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Abstract This paper presents a neural network-based robust finite-time H∞ control
design approach for a class of nonlinear Markov jump systems (MJSs). The system
under consideration is subject to norm bounded parameter uncertainties and external
disturbance. In the proposed framework, the nonlinearities are initially approximated
by multilayer feedback neural networks. Subsequently, the neural networks undergo
piecewise interpolation to generate a linear differential inclusion model. Then, based
on the model, a robust finite-time state-feedback controller is designed such that the
nonlinear MJS is finite-time bounded and finite-time stabilizable. The H∞ control is
specified to ensure the elimination of the approximation errors and external distur-
bances with a desired level. The controller gains can be derived by solving a set of
linear matrix inequalities. Finally, simulation results are given to illustrate the effec-
tiveness of the developed theoretic results.
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1 Introduction

In past years, the H∞ control problem has attracted much attention due to its both
practical and theoretical importance. Many results have been reported in the literature
on this topic, for example, [5, 10–12, 25] and the references therein. However, much
attention has been devoted to the behavior of control dynamics over an infinite-time
interval. In many practical applications, the main concern is the behavior of the con-
trol dynamics over a fixed finite-time interval (for example, large values of the state
are not acceptable in the presence of saturations [3]). In these cases, it is necessary
to check the unacceptable values so that the states do not exceed a certain threshold
during a fixed finite-time interval by giving some initial conditions. To deal with such
problems, Dorato gave the concept of finite-time stability in 1961 [9]. Then, some
attempts on finite-time stability were made [2, 27] by using an approach based on
Lyapunov theory. Recently, with the aid of linear matrix inequality (LMI) techniques
[7], more concepts of finite-time stability have been proposed, such as finite-time
control [1, 2], finite-time boundedness [1, 4], finite-time stabilization via feedback
control [4], and so on.

On another research front line, a great amount of effort has been devoted to sto-
chastic systems with Markovian jump parameters in the past two decades. This class
of systems can be used to model a variety of physical systems which may experi-
ence abrupt changes in their structure and parameters caused by phenomena such as
component failures, abrupt environmental disturbances, sudden variations of the op-
erating condition, etc. In Markov jump systems (MJSs), the dynamics of the jump
modes and continuous states are respectively modeled by finite state Markov chains
and differential equations. Since the pioneering work on jumping linear quadratic
control in the 1960s [13–15], MJSs have been extensively studied, and a number of
achievements related to these systems have been made on control design [8, 20, 21],
filtering design [29, 31], and stability analysis [22]. However, most of the results in
this field relate to stability and performance criteria defined over an infinite-time in-
terval. In practice, one is not only interested in system stability but also in bounds
of system trajectories. A typical example can be found in aircraft control, where it
is requested that during the execution of a certain task the state variables should not
exceed some threshold under all admissible pilot inputs and in the presences of wind
disturbances. What is more, almost all of the systems have inherent nonlinearities,
and parameter uncertainties are often encountered in the systems, so their presence
must be taken into consideration in realistic controller design.

In recent years, neural network control techniques have been widely used in
nonlinear fields due to their universal approximation capability. Details concern-
ing their successful applications can be found in various fields; see, for example,
[17, 23, 28, 30, 32] and the references therein. There are, however, some drawbacks
in using neural networks (NNs) in any control scheme. Most notably, guaranteeing
stability becomes a major problem. Recently, a class of NNs that admit linear dif-
ference inclusion (LDI) state-space representation has been proposed in [16, 24] and
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used in the stability analysis via a Lyapunov function method. Based on the LDI
model, some systematic model-based neural network control design techniques have
been developed [18].

In this work, with the help of neural approximation, we consider the problem of
finite-time H∞ control for a class of uncertain nonlinear MJSs with norm bounded
external disturbance. Firstly, the nonlinearities in the different jump modes are pa-
rameterized by NNs. Subsequently, an LDI state-space representation for a class of
NNs is established. Then, based on this LDI representation, sufficient conditions are
presented to guarantee the closed-loop system finite-time stabilizable (FTS) and elim-
inate the effect of the approximation errors and external disturbances on the regulated
output. These conditions can be reduced to feasibility problems involving (LMIs). Fi-
nally, a nonlinear MJS with parameter uncertainties has been used as an example to
show the potential of the proposed techniques.

Throughout the paper, the following notation will be used. Rn and Rn×m denote
n-dimensional Euclidean space, and the set of all the n × m real matrices, respec-
tively. AT and A−1denote the matrix transpose and the matrix inverse, diag{A B }
represents the block diagonal matrix of A and B , λmax(A) and λmin(A) mean the
maximal and minimal eigenvalues of a real matrix A, ‖A‖ denotes the Euclidean
norm of matrix A,E{·} stands for the mathematics statistical expectation of the sto-
chastic process or vector, Ln

2[0 N ] is the space of n-dimensional square integrable
functions vector over [0 N ], P > 0 stands for a positive definite matrix, I is the
unit matrix with appropriate dimensions, 0 is the zero matrix with appropriate dimen-
sions, and “∗” means the symmetric terms in a symmetric matrix.

2 System Description

We are given a probability space (Ω,F,P ) where Ω is the sample space, F is the
algebra of events, and P is the probability measure defined on F . Let the random
form process {rt , t ≥ 0} be the Markov stochastic process taking values on a finite
set M = {1,2, . . . ,N} with transition rate matrix Π = {πrj }, r, j ∈ M and define the
following transition probability from mode r at time t to mode j at time t + �t as

Prj = Pr{rt+�t = j |rt = r} =
{

πrj�t + o(�t), r �= j

1 + πrr�t + o(�t), r = j

with transition probability rates πrj ≥ 0 for r, j ∈ M , r �= j and
∑N

j=1,j �=r πrj =
−πrr where �t > 0 and lim�t↓0 o(�t)/�t → 0.

Consider the following nonlinear MJS with parameter uncertainties:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ(t) = [
A(rt ) + �A(rt )

]
x(t) + [

B(rt ) + �B(rt )
]
u(t) + Bd(rt )w(t)

+ f (x(t), rt )

z(t) = C(rt )x(t) + D(rt )u(t) + Dd(rt )w(t)

x(t) = x0, rt = r0, t = 0

(1)



484 Circuits Syst Signal Process (2010) 29: 481–498

where x(t) ∈ Rn is the vector of state variables, z(t) ∈ Rl is the controlled out-
put, u(t) ∈ Rm is the controlled input, w(t) ∈ L

p

2 [0 +∞ ) is the external distur-
bances, f (·) is a continuous nonlinear mapping with f (0) = 0 but not assumed to be
known a priori, x0 and r0 respectively represent the initial state and initial mode, and
A(rt ),B(rt ),Bd(rt ),C(rt ),D(rt ) and Dd(rt ) are known mode-dependent constant
matrices with appropriate dimensions. For notational simplicity, when rt = r , r ∈ M ,
A(rt ),�A(rt , t),B(rt ),�B(rt , t),Bd(rt ),C(rt ),D(rt ),Dd(rt ) and f (x(t), rt ) are
respectively denoted as Ar,�Ar,Br ,�Br,Bdr ,Cr,Dr,Ddr and fr(x(t)). �Ar and
�Br are the time-varying but norm bounded uncertainties satisfying

[�Ar �Br ] = SrFr(t)[H1r H2r ] (2)

where Sr,H1r and H2r are known mode-dependent matrices with appropriate dimen-
sions and Fr(t) is the time-varying unknown matrix function with Lebesgue norm
measurable elements satisfying F T

r (t)Fr(t) ≤ I .

Remark 1 The parameter uncertainty structure in (2) is an extension of the admissi-
ble condition. The matrix Sr is chosen as full row rank matrix. The motivation for
us to consider uncertainties derives from the fact that it is always impossible to ob-
tain the exact mathematical model of a practical dynamics due to the complexity of
the process, environmental noises, time-varying parameters, and many difficulties in
measuring various and uncertain dynamics, etc. Hence, the uncertainties �Ar and
�Br in (1)–(2) reflect the inaccuracy in the mathematical modeling of jump dynam-
ical systems. Note that the unknown mode-dependent matrix Fr(t) in (2) can also be
allowed to be state dependent, i.e., Fr(t) = Fr(t, x(t)), as long as Fr(t, x(t)) ≤ 1 is
satisfied.

Assumption 1 For any given positive numberd , the external disturbance w(t) is time
varying and satisfies ∫ N

0
wT(t)w(t)dt ≤ d, d ≥ 0 (3)

For each mode r , nonlinear function fr(x(t)) is to be parameterized by NNs. Such a
parameterization makes sense because any continuous nonlinear function can be ap-
proximated arbitrarily well on a compact interval by NNs. Without loss of generality,
let the single hidden layer perceptron Nr(x(t),Wr1,Wr2) be suitably trained to ap-
proximate the nonlinear term fr(x(t)), which is described in matrix-vector notation
as

Nr

(
x(t),Wr1,Wr2

)= ψr2
[
Wr2ψr1

[
Wr1x(t)

]]
(4)

where Wri ∈ Rnh×n, i = 1,2 denote the connecting weight matrices of neurons, and
ψri(·) denotes the activation function vector of the NNs, which is defined as

ψri[ζr ] = [
ϕr1(ςr1), ϕr2(ςr2), . . . , ϕrni

(ςrni
)
]T
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in which we let

ϕrj (ςrj ) = λrj

(
1 − e−ςrj /qrj

1 + e−ςrj /qrj

)
, qrj , λrj > 0, j = 1,2, . . . , ni

The maximum and minimum derivatives of activation function ϕrj are defined as
follows:

srj (k,ϕrj ) =
⎧⎨
⎩

minζrj

∂ϕrj (ζrj )

∂ζrj
, k = 0

maxζrj

∂ϕrj (ζrj )

∂ζrj
, k = 1

(5)

The activation function ϕrj can be rewritten in the following min-max form:

ϕrj = hrj (0)srj (0, ϕrj ) + hrj (1)srj (1, ϕrj )

where hrj (k), k = 0,1 is a set of positive real numbers associated with ϕrj satisfying
hrj (k) > 0 and hrj (0) + hrj (1) = 1.

According to the approximation theorem, for a given accuracy ρr > 0, there exist
constant weight matrices W ∗

ri defined as

(
W ∗

r1,W
∗
r2

)= arg min
(W ∗

r1,W
∗
r2)

{
max

x(t)∈D

∥∥fr

(
x(t)

)− Nr

(
x(t),Wr1,Wr2

)∥∥}

where D is a compact set D ∈ Rm, such that

max
x(t)∈D

∥∥fr

(
x(t)

)− Nr

(
x(t),W ∗

r1,W
∗
r2

)∥∥≤ ρr

∥∥x(t)
∥∥ (6)

For each mode r , denote a set of ni -dimensional index vectors of the ith layer
(i = 1,2) as

γni
= γni

(σr) = {
σr ∈ Rni | σrj ∈ {0,1}, j = 1, . . . , ni

}
where σr is used as a binary indicator. Obviously, the ith layer with ni neurons has
2ni combinations of binary indicator with k = 0,1, and the elements of index vectors
for two-layer NNs have 2n2 × 2n1 combinations in the set � = γn2 ⊕ γn1 .

By using (5) and adopting the compact representation [16], the NNs (4) can be
expressed as follows:

N
(
x(t),W ∗

r1,W
∗
r2

) = ψr2

⎡
⎢⎢⎣W ∗

r2

⎡
⎢⎢⎣

∑1
k=0 hr11(k)sr11(k,ϕr11) × (W ∗

r1x)r1
...∑1

k=0 hr1n1(k)sr1n1(k,ϕr1n1) × (W ∗
r1x)rn1

⎤
⎥⎥⎦
⎤
⎥⎥⎦

=
∑
σr∈�

μσr Aσr

(
σr,ψr,W

∗
r

)
x(t)

where
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Aσr = diag
[
sr2j (σr2j , ϕr2j )

]
W ∗

r2 diag
[
sr1j (σr1j , ϕr1j )

]
W ∗

r1∑
σ∈γn2⊕γn1

μσ =
1∑

kr2n2 =0

...
kr21=0

1∑
kr2n1=0

...
kr11=0

hr2n2(kr2n2) · · ·hr21(kr21)hr1n1(kr1n1) · · ·

× hr11(kr11) = 1

hrij (σrij ) ≥ 0, σrij = 0,1

hrij (0) + hrij (1) = 1, i = 1,2, j = n1, n2

(7)

Thus, by means of NNs, the nonlinear MJS (1) is transformed into a group of LDIs
with error bound, in which the different inclusion is powered by a stochastic Markov-
ian process, i.e.,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =
[ ∑

σr∈�

μσr Aσr + Ar + �Ar

]
x(t) + [Br + �Br ]u(t)

+Bdrw(t) + �fr

(
x(t)

)
z(t) = Crx(t) + Dru(t) + Ddrw(t)

x(t) = x0, rt = r0, t = 0

(8)

where

�fr

(
x(t)

)= max
x(t)∈D

∥∥fr

(
x(t)

)− Nr

(
x(t),W ∗

r1,W
∗
r2

)∥∥≤ ρr

∥∥x(t)
∥∥ (9)

denotes the approximation errors of the NNs.

Remark 2 It should be noted that, in our study, the detailed structure and quantitative
size of error dynamics �fr(x(t)) is not needed, and only the norm bounded condition
is required. This condition can be easily met in practical applications. Also, the bound
of the norm may vary according to different nonlinearities in different modes.

Based on the LDI model (8), we construct the following state-feedback controller
for system (1):

u(t) = Krx(t) (10)

Then the resulting closed-loop system can be obtained:⎧⎪⎨
⎪⎩

ẋ(t) = (
Ār + �Ār

)
x(t) + Bdrw(t) + �fr

(
x(t)

)
z(t) = C̄rx(t) + Ddrw(t)

x(t) = x0, rt = r0, t = 0

(11)

where

Ār =
∑
σr∈�

μσr Aσr +Ar +BrKr, �Ār = �Ar +�BrKr, C̄r = Cr +DrKr



Circuits Syst Signal Process (2010) 29: 481–498 487

The finite-time H∞ control problem to be addressed in this paper can be formulated
as designing a state-feedback controller in the form of (10) such that

(1) The closed-loop system (11) is finite-time bounded (FTB).
(2) Under zero initial condition, the controller output z(t) satisfies

E

{∫ t

0
zT(t)z(t) dt

}
≤ η2

∫ t

0
wT(t)w(t) dt (12)

for any nonzero w(t) satisfied boundary condition (3).

3 Main Results

The general idea of finite-time control can be formalized through the following defi-
nitions over a finite-time interval for some given initial conditions.

Definition 1 [9] For a given constant N > 0, uncertain nonlinear MJS (1) (setting
u(t) = 0,w(t) ≡ 0) is said to be finite-time stable with respect to (c1 c2 N Rr ),
where c1 < c2, Rr > 0, if

E
{
xT

0 Rrx0
}≤ c1 ⇒ E

{
xT(t)Rrx(t)

}
< c2, ∀t ∈ [0 N ] (13)

Definition 2 (FTB) [3] For a given constant N > 0, uncertain nonlinear MJS (1)
(setting u(t) = 0) is said to be FTB with respect to (c1 c2 N Rr d ), where
c1 < c2, Rr > 0, if condition (13) holds.

Definition 3 (FTS) [4] Given a time constant N > 0, positive scalars c1 and
c2, with c1 < c2, and mode-dependent positive definite matrix Rr > 0, uncer-
tain nonlinear MJS (1) is said to be finite-time stabilizable (FTS) with respect to
(c1 c2 N Rr d ), if there exists a state-feedback controller in the form of (10),
such that system (1) is finite-time stable.

Remark 3 It should be pointed out that there is a great difference between Lyapunov
stability and finite-time stability. The concept of Lyapunov stability (or Lyapunov
almost asymptotic stability) is largely known to the control community, but an MJS
is finite-time stable if, once we fix a finite-time interval, its state does not exceed
some bonds during this time interval. Moreover, an MJS which is finite-time stable
may not be Lyapunov stable; conversely, a Lyapunov stable MJS could be not finite-
time stable if its state exceeds the prescribed bounds during the transients.

Remark 4 In fact, finite-time stability can be recovered as a particular case of finite-
time boundedness by setting w(t) = 0. In the presence of external inputs, finite-time
stability leads to the concept of finite-time boundedness. That is, a system is FTB
if, given a bound initial condition and a characterization of the set of admissible
inputs, the system states remain below the prescribed limit for all inputs in the bound
set. Finite-time stability and finite-time boundedness are open-loop concepts. But
the finite-time control problem concerns the design of a finite-time controller which
guarantees the FTB and FTS of a closed-loop system via state feedback.
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Definition 4 [19] In the Euclidean space {Rn × M × R+}, we introduce the stochas-
tic Lyapunov–Krasovskii function of uncertain nonlinear MJS (1) as V (x(t), rt = r,

t > 0), the weak infinitesimal operator satisfying

Γ V
(
x(t), r

)
= lim

�t→0

1

�t

[
E
{
V
(
x(t + �t), rt+�t , t + �t

) | x(t) = x, rt = r
}− V

(
x(t), r, t

)]

= ∂

∂t
V
(
x(t), r, t

)+ ∂

∂x
V
(
x(t), r, t

)
ẋ(t, r) +

N∑
j=1

πrjV
(
x(t), j, t

)
(14)

Lemma 1 [26] Let T ,M,F and N be real matrices of appropriate dimension with
F TF ≤ I . Then, for a positive scalar α > 0, we have

T + MFN + NTF TMT ≤ T + αMMT + α−1NTN (15)

Lemma 2 For a given time constant N > 0, the uncertain nonlinear MJS (1) is
FTS via a state-feedback controller with respect to (c1 c2 N Rr d ), if there
exist positive constant α > 0, mode-dependent symmetric positive definite matrix
Pr ∈ Rn×n, r ∈ M , symmetric positive definite matrix Q ∈ Rp×p , and positive real
number εr1 for all σr ∈ � such that [

Λr PrBdr

BT
drPr −αQ

]
< 0 (16)

c1λmax(P̃r ) + dλmax(Q)(1 − e−αt )

λmin(P̃r )
< e−αt c2 (17)

where

Λr = (
Ār + �Ār

)T
Pr + Pr

(
Ār + �Ār

)+
N∑

j=1

πrjPj + εr1PrPr + ε−1
r1 ρ2I − αPr

P̃r = R
−1/2
r PrR

−1/2
r

λmax(·) and λmin(·) denote the maximal and minimal eigenvalues of the augment,
respectively.

Proof For the closed-loop neural system (11) of nonlinear MJS (1), choose a sto-
chastic Lyapunov function candidate as V (x(t), rt = r) = V (x, r) = xTPrx, where
Pr is a mode-dependent positive definite symmetric matrix for each r . Along the
trajectories of system (11), the corresponding time derivative of V (x(t), r) is given
by

Γ V (x(t), r) = lim
�t→0

1

�t

[
E
{
V
(
x(t + �t), rt+�t , t + �t

) | x(t) = x, rt = r
}

− V
(
x(t), r, t

)]
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= xT

((
Ār + �Ār

)T
Pr + Pr

(
Ār + �Ār

)+
N∑

j=1

πrjPj

)
x

+ 2xTPrBdrw + 2xTPr�fr(x) (18)

According to Lemma 1 and condition (9), 2xTPr�fr(x) can be presented in the fol-
lowing form:

2xTPr�fr(x) ≤ xT(εr1PrPr + ε−1
r1 ρ2I

)
x

so (18) can be rewritten as

Γ V
(
x(t), r

) ≤ xT(Ār + �Ār

)T
Pr + Pr

(
Ār + �Ār

)
+

N∑
j=1

πrjPj + εr1PrPr + ε−1
r1 ρ2I

)
x + 2xTPrBdrw (19)

From (16) and (19), the following condition is satisfied:

Γ V
(
x(t), r

)
< αV

(
x(t), r

)+ αwT(t)Qw(t) (20)

Multiplying (20) by e−αt yields

Γ
[
e−αtV

(
x(t), r

)]
< αe−αtwT(t)Qw(t) (21)

Integrating (21) from 0 to t , it follows that

e−αtV
(
x(t), r

)− V (x0, r0) < α

∫ t

0
e−ατwT(τ )Qw(τ)dτ

Then, the above inequality is equivalent to

V
(
x(t), r

)
< eαtV (x0, r0) + αeαt

∫ t

0
e−ατwT(τ )Qw(τ)dτ

< eαtV (x0, r0) + αdλmax(Q)eαt

∫ t

0
e−ατ dτ

= eαt

[
V (x0, r0) + αdλmax(Q)

1 − e−αt

α

]
(22)

Noting that P̃r = R
−1/2
r PrR

−1/2
r , from (22) it follows that

V
(
x(t), r

)
< eαt

[
c1λmax

(
P̃r

)+ dλmax(Q)
(
1 − e−αt

)]
(23)

On the other hand, the following condition holds:

V
(
x(τ), r

)= x(t)TPrx(t) ≥ λmin
(
P̃r

)
x(t)TRrx(t) (24)
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Putting together (23) and (24), we have

E
{
xT
k Rrxk

}
<

eαt [c1λmax(P̃r ) + dλmax(Q)(1 − e−αt )]
λmin(P̃r )

Condition (17) implies that for ∀t ∈ [0 N ], E{xT
k Rrxk} < c2. Then uncertain non-

linear MJS (1) is said to be FTS with respect to (c1 c2 N Rr d ). This com-
pletes the proof. �

Lemma 3 For a given time constant N > 0, the uncertain nonlinear MJS (1) is FTS
via a state-feedback controller with respect to (c1 c2 N Rr d ) if there exist
positive constants α > 0 and η > 0, mode-dependent symmetric positive definite ma-
trix Pr ∈ Rn×n, r ∈ M , and positive real number εr1 for all σr ∈ � such that

[
Λr PrBdr

BT
drPr −η2I

]
< 0 (25)

c1λmax
(
P̃r

)+ η2d

α

(
1 − e−αt

)
< e−αt c2λmin

(
P̃r

)
(26)

Proof Consider the similar Lyapunov–Krasovskii function V (x(t), r) = xTPrx.
Along the trajectories of system (11), and recalling condition (25), we have

Γ V
(
x(t), r

)
< αV

(
x(t), r

)+ η2wT(t)w(t)

Then following a similar proof to that of Lemma 2, inequalities (25) and (26) can be
obtained. This completes the proof. �

Theorem 1 For a given time constant N > 0, the uncertain nonlinear MJS (1) is FTS
via a state-feedback controller with respect to (c1 c2 N Rr d ) and satisfies
the cost function inequality (12) for all admissible w(t) with the constraint condition
(3) if there exist positive constant α > 0 and η > 0, mode-dependent symmetric pos-
itive definite matrix Pr ∈ Rn×n, r ∈ M , and positive real number εr1 for all σr ∈ �

such that [
Λr + C̄T

r C̄r PrBdr + C̄T
r Ddr

BT
drPr + DT

dr C̄r −η2I + DT
drDdr

]
< 0 (27)

Proof Considering Lemma 3 and the closed-loop system (11), we introduce the fol-
lowing condition by defining the similar Lyapunov–Krasovskii function V (x(t), r) =
xTPrx:

Γ V
(
x(t), r

)
< αV

(
x(t), r

)+ η2wT(t)w(t) − zT(t)z(t)
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Obviously, this condition can be guaranteed by inequality (27). On the other hand,
multiplying the above inequality by e−αt , it follows that

Γ
[
e−αtV

(
x(t), r

)]
< e−αt

[
η2wT(t)w(t) − zT(t)z(t)

]
In zero initial condition, by integrating the above inequality from 0 to N , we can get

e−αtV
(
x(t), r

)
<

∫ t

0
e−ατ

[
η2wT(t)w(t) − zT(t)z(t)

]
dτ

Thus, the following condition holds:∫ t

0
e−ατ zT(t)z(t) dτ < η2

∫ t

0
e−ατwT(t)w(t) dτ

Note that t ∈ [0 N ] then yields

∫ N

0
zT(t)z(t) dτ < e−αNη2

∫ N

0
wT(t)w(t) dτ

Therefore, condition (12) can be guaranteed by letting η̄ = √
e−αNη. This completes

the proof. �

Theorem 2 For given time constants N > 0, α > 0 and η2 > 0, the uncertain non-
linear MJS (1) is FTS with respect to (c1 c2 N Rr d ), via a state-feedback
controller Kr = YrX

−1
r , and satisfies the inequality (12) for all admissible w(t) with

the constraint condition (3), if there exist mode-dependent symmetric positive definite
matrix Xr ∈ Rn×n, mode-dependent matrix Yr ∈ Rm×n, positive real number εr1, εr2
and λ for all σr ∈ � such that⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Mr Bdr XrC
T
r + Y T

r DT
r XrH

T
1r + Y T

r HT
2r ρrXr Nr

BT
dr −η2I DT

dr 0 0 0
CrXr + DrYr Ddr −I 0 0 0

H1rXr + H2rYr 0 0 −εr2I 0 0
ρrXr 0 0 0 −εr1I 0

NT
r 0 0 0 0 −Lr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(28)

λR−1
r < Xr < R−1

r (29)[
−e−αt c2 + η2d

α
(1 − e−αt )

√
c1√

c1 −λ

]
< 0 (30)

where

Mr = Xr(Aσr + Ar)
T + (Aσr + Ar)Xr + Y T

r BT
r + BrYr + πrrXr

+ εr1I + εr2SrS
T
r − αXr
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Nr = [√
πr1Xr · · · √

πr(r−1)Xr
√

πr(r+1)Xr · · · √
πrNXr

]
Lr = diag

{
X1, . . . , Xr−1, Xr+1, . . . , XN

}
Proof Note that inequality (27) is equivalent to the following condition:

Zr =
⎡
⎢⎣

Λr PrBdr C̄T
r

BT
drPr −η2I DT

dr

C̄r Ddr −I

⎤
⎥⎦< 0

In order to deal with the uncertainties described as the form in (2), we use the follow-
ing approach:

Zr = �r + ��r < 0

where

�r =
⎡
⎢⎣

Ωr PrBdr CT
r + KT

r DT
r

BT
drPr −η2I DT

dr

Cr + DrKr Ddr −I

⎤
⎥⎦< 0

��r =
⎡
⎢⎣

(�Ar + �BrKr)
TPr + Pr(�Ar + �BrKr) 0 0

0 0 0

0 0 0

⎤
⎥⎦

Ωr = (
A′

r + BrKr

)T
Pr + Pr

(
A′

r + BrKr

)

+
N∑

j=1

πrjPj + εr1PrPr + ε−1
r1 ρ2I − αPr

A′
r =

∑
σr∈ θ

μσr Aσr + Ar

According to Lemma 1, ��r can be presented in the following form:

��r =
⎡
⎢⎣

PrSr

0

0

⎤
⎥⎦Fr

[
H1r + H2rKr 0 0

]+
⎡
⎢⎣HT

1r + KT
r HT

2r

0

0

⎤
⎥⎦F T

r

[
ST

r Pr 0 0
]

< εr2

⎡
⎣PrSr

0
0

⎤
⎦[ST

r Pr 0 0
]

+ ε−1
r2

⎡
⎣HT

1r + KT
r HT

2r

0
0

⎤
⎦[H1r + H2rKr 0 0

]
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Then

Zr =

⎡
⎢⎢⎢⎢⎣

Ωr + εr2PrSrS
T
r Pr PrBdr CT

r + KT
r DT

r HT
1r + KT

r HT
2r

BT
drPr −η2I DT

dr 0

Cr + DrKr Ddr −I 0

H1r + H2rKr 0 0 −εr2I

⎤
⎥⎥⎥⎥⎦< 0

Pre- and post-multiplying the inequality Zr < 0 by block diagonal matrix
diag{P −1

r I I I }, letting Xr = P −1
r , Yr = KrXr and applying the Schur com-

plement formula, we obtain inequality (28) using
∑

σr∈� μσr = 1.

Define X̃r = P̃ −1
r = R

1/2
r XrR

1/2
r , and consider

λmax
(
X̃r

)= 1

λmin(P̃r )

From condition (26) it follows that

c1

λmin(X̃r )
+ η2d

α

(
1 − e−αt

)
<

e−αt c2

λmax(X̃r )
(31)

Define

λmax
(
X̃r

)
< 1, λ = λmin

(
X̃r

)
(32)

The above definitions imply condition (29). Putting (31) and (32) together, condition
(30) can be obtained. This completes the proof. �

Remark 5 Note that Theorem 2 has presented the sufficient condition of designing the
finite-time stabilized controller for nonlinear MJSs, and the coupled LMIs (28)–(30)
are with respect to Xr,Yr , εr1, εr2, c1, c2, λ, d,N,α and η2. Therefore, for given
scalars c1, c2,N,α and d , we can take η2 as an optimized variable, i.e., to obtain
an optimal finite-time stabilized controller, the attenuation level η2 can be reduced to
the minimum possible level such that LMIs (28)–(30) are satisfied. The optimization
problem can be described as follows:

min
Xr,Yr ,εr1,εr2,λ

β

s.t. LMI (28)–(30) with β = η2
(33)

Remark 6 Let α = 0, u(t) = 0, w(t) = 0, and f (x) = 0. We can get

(Ar + �Ar)
TPr + Pr(Ar + �Ar) +

N∑
j=1

πrjPj < 0

which can guarantee the Lyapunov stochastic stability (or almost asymptotic stability)
of uncertain MJSs (see [6]). By using MATLAB LMI Toolbox, it is straightforward
to check the feasibility of Theorem 2 and Remark 5.
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Remark 7 The class of neural network-based LDI representations is similar to
Takagi–Sugeno’s fuzzy model [11], which is obtained by interpolating several lin-
earized systems at different operating points through fuzzy certainty functions. There-
fore, the results presented above can be applied to their fuzzy models.

4 Numerical Examples

Consider the nonlinear MJS (1) with parameters given by
Mode 1:

A1 =
[−1 −3

0 −5

]
, B1 =

[
0
3

]
, C1 =

[
2
3

]T

, Bd1 =
[

0.1
0

]
,

S1 =
[

0.2 0
0 0.3

]
, H11 =

[
0.1 0.2
0 0.3

]

f1(x) =
[

0
sin(x1(t))

]
, H21 =

[
0.1
0

]
, D1 = Dd1 = 0.1

Mode 2:

A2 =
[

0 −2
0 −3

]
, B2 =

[
0
1

]
, C2 =

[
1

1.8

]T

, Bd2 =
[

0.5
0

]
,

S2 =
[

0.1 0
0 0.2

]
, H12 =

[
0.1 0.2
0 0.3

]

f2(x) =
[

0
sin(0.1x1(t))

]
, H22 =

[
0.2
0

]
, D2 = Dd2 = 0.2

Mode 3:

A3 =
[−1 −3

0 −4

]
, B3 =

[
0

1.7

]
, C3 =

[
1.2
1.5

]T

, Bd3 =
[

0.3
0

]
,

S3 =
[

0.1 0
0 0.1

]
, H13 =

[
0.2 0.1
0 0.5

]

f3(x) =
[

0
sin(0.5x1(t))

]
, H23 =

[
0.3
0

]
, D3 = Dd3 = 0.4

The transition rate matrix is defined by

Π =
⎡
⎣−3 1.8 1.2

0.3 −2 1.7
0.3 0.7 −1

⎤
⎦

and the corresponding evolution of the jump mode is shown in Fig. 1.
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Fig. 1 Evolution of mode
versus time

It is to be noted that the jumping γ (r) appears in the MJS (1) as cyclic fre-
quency of nonlinear function. Thus, the same three single hidden layer neural net-
works with 2 hidden neurons were chosen to approximate the nonlinear functions
fr(x) for each mode. All parameters of activation functions associated with the hid-
den layer were chosen to be qrj = 0.5 and λrj = 1. For these activation functions, we
have srj (0, ϕrj ) = 0 and srj (1, ϕrj ) = 1, and three LDI are obtained as

A11 =
[

0 0
0 0

]
, A12 =

[
0 0

0.5152 0

]
,

A13 =
[

0 0
−0.2257 0

]
, A14 =

[
0 0

0.7409 0

]
,

A21 =
[

0 0
0 0

]
, A22 =

[
0 0

1.2480 0

]
,

A23 =
[

0 0
4.4304 0

]
, A24 =

[
0 0

−3.1824 0

]
,

A31 =
[

0 0
0 0

]
, A32 =

[
0 0

1.3656 0

]
,

A33 =
[

0 0
2.6068 0

]
, A34 =

[
0 0

−2.6065 0

]

The upper bounds of the approximation error are ρ1 = 0.15, ρ2 = 0.23 and ρ3 = 0.85
respectively.

Introducing the initial value for c1 = 0.4, c2 = 4, N = 3, Rr = 2I2, d = 4 and
α = 0.5, and applying Theorem 2, the mode-dependent gains of the feedback control
law are obtained:

K1 = [−2.6912 −3.9730 ]
K2 = [−35.3945 −18.6009 ]
K3 = [−24.2483 −22.2155 ]
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Fig. 2 Trajectory of the system
energy in finite-time interval

To demonstrate the effectiveness of the design method, assuming the initial condition
is x0 = [0.1 0.2 ]T, the trajectory of the system energy under the state-feedback
control law in a finite-time interval is shown in Fig. 2. It can be seen that the sys-
tem stays within a certain bound over a finite-time horizon by the designed con-
troller.

Remark 8 It should be pointed out that, in the simulation example, as long as the
choice of initial condition is satisfied with ‖xT

0 Rrx0‖ ≤ c1, the system is robustly
finite-time stabilizable, i.e., system trajectories stay within a given bound.

5 Conclusion

In this paper, the problem of robust finite-time H∞ control for a class of uncertain
nonlinear MJSs has been investigated. The uncertain parameters are assumed to be
unknown, but norm bounded. By means of LDI state-space representation, a general
design methodology for neural network-based control systems is extended such that
the uncertain nonlinear MJS is finite-time stabilizable (FTS) and satisfies a given
H∞ performance index. The main results are presented in the form of linear matrix
inequalities. A simulation example is given to demonstrate the effectiveness and the
potential of the proposed techniques.
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