspired by a transformation method [5] for trigonometric polynomials
and uses a basic result from [15]. Since z is on the unit circle T, we put z = x + jy,
with x2 + y2 = 1. The polynomials R(t, z), D�(t, z) are changed into the real poly-
nomials R(t, x, y), D�(t, x, y), in three variables, and the set D into D′ = Dr ∩ T ,
where T = {(t, x, y) ∈ R

3 | x2 + y2 = 1} and

Dr = {
(t, x, y) ∈ R

3 | D�(t, x, y) ≥ 0, � = 1 : L}
.

To define D′ in the same style (by positivity of polynomials) we need two more
polynomials:

DL+1(t, x, y) = 1 − x2 − y2, DL+2(t, x, y) = x2 + y2 − 1. (47)

We also modify (11) into

DL(t, x, y) = (t − a)(b − t)
(
2 − x2 − y2), (48)

a transformation which leaves D′ unchanged.
We want now to prove that all polynomials R(t, x, y) that are positive on D′ can

be written as

R(t, x, y) = S0(t, x, y) +
L+2∑

�=1

D�(t, x, y)S�(t, x, y). (49)

A theorem from [15] states that this is true if there exists a polynomial R0(t, x, y)

defined as in the right hand side of (49) such that the set {(t, x, y) ∈ R
3 | R0(t, x, y) ≥

0} is bounded. (The theorem holds in the general multivariate case, not only in R
3.)

In our case, we simply take R0(t, x, y) equal to (48); this polynomial has the form
(49), with SL(t, x, y) = 1, S�(t, x, y) = 0 for � �= L; the polynomial is positive only
for t ∈ [a, b], x2 + y2 ≤ 2, which is clearly a bounded set.

Transforming back x +jy = z (this is a one-to-one transformation), the polynomi-
als (47) disappear from (49), the polynomial (48) becomes (11) (these happen because
x2 + y2 = 1) and the sum-of-squares S�(t, x, y) are transformed into sum-of-squares
S�(t, z). Hence, we obtain (12).

Appendix B: Proof of Theorem 4

The proof is similar to that of Theorem 3 from [5]. We give here a short version. We
prove first the reverse implication.

Using (7), for z ∈ T we write

∣∣H(t, z)
∣∣2 = ψT(

t, z−1)hhHψ(t, z).
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Using (18), the above equality and the Gram matrix form (8) associated to S0(t, z)

we obtain

γ 2 − ∣∣H(t, z)
∣∣2 = ψT(

t, z−1)(Q0 − hhH)
ψ(t, z)

+
L∑

�=1

D�(t, z) · S�(t, z). (50)

From (17) it results that Q0 − hhH � 0 and so all the polynomials on the right
hand side of (50) are nonnegative on D, which implies that γ 2 − |H(t, z)|2 ≥ 0,
∀(t, z) ∈ D.

The direct implication follows the backward way. However, according to Theo-
rem 3 and (12) we can write

γ 2 − ∣∣H(t, z)
∣∣2 = ψT(

t, z−1)Q̃0ψ(t, z) +
L∑

�=1

D�(t, z) · S�(t, z), (51)

with Q̃0 � 0, only if the left hand term is strictly positive, i.e. only if γ > |H(t, z)|.
This explains the asymmetry between the direct and reverse implications, coming
from the difference between (51) and (50). We put now Q0 = Q̃0 + hhH and (18)
results, etc.

Appendix C: The General Multivariate Case

We list here the modifications that are necessary in the general multivariate case,
where there are d1 real variables and d2 trigonometric variables. In (1), we understand

now that k1 ∈ N
d1 , k2 ∈ Z

d2 and a monomial is e.g. tk1 = t
k1,1
1 · · · tk1,d1

d1
; the sums are

taken for all possible values, e.g. in the first sum we take all k1 ∈ N
d1 for which

0 ≤ k1 ≤ n1; note that now n1 ∈ N
d1 . The base (6) becomes accordingly

ψm1,n2
(t, z) = ψn2,d2

(z) ⊗ · · · ⊗ ψn2,1
(z) ⊗ ψm1,d1

(t) ⊗ · · · ⊗ ψm1,1
(t). (52)

In Theorem 1, the constant matrix appearing in (9) becomes

T k1,k2 = Θk2,d2
⊗ · · · ⊗ Θk2,1 ⊗ Υ k1,d1

· · · ⊗ Υ k1,1 . (53)

The proof goes along the same line.
The results from Sect. 3 remain valid in the multivariate case, with a modification

of the assumptions on the set (10). We assume that the set where one of the polyno-
mials defining (10) is nonnegative is bounded. For example, this polynomial can be
DL(t, z) = ρ2 − t2

1 − · · · − t2
d1

. This polynomial replaces DL(t, z) = (t − a)(b − t)

from the bivariate case and ensures that the conditions required in [15] hold.
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