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Abstract This paper is concerned with the problem of robust H∞ filtering for uncer-
tain two-dimensional (2-D) systems with intermittent measurements. The parameter
uncertainty is assumed to be of polytopic type, and the measurements transmission
is assumed to be imperfect, which is modeled by a stochastic variable satisfying the
Bernoulli random binary distribution. Our attention is focused on the design of an H∞
filter such that the filtering error system is stochastically stable and preserves a guar-
anteed H∞ performance. This problem is solved in the parameter-dependent frame-
work, which is much less conservative than the quadratic approach. By introducing
some slack matrix variables, the coupling between the positive definite matrices and
the system matrices is eliminated, which greatly facilitates the filter design procedure.
The corresponding results are established in terms of linear matrix inequalities, which
can be easily tested by using standard numerical software. An example is provided to
show the effectiveness of the proposed approach.

Keywords 2-D system · H∞ filtering · Intermittent measurements · Linear matrix
inequality · Robust filtering

This work was partially supported by the National Natural Science Fundation of China under Grant
60504008 and 60825303, by the Research Fund for the Doctoral Program of Higher Education of
China under Grant 20070213084, and by the Fok Ying Tung Education Foundation (111064).

X. Liu · H. Gao (�)
School of Astronoutics, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001,
China
e-mail: hjgao@hit.edu.cn

X. Liu
e-mail: liuxiuming22@gmail.com

P. Shi
Faculty of Advanced Technology, University of Glamorgan, Pontypridd, CF37 1DL, UK
e-mail: pshi@glam.ac.uk

mailto:hjgao@hit.edu.cn
mailto:liuxiuming22@gmail.com
mailto:pshi@glam.ac.uk


284 Circuits Syst Signal Process (2009) 28: 283–303

1 Introduction

The state estimation of dynamic systems with both process and measurement noise
inputs has attracted considerable attention due to its application and theoretical im-
portance in control and signal processing fields. In these applications, it is usually
desirable to estimate the values of state variables from the system measurement data.
Various schemes, such as Kalman filtering, H∞ filtering and mixed H2/H∞ filtering,
have been addressed in the literature. To mention a few, the filtering problem bas
been addressed for uncertain systems [8, 13, 14, 16], for stochastic systems [22, 27],
for time-delay systems [24–26], for Markovian jumping systems [17, 20, 21], for
sampled-data systems [19] and for linear systems over polynomial observations [1]
and with multiple state and observation delays [2]. Among these schemes, H∞ filter-
ing has proven to be one of the most important strategies, the merit of which lies in
that no statistical assumption on the noise signals is needed. In addition, H∞ filter-
ing is supposed to be more robust than traditional Kalman filtering when there exist
model uncertainties in the system. Thus, H∞ filtering is becoming more and more
popular for handling the corresponding state estimation problem.

On the other hand, many practical systems can be modeled as two-dimensional
(2-D) systems, such as linear image processing, multi-dimensional digital filtering
and thermal processes. Therefore, over the past decades considerable attention has
been devoted to analysis and synthesis problems for 2-D systems, and many important
results have been reported in the literature along the development of one-dimensional
(1-D) systems. To mention a few, the problem of H∞ filtering has been solved for
2-D systems with parameter uncertainties [6, 7], for time-delay systems [3] and for
2-D stochastic systems [4, 10] and mixed H2/H∞ filtering has also been addressed
in [23]. Earlier results on the filtering problem obtained for 1-D uncertain systems
were mostly based on the notion of quadratic stability, where a positive definite ma-
trix was required for the entire uncertainty domain. Quadratic stability, however, has
been generally regarded as being conservative, and thus recently much effort has been
devoted to investigating parameter-dependent stability. The parameter-dependent ap-
proach can make the positive definite matrices relaxed to be different for each vertex
of the polytope. Similar ideas have been subsequently developed to investigate the
problem of H∞ filtering for 2-D systems. However, the improvement was achieved
at the expense of setting the slack matrix variable additionally introduced to be fixed
for the entire uncertainty domain. By paying careful attention to the structure of the
slack matrix variable, we find that the conservatism could be further reduced.

Another feature worth mentioning is that, for the H∞ filtering problem of 2-D
systems, all the reported results are based on an implicit assumption that the commu-
nication between the physical plant and filter is perfect; that is, the signals transmitted
from the plant will arrive at the filter simultaneously and perfectly. However, in many
practical situations, there may be a nonzero probability that all the signals can be
measured during their transmission. In other words, the systems may have intermit-
tent measurements, which bring us new challenges. Moreover, networked systems
are becoming more and more popular because they have several advantages over tra-
ditional systems, such as low cost, reduced weight and power requirements, simple
installation and maintenance and high reliability [5, 9, 15]. If network media are in-
troduced to filter design, the data packet dropout phenomenon, which appears in a
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typical network environment, will naturally induce intermittent measurements from
the plant to the filter. Therefore, the problem of filter design with intermittent mea-
surements is of significant importance and, to the best of the authors’ knowledge, this
problem has not been fully investigated, which motivates the present study.

In this paper, motivated by the above two aspects, we investigate the problem of
robust H∞ filter design for uncertain 2-D systems with intermittent measurements.
The measurements transmitted between the plant and the filter are assumed to be im-
perfect, and the phenomenon of the measurements missing is assumed to satisfy the
Bernoulli random binary distribution. Given a 2-D system containing polytopic para-
meter uncertainties, our purpose is to design an H∞ filter such that the filtering error
system is stochastically stable and preserves a guaranteed H∞ performance. This
problem is solved in the parameter-dependent framework, which is much less con-
servative than the quadratic approach. More specifically, we only impose part of the
slack matrix variable to be fixed for the entire uncertainty domain. The correspond-
ing results are obtained for the existence of desired filters in the form of linear matrix
inequalities (LMIs), which can be solved by standard numerical software. Finally,
an example is provided to illustrate the effectiveness of the proposed filter design
procedures.

The remainder of this paper is organized as follows. Section 2 formulates the prob-
lem under consideration. The stability and H∞ performance of the filtering error
system are analyzed in Sect. 3. In Sect. 4, the filter design problem is solved. An
example is given in Sect. 5 to illustrate the effectiveness of the proposed method. Our
conclusions are drawn in Sect. 6.

Notation. The notation used in the paper is standard. The superscript “T” stands
for matrix transposition; R

n denotes the n-dimensional Euclidean space, R
m×n is

the set of all real matrices of dimension m × n, and P > 0 (≥ 0) means that P is
real symmetric and positive definite (semi-definite). The notation | · | refers to the
Euclidean vector norm and λmin(·), λmax(·) denote the minimum and the maximum
eigenvalue of the corresponding matrix, respectively. In symmetric block matrices or
complex matrix expressions, we use an asterisk (∗) to represent a term that is induced
by symmetry, and diag{. . .} stands for a block diagonal matrix. E{x} and E{x|y},
respectively, mean the expectation of x and the expectation of x conditional on y.
Matrices, if their dimensions are not explicitly stated, are assumed to be compatible
for algebraic operations.

2 Problem Formulation

Consider the uncertain 2-D discrete systems described by the Fornasini-Marchesini
(FM) model:

xi+1,j+1 = A1(α)xi,j+1 + A2(α)xi+1,j + B1(α)ωi,j+1 + B2(α)ωi+1,j ,

yi,j = C(α)xi,j + D(α)ωi,j , (1)

zi,j = L(α)xi,j , i, j = 0,1,2, . . . ,

where xi,j ∈ R
n is the state vector, yi,j ∈ R

m is the measured output, zi,j ∈ R
p is

the signal to be estimated and ωi,j ∈ R
q is the disturbance input which belongs to
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l2{[0,∞), [0,∞)}. The system matrices A1(α), A2(α), B1(α), B2(α), C(α), D(α)

and L(α) are appropriately dimensioned with partially unknown parameters. We as-
sume that

R �

⎡
⎣

A1(α) A2(α) B1(α)

B2(α) C(α) D(α)

L(α) 0 0

⎤
⎦=

s∑
i=1

αi

⎡
⎣

A1i A2i B1i

B2i Ci Di

Li 0 0

⎤
⎦ , α ∈ Γ, (2)

where Γ is the unit simplex:

Γ �
{

(α1, α2, . . . , αs):
s∑

i=1

αi = 1, αi ≥ 0

}
. (3)

Remark 1 The parameter uncertainties considered in this paper are assumed to be
of polytopic type, entering into all the matrices of the system model. The polytopic
uncertainty has been widely used in the problems of robust control and filtering for
uncertain systems (see, for instance, [11, 12] and the references therein), and many
practical systems possess parameter uncertainties which can be either exactly mod-
eled or overbounded by the polytopic uncertainty R.

Throughout the paper, we make the following assumption on the boundary condi-
tion.

Assumption 1 The boundary condition is assumed to satisfy the following condition:

lim
N→∞E

{
N∑

k=0

(|xk,0|2 + |x0,k|2
)}

< ∞.

The objective here is to design a filter of the following form to estimate zi,j :

x̂i+1,j+1 = Af 1x̂i,j+1 + Af 2x̂i+1,j + Bf 1ỹi,j+1 + Bf 2ỹi+1,j ,

ẑi,j = Lf x̂i,j ,
(4)

where x̂i,j ∈ R
n is the filter state vector, ỹi,j ∈ R

m is the input of the filter and Af 1,
Af 2, Bf 1, Bf 2, Lf are appropriately dimensioned filter matrices to be determined.

Remark 2 Most of the previous results for filter designing are based on the implicit
assumption that the communication channel between the physical plant and filter is
perfect, that is, the signals transmitted from the plant will arrive at the filter com-
pletely and simultaneously. However, in many practical situations, especially in a
network environment, this assumption is not always guaranteed.

In this paper, we assume that the data packet dropout (or data missing) is described
by a stochastic variable, that is,

ỹi,j = θi,j yi,j , (5)



Circuits Syst Signal Process (2009) 28: 283–303 287

where the stochastic variable {θi,j } is a Bernoulli distributed white sequence taking
the values of 0 and 1 with

Prob{θi,j = 1} = E{θi,j } = θ,

Prob{θi,j = 0} = 1 − E{θi,j } = 1 − θ,

and θ is a known positive scalar.

Remark 3 With (5), the input ỹi,j of the filter is no longer equivalent to the output yi,j

of the plant, which characterizes the real situation in many applications. The system
measurement model (5) can be used to represent missing measurements or uncertain
observations, which was first introduced in [18], and has been subsequently utilized
in both control and signal processing problems [26].

Based on the intermittent measurement, we have the filter in the following form:

x̂i+1,j+1 = Af 1x̂i,j+1 + Af 2x̂i+1,j + Bf 1θi,j+1yi,j+1 + Bf 2θi+1,j yi+1,j ,

ẑi,j = Lf x̂i,j .
(6)

Define the augmented state vector x̃i,j = [xT
i,j , x̂

T
i,j ]T and the filtering error signal

z̃i,j = zi,j − ẑi,j . Then we have the filtering error system

x̃i+1,j+1 = Ā1(α)x̃i,j+1 + Ā2(α)x̃i+1,j + θ̄i,j+1Ā3(α)x̃i,j+1 + θ̄i+1,j Ā4(α)x̃i+1,j

+ B̄1(α)ωi,j+1 + B̄2(α)ωi+1,j + θ̄i.j+1B̄3(α)ωi,j+1

+ θ̄i+1,j B̄4(α)ωi+1,j ,

z̃i,j = L̄(α)x̃i,j ,

(7)

where

Āl(α) =
[

Al(α) 0
θBf lC(α) Af l

]
, B̄l(α) =

[
Bl(α)

θBf lD(α)

]
, l = 1,2,

Ā3(α) =
[

0 0
Bf 1C(α) 0

]
, B̄3(α) =

[
0

Bf 1D(α)

]
, L̄(α) = [L(α) −Lf

]
,

Ā4(α) =
[

0 0
Bf 2C(α) 0

]
, B̄4(α) =

[
0

Bf 2D(α)

]
, θ̄i,j = θi,j − θ.

It is clear that

E{θ̄i,j } = 0, E{θ̄i,j θ̄i,j } = θ(1 − θ). (8)

The introduction of the stochastic variable θi,j renders the filtering error system to be
stochastic instead of deterministic. Before proceeding further, we need to introduce
the following definition of stochastic stability for the filtering error system in (7),
which will be essential for our derivation.
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Definition 1 (Stochastic stability) The filtering error system in (7) with Assump-
tion 1 and ωi,j = 0 is said to be mean-square asymptotically stable if for every initial
condition E{|x̃0,0|2} < ∞,

lim
i+j→∞ E

{|x̃i,j |2
}= 0.

In addition, we have the following definition.

Definition 2 (H∞ performance) Given a scalar γ > 0, the filtering error system in (7)
is said to be mean-square asymptotically stable with an H∞ disturbance attenuation
level γ if it is mean-square asymptotically stable and under zero initial and boundary
conditions, ‖z̃‖E < γ ‖ω‖2 for all nonzero ω � {ωi,j } ∈ l2[0,∞), where

‖z̃‖E �

√√√√E

{ ∞∑
i=0

∞∑
j=0

|z̃i,j |2
}

, ‖ω‖2 �

√√√√
∞∑
i=0

∞∑
j=0

|ωi,j |2.

Then, the problem to be addressed in this paper is expressed as follows.

Problem HFIM2DFM (H∞ Filtering with Intermittent Measurements for 2DFM
systems) Consider the system in (1) with uncertainty and missing measurements de-
scribed in (2) and (5), respectively. Given a real number γ > 0, design a filter in the
form of (6) such that the filtering error system in (7) is mean-square asymptotically
stable with an H∞ disturbance attenuation level γ. The corresponding filter is called
an H∞ filter.

3 H∞ Filtering Analysis

This section concerns the filtering analysis problem. More specifically, we assume
that the filter matrices Af 1, Af 2, Bf 1, Bf 2, Lf in (6) are known, and we will study
the condition under which the filtering error system in (7) is stochastically stable in
the mean-square sense with a guaranteed H∞ performance.

Theorem 1 Consider the system in (1) and suppose the filter matrices Af 1, Af 2,
Bf 1, Bf 2, Lf in (6) are given. Then the filtering error system in (7) for any α ∈ Γ

is mean-square asymptotically stable with a given H∞ performance γ if there exist
matrices P(α) > 0 and Q(α) > 0 satisfying

Ψ � ΞT
1 P(α)Ξ1 + β2ΞT

2 P(α)Ξ2 + ΞT
3 Ξ3 + ΞT

4 Ξ4 + Ξ5 < 0, (9)

where

Ξ1 = [ Ā1(α) Ā2(α) B̄1(α) B̄2(α)
]
,

Ξ2 = [ Ā3(α) Ā4(α) B̄3(α) B̄4(α)
]
,

Ξ3 = [ L̄(α) 0 0 0
]
,
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Ξ4 = [0 L̄(α) 0 0
]
,

Ξ5 = diag
{
Q(α) − P(α),−Q(α),−γ 2I,−γ 2I

}
,

β =√θ(1 − θ).

Proof Consider the following index:

J � X1 − X2, (10)

with

X1 � E
{
x̃T
i+1,j+1P(α)x̃i+1,j+1|x̃

}
,

X2 � x̃T diag
{(

P(α) − Q(α)
)
,Q(α)

}
x̃,

where x̃ = [ x̃T
i,j+1 x̃T

i+1,j ]T, and P(α), Q(α) are symmetric positive definite matrices
to be determined.

We first prove the stochastic stability of the filtering error system in (7) with zero
disturbance input ωi,j = 0. Then (7) becomes

x̃i+1,j+1 = Ā1(α)x̃i,j+1 + Ā2(α)x̃i+1,j + θ̄i,j+1Ā3(α)x̃i,j+1 + θ̄i+1,j Ā4(α)x̃i+1,j ,

z̃i,j = L̄(α)x̃i,j .

It is observed that condition (9) implies

ΞT
1 P(α)Ξ1 + β2ΞT

2 P(α)Ξ2 + Ξ5 < 0,

which further implies

Ω �

⎡
⎢⎢⎢⎣

[
ĀT

1 (α)P (α)Ā1(α)+Q(α)

− P (α)+β2ĀT
3 (α)P (α)Ā3(α)

] [
ĀT

1 (α)P (α)Ā2(α)

+ β2ĀT
3 (α)P (α)Ā4(α)

]

∗
[

ĀT
2 (α)P (α)Ā2(α)

+ β2ĀT
4 (α)P (α)Ā4(α)−Q(α)

]

⎤
⎥⎥⎥⎦

< 0.

Then along the solution of the filtering error system in (7), we have

J = E
{
x̃T
i+1,j+1P(α)x̃i+1,j+1

∣∣x̃}− x̃T diag
{(

P(α) − Q(α)
)
,Q(α)

}
x̃

= E

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

[
Ā1(α)x̃i,j+1 + Ā2(α)x̃i+1,j

+ θ̄i,j+1Ā3(α)x̃i,j+1 + θ̄i+1,j Ā4(α)x̃i+1,j

]T
P(α)

× [Ā1(α)x̃i,j+1 + Ā2(α)x̃i+1,j

+ θ̄i,j+1Ā3(α)x̃i,j+1 + θ̄i+1,j Ā4(α)x̃i+1,j

]

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣
x̃

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

− x̃T diag
{(

P(α) − Q(α)
)
,Q(α)

}
x̃.
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From (8) and with β = √
θ(1 − θ), it follows that

J = x̃TΩx̃.

This means that for all x̃ 	= 0 we have

X1 − X2

X2
= − x̃T(−Ω)x̃

x̃T diag{(P (α) − Q(α)),Q(α)}x̃
≤ − λmin(−Ω)

λmax(diag{(P (α) − Q(α)),Q(α)}) = δ − 1,

where δ = 1 − λmin(−Ω)
λmax(diag{(P (α)−Q(α)),Q(α)}) and X1, X2 are defined in (10). Since

λmin(−Ω)
λmax(diag{(P (α)−Q(α)),Q(α)}) > 0, we have δ < 1. Obviously,

δ ≥ X1

X2
> 0.

That is, δ ∈ (0,1) and is independent of x̃. Thus, we obtain X1 ≤ δX2, and taking the
expectation of both sides yields

E
{
x̃T
i+1,j+1P(α)x̃i+1,j+1

}≤ δE
{
x̃T
i,j+1

(
P(α) − Q(α)

)
x̃i,j+1 + x̃T

i+1,jQ(α)x̃i+1,j

}
.

(11)
For convenience of notation, we denote

Xi,j � E
{
x̃T
i,jP (α)x̃i,j

}
,

Yi,j � E
{
x̃T
i,jQ(α)x̃i,j

}
.

(12)

Then (11) becomes

Xi+1,j+1 ≤ δXi,j+1 + δYi+1,j − δYi,j+1. (13)

From (9), negative definite matrices Q(α)−P(α) are obtained, that is, P(α) > Q(α),
which implies

Xi,j > Yi,j . (14)

Upon the relationship in (13) and (14), for i = k−1, . . . ,0,−1, j = −1,0, . . . , k−1,
it can be established that

Xk,0 = Xk,0,

Xk−1,1 ≤ δXk−2,1 + δYk−1,0 − δYk−2,1

≤ δXk−2,1 + δXk−1,0 − δYk−2,1,

Xk−2,2 ≤ δXk−3,2 + δYk−2,1 − δYk−3,2,

...
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X1,k−1 ≤ δX0,k−1 + δY1,k−2 − δY0,k−1

≤ δX0,k−1 + δY1,k−2,

X0,k = X0,k.

Adding both sides of the above inequalities yields

k∑
l=0

Xk−l,l ≤ δ

k−1∑
l=0

Xk−1−l,l + Xk,0 + X0,k.

Using this relationship iteratively, we can obtain

k∑
l=0

Xk−l,l ≤ δk X0,0 +
k−1∑
l=0

δl(Xk−l,0 + X0,k−l )

≤
k∑

l=0

δl(Xk−l,0 + X0,k−l ).

Therefore, we have

E

{
k∑

l=0

|x̃k−l,l |2
}

≤ K
k∑

l=0

δl
E
{|x̃k−l,0|2 + |x̃0,k−l |2

}
, (15)

where

K � λmax(P (α))

λmin(P (α))
.

Now, denote

ηk = E

{
k∑

l=0

|x̃k−l,l |2
}

,

ηk−l,0 = E
{|x̃k−l,0|2 + |x̃0,k−l |2

}
.

Therefore, the inequality in (15) becomes

ηk ≤ K
k∑

l=0

δlηk−l,0.

Then for K = 0,1, . . . ,N , we have

η0 ≤ Kη0,0,

η1 ≤ K[δη0,0 + η1,0],
η2 ≤ K[δ2η0,0 + δη1,0 + η2,0],

...

ηN ≤ K
[
δNη0,0 + δN−1η1,0 + · · · + ηN,0

]
.
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Summing up both sides of the above inequalities, we have

N∑
k=0

ηk ≤ K
(
1 + δ + · · · + δN

)
η0,0

+ K
(
1 + δ + · · · + δN−1)η1,0 + · · · + δηN,0

≤ K
(
1 + δ + · · · + δN

)
η0,0 + K

(
1 + δ + · · · + δN

)
η1,0

+ K
(
1 + δ + · · · + δN

)
ηN,0

= K 1 − δN+1

1 − δ

N∑
k=0

ηk,0.

Then, under Assumption 1, for every initial condition η0 < ∞ , the right side of this
inequality is bounded, which means limk→∞ ηk = 0, that is, E{|x̃i,j |2} → 0 as i +
j → ∞. According to Definition 1, the filtering error system in (7) with ωi,j = 0 is
stochastically stable in the mean-square sense.

Now, the H∞ performance for the filtering error system in (7) will be established.
To this end, assume zero initial and boundary conditions, that is, x̃i,j = 0 for i = 0 or
j = 0. An index is introduced as

I � z̃Tz̃ − γ 2ω̃Tω̃ + J ,

where z̃ � [ z̃T
i,j+1 z̃T

i+1,j ]T, ω̃ � [ωT
i,j+1 ωT

i+1,j ]T and J is as defined in (10). Then
along the solution of the filtering error system in (7), we have

I = x̃T
i,j+1L̄

T(α)L̄(α)x̃i,j+1 + x̃T
i+1,j L̄

T(α)L̄(α)x̃i+1,j

− γ 2ωT
i,j+1ωi,j+1 − γ 2ωT

i+1,jωi+1,j + J

= ξTΨ ξ,

where ξ � [ x̃T
i,j+1 x̃T

i+1,j ωT
i,j+1 ωT

i+1,j ]T and Ψ is defined in (9). Then for any ξ 	= 0,
we have I < 0, that is,

E
{
x̃T
i+1,j+1P(α)x̃i+1,j+1|x̃

}
< x̃T diag

{(
P(α) − Q(α)

)
,Q(α)

}
x̃ − z̃Tz̃ + γ 2ω̃Tω̃.

Taking the expectation of both sides yields

E
{
x̃T
i+1,j+1P(α)x̃i+1,j+1

} ≤ E
{
x̃T
i,j+1

(
P(α) − Q(α)

)
x̃i,j+1 + x̃T

i+1,jQ(α)x̃i+1,j

− z̃T
i,j+1z̃i,j+1 − z̃T

i+1,j z̃i+1,j

}+ γ 2ωT
i,j+1ωi,j+1

+ γ 2ωT
i+1,jωi+1,j . (16)

From the relationship in (16) and the notation in (12), for i = k − 1, . . . ,0,−1,
j = −1,0, . . . , k − 1, it can be established that

Xk,0 = Xk,0,
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Xk−1,1 < Xk−2,1 + Yk−1,0 − Yk−2,1 − E
{
z̃T
k−2,1z̃k−2,1 + z̃T

k−1,0z̃k−1,0
}

+ γ 2ωT
k−2,1ωk−2,1 + γ 2ωT

k−1,0ωk−1,0,

Xk−2,2 < Xk−3,2 + Yk−2,1 − Yk−3,2 − E
{
z̃T
k−3,2z̃k−3,2 + z̃T

k−2,1z̃k−2,1
}

+ γ 2ωT
k−3,2ωk−3,2 + γ 2ωT

k−2,1ωk−2,1,

...

X1,k−1 < X0,k−1 + Y1,k−2 − Y0,k−1 − E
{
z̃T

0,k−1z̃0,k−1 + z̃T
1,k−2z̃1,k−2

}

+ γ 2ωT
0,k−1ω0,k−1 + γ 2ωT

1,k−2ω1,k−2,

X0,k = X0,k.

Adding both sides of the above inequalities and considering the zero initial and
boundary conditions, we have

k∑
l=0

Xk−l,l <

k−1∑
l=0

Xk−1−l,l − 2E

{
k−1∑
l=0

z̃T
k−1−l,l z̃k−1−l,l

}
+ 2γ 2

k−1∑
l=0

ωT
k−1−l,lωk−1−l,l .

Summing up both sides of this inequality from k = 0 to k = N , we have

E

{
N∑

k=0

k−1∑
l=0

z̃T
k−1−l,l z̃k−1−l,l

}
< γ 2

N∑
k=0

k−1∑
l=0

ωT
k−1−l,lωk−1−l,l − 1

2

N∑
l=0

XN−l,l .

Therefore, we have

E

{ ∞∑
k=0

k−1∑
l=0

z̃T
k−1−l,l z̃k−1−l,l

}
< γ 2

∞∑
k=0

k−1∑
l=0

ωT
k−1−l,lωk−1−l,l ,

that is, ‖z̃‖E < γ ‖ω‖2 for all nonzero ωi,j , and the proof is completed. �

When the communication links existing between the plant and the filter is perfect,
that is, there is no data dropout during their transmission, the condition in Theorem 1
reduces to the following corollary.

Corollary 1 Consider the system in (1) and suppose the filter matrices Af 1, Af 2,
Bf 1, Bf 2, Lf in (6) are given. When θ = 1, the filtering error system in (7) for any
α ∈ Γ is asymptotically stable with a given H∞ performance γ if there exist matrices
P(α) > 0 and Q(α) > 0 satisfying

ΞT
1 P(α)Ξ1 + ΞT

3 Ξ3 + ΞT
4 Ξ4 + Ξ5 < 0,

where Ξ1, Ξ3, Ξ4 and Ξ5 are given in (9).



294 Circuits Syst Signal Process (2009) 28: 283–303

4 H∞ Filter Design

Theorem 1 addresses the H∞ filtering problem for the system in (7) where the filter
matrices Af 1, Af 2, Bf 1, Bf 2, Lf are all known. However, our eventual purpose is
to determine the filter matrices. In this section, we will give a parameter-dependent
approach to solve the robust filter design problem for uncertain systems. To reduce the
design conservatism, in what follows, we first give the following proposition, which
eliminates the products between the positive definite matrix P(α) and the system
matrices.

Proposition 1 Consider the system in (1) and suppose the filter matrices Af 1, Af 2,
Bf 1, Bf 2, Lf in (6) are given. Then the filtering error system in (7) for any α ∈ Γ

is asymptotically stable with a given H∞ performance γ if there exist matrices
P(α) > 0, Q(α) > 0 and J (α) satisfying

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I 0 0 0 L̄(α) 0 0 0
∗ −I 0 0 0 L̄(α) 0 0
∗ ∗ Π 0 J T(α)Ā1(α) J T(α)Ā2(α) J T(α)B̄1(α) J T(α)B̄2(α)

∗ ∗ ∗ Π βJ T(α)Ā3(α) βJ T(α)Ā4(α) βJ T(α)B̄3(α) βJ T(α)B̄4(α)

∗ ∗ ∗ ∗ Q(α) − P (α) 0 0 0
∗ ∗ ∗ ∗ ∗ −Q(α) 0 0
∗ ∗ ∗ ∗ ∗ ∗ −γ 2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ 2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (17)

where Π = P(α) − J T(α) − J (α).

Proof If we can prove (17) is equivalent to (9), the proposition can be easily estab-
lished. By the Schur complement, (9) is equivalent to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I 0 0 0 L̄(α) 0 0 0
∗ −I 0 0 0 L̄(α) 0 0
∗ ∗ −P(α) 0 P(α)Ā1(α) P (α)Ā2(α) P (α)B̄1(α) P (α)B̄2(α)

∗ ∗ ∗ −P(α) βP (α)Ā3(α) βP (α)Ā4(α) βP (α)B̄3(α) βP (α)B̄4(α)

∗ ∗ ∗ ∗ Q(α) − P(α) 0 0 0
∗ ∗ ∗ ∗ ∗ −Q(α) 0 0
∗ ∗ ∗ ∗ ∗ ∗ −γ 2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ 2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (18)

On the one hand, suppose there exist matrices P(α) > 0, Q(α) > 0 and J (α)

satisfying (17). From the negative definite matrix (17), we know the fact that
J + J T − P(α) > 0 and P(α) > 0, so that J−1(α) exists. In addition, by notic-
ing (P (α) − J T(α))P −1(α)(P (α) − J (α)) ≥ 0, we have −J T(α)P −1(α)J (α) ≤
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P(α) − J T(α) − J (α), which together with (17) yields
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I 0 0 0 L̄(α) 0 0 0
∗ −I 0 0 0 L̄(α) 0 0
∗ ∗ −Π̄ 0 J T(α)Ā1(α) J T(α)Ā2(α) J T(α)B̄1(α) J T(α)B̄2(α)

∗ ∗ ∗ −Π̄ βJ T(α)Ā3(α) βJ T(α)Ā4(α) βJ T(α)B̄3(α) βJ T(α)B̄4(α)

∗ ∗ ∗ ∗ Q(α) − P (α) 0 0 0
∗ ∗ ∗ ∗ ∗ −Q(α) 0 0
∗ ∗ ∗ ∗ ∗ ∗ −γ 2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ 2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (19)

where Π̄ = J T(α)P −1(α)J (α). Performing congruence transformations to (19) by
diag{I, I, J−1(α)P (α), J−1(α)P (α), I, I, I, I }, we obtain (18). On the other hand,
if (18) holds, by selecting J (α) = J T(α) = P(α), the negative definite matrix (17) is
established. The proof is completed. �

Remark 4 The introduction of slack variable J (α) enables us to realize the parameter
dependence, that is to use a different positive definite matrix Pi for each vertex of
the polytope. Moreover, J (α) is also allowed to be α-dependent, that is, there is no
need to set the introduced slack matrix J (α) to be constant for the entire uncertainty
domain. As J (α) is a general matrix, no structural restriction is imposed, which has
the potential to yield less conservative results for the robust filter design.

Based on the above idea, in what follows, we present a new filtering result. It is
observed that we only need to set part of J (α) to be constant for the entire uncertainty
domain. More specifically, for the uncertain case, we structure J (α) as the following
structure:

J (α) =
[
J1(α) J2(α)

J4 J3

]
. (20)

The (3,3) block of (17) implies P(α) − J (α) − J T(α) < 0 and P(α) > 0, therefore,
J (α) is nonsingular. With J (α) as given in (20), there is no loss of generality in
assuming that J4 and J3 are invertible. Let matrices P(α), Q(α) be partitioned as

P(α) =
[

P1(α) P2(α)

∗ P3(α)

]
, Q(α) =

[
Q1(α) Q2(α)

∗ Q3(α)

]
,

and introduce the matrix

T �
[
I 0
0 J−1

3 J4

]
, (21)

and define

P̄ (α) =
[
P̄1(α) P̄2(α)

∗ P̄3(α)

]
� T TP(α)T ,

Q̄(α) =
[
Q̄1(α) Q̄2(α)

∗ Q̄3(α)

]
� T TQ(α)T .
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Performing congruence transformations to (17) by diag{I, I, T ,T ,T ,T , I, I } and
taking into account (7), we obtain

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I 0 0 0 L̃(α) 0 0
∗ −I 0 0 0 L̃(α) 0
∗ ∗ Γ1 0 Γ2 Γ3 Γ4
∗ ∗ ∗ Γ1 βΓ5 βΓ6 βΓ7

∗ ∗ ∗ ∗ Q̄(α) − P̄ (α) 0 0
∗ ∗ ∗ ∗ ∗ −Q̄(α) 0
∗ ∗ ∗ ∗ ∗ ∗ −γ 2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (22)

where

Γ1 =
[

P̄1(α) − J T
1 (α) − J1(α) P̄2(α) − J2(α)J−1

3 J4 − J T
4 J−1

3 J4

∗ P̄3(α) − J T
4 J−T

3 J4 − J T
4 J−1

3 J4

]
,

Γ2 =
[

J T
1 (α)A1(α) + θJ T

4 Bf 1C(α) J T
4 Af 1J

−1
3 J4

J T
4 J−T

3 J T
2 (α)A1(α) + θJ T

4 Bf 1C(α) J T
4 Af 1J

−1
3 J4

]
,

L̃(α) = [L(α) −Lf J−1
3 J4

]
,

Γ3 =
[

J T
1 (α)A2(α) + θJ T

4 Bf 2C(α) J T
4 Af 2J

−1
3 J4

J T
4 J−T

3 J T
2 (α)A2(α) + θJ T

4 Bf 2C̄(α) J T
4 Af 2J

−1
3 J4

]
,

Γ4 =
[

J T
1 (α)B1(α) + θJ T

4 Bf 1D(α) J T
1 (α)B2(α) + θJ T

4 Bf 2D(α)

J T
4 J−T

3 J T
2 (α)B1(α) + θJ T

4 Bf 1D(α) J T
4 J−T

3 J T
2 (α)B2(α) + θJ T

4 Bf 2D(α)

]
,

Γ5 =
[
J T

4 Bf 1C(α) 0

J T
4 Bf 1C(α) 0

]
, Γ6 =

[
J T

4 Bf 2C(α) 0

J T
4 Bf 2C(α) 0

]
,

Γ7 =
[
J T

4 Bf 1D(α) J T
4 Bf 2D(α)

J T
4 Bf 1D(α) J T

4 Bf 2D(α)

]
.

Define F(α) � J1(α), V (α) � J2(α)J−1
3 J4, W � J T

4 J−1
3 J4 and

⎡
⎣

Āf 1 B̄f 2

Āf 2 B̄f 2

L̄f 0

⎤
⎦�

⎡
⎣

J T
4 0 0
0 J T

4 0
0 0 I

⎤
⎦
⎡
⎣

Af 1 Bf 1
Af 2 Bf 2
Lf 0

⎤
⎦
[
J−1

3 J4 0
0 I

]
.

Substituting the above matrices into (22), we obtain

Θ(α) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I 0 0 0 L̂(α) 0 0
∗ −I 0 0 0 L̂(α) 0
∗ ∗ Υ1 0 Υ2 Υ3 Υ4
∗ ∗ ∗ Υ1 βΥ5 βΥ6 βΥ7

∗ ∗ ∗ ∗ Q̄(α) − P̄ (α) 0 0
∗ ∗ ∗ ∗ ∗ −Q̄(α) 0
∗ ∗ ∗ ∗ ∗ ∗ −γ 2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (23)
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where

Υ1 = P̄ (α) −
[
F(α) + F T(α) V (α) + W

∗ WT + W

]
,

Υ2 =
[

F T(α)A1(α) + θB̄f 1C(α) Āf 1

V T(α)A1(α) + θB̄f 1C(α) Āf 1

]
, L̂(α) = [L(α) −L̄f

]
,

Υ3 =
[

F T(α)A2(α) + θB̄f 2C(α) Āf 2

V T(α)A2(α) + θB̄f 2C(α) Āf 2

]
,

Υ4 =
[

F T(α)B1(α) + θB̄f 1D(α) F T(α)B2(α) + θB̄f 2D(α)

V T(α)B1(α) + θB̄f 1D(α) V T(α)B2(α) + θB̄f 2D(α)

]
,

Υ5 =
[

B̄f 1C(α) 0

B̄f 1C(α) 0

]
, Υ6 =

[
B̄f 2C(α) 0

B̄f 2C(α) 0

]
,

Υ7 =
[

B̄f 1D(α) B̄f 2D(α)

B̄f 1D(α) B̄f 2D(α)

]
.

Based on this, we obtain the following theorem.

Theorem 2 Consider the 2DFM system in (1). For a given positive constant γ ,
an admissible robust H∞ filter in the form of (4) exists if there exist matrices

P̄ (α) = [ P̄1(α) P̄2(α)

∗ P̄3(α)

]
> 0, Q̄(α) = [ Q̄1(α) Q̄2(α)

∗ Q̄3(α)

]
> 0, F(α), V (α), W and matrices

Āf 1, Āf 2, B̄f 1, B̄f 2, L̄f satisfying (23). Moreover, under the above conditions, the
matrices for the filter in (4) are given by

⎡
⎣

Af 1 Bf 1
Af 2 Bf 2
Lf 0

⎤
⎦=

⎡
⎣

W−1 0 0
0 W−1 0
0 0 I

⎤
⎦
⎡
⎢⎣

Āf 1 B̄f 2

Āf 2 B̄f 2

L̄f 0

⎤
⎥⎦ . (24)

Proof Suppose there exist matrices P̄ (α), Q̄(α), F(α), V (α), W , Āf 1, Āf 2, B̄f 1,
B̄f 2 and L̄f satisfying (23). Note the (4,4) block in the negative definite matrix (23)
together with P̄3(α) > 0, which implies W is nonsingular. Thus, we can always find
square and nonsingular matrices J3 and J4 satisfying W = J T

4 J−1
3 J4. Now, let T be

as in (21) and have the matrices

P(α) � T −TP̄ (α)T −1, Q(α) � T −TQ̄(α)T −1,

J (α) �
[
F(α) V (α)J−1

4 J3
J4 J3

]
,

⎡
⎣

Af 1 Bf 1
Af 2 Bf 2
Lf 0

⎤
⎦ �

⎡
⎣

J−T
4 0 0
0 J−T

4 0
0 0 I

⎤
⎦
⎡
⎢⎣

Āf 1 B̄f 2

Āf 2 B̄f 2

L̄f 0

⎤
⎥⎦
[

J−1
4 J3 0

0 I

]
.

(25)
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Now, by some algebraic matrix manipulations and taking into account the above de-
finition, (22) is equivalent to

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−I 0 0 0 L̄(α)T 0 0 0
∗ −I 0 0 0 L̄(α)T 0 0
∗ ∗ T TΠT 0 V T(α)Ā1(α)T V T(α)Ā2(α)T V T(α)B̄1(α) V T(α)B̄2(α)

∗ ∗ ∗ T TΠT βV T(α)Ā3(α)T βV T(α)Ā4(α)T βV T(α)B̄3(α) βV T(α)B̄4(α)

∗ ∗ ∗ ∗ T T (Q(α) − P(α))T 0 0 0
∗ ∗ ∗ ∗ ∗ −T TQ(α)T 0 0
∗ ∗ ∗ ∗ ∗ ∗ −γ 2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ 2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (26)

where Π = P(α)− J T(α)− J (α), V (α) = J (α)T . Performing congruence transfor-
mations to (26) by diag{I, I, T −1, T −1, T −1, T −1, I, I } yields (17).

From the above proof, we know that if condition (23) has a set of feasible so-
lutions, then the filter with a state-space realization Af 1, Af 2, Bf 1, Bf 2, Lf guar-
antees the filtering error system in (7) to be stochastically stable and with a pre-
scribed H∞ performance. Let us denote the transfer function from ỹi,j to ẑi,j by
Tẑỹ (z1, z2) = Lf (z1z2I − z1Af 1 − z2Af 2)

−1(z1Bf 1 + z2Bf 2). Substituting the fil-

ter matrices with (25) and considering the relationship W = J T
4 J−1

3 J4, we have

Tẑỹ (z1, z2) = L̄f J−1
4 J3

(
z1z2I − z1J

−T
4 Āf 1J

−1
4 J3 − z2J

−T
4 Āf 2J

−1
4 J3

)−1

× (z1J
−T
4 B̄f 1 + z2J

−T
4 B̄f 2

)

= L̄f

(
z1z2I − z1W

−1Āf 1 − z2W
−1Āf 2

)−1(
z1W

−1B̄f 1 + z2W
−1B̄f 2

)
,

which means (24) is established and the proof is completed. �

Remark 5 Theorem 2 tells us that not only are the positive definite matrices P(α) and
Q(α) allowed to be dependent on the uncertain parameter α, but the general slack
matrices F(α) and V (α) are also allowed to be α-dependent. This is different from
the existing results in this field, which require the slack matrices to be fixed for the
entire uncertainty domain. Note that, as they are dependent on the parameter α, the
condition in (23) cannot be directly employed for filter design. One way to facilitate
Theorem 2 for the construction of a filter is to convert (23) into a finite set of LMI
constraints. The following theorem gives a possible way to achieve this.

Theorem 3 Consider the 2DFM system in (1). For a given positive constant γ ,
an admissible robust H∞ filter in the form of (4) exists if there exist matrices

P̄i = [ P̄1i P̄2i

∗ P̄3i

]
> 0, Q̄i = [ Q̄1i Q̄2i

∗ Q̄3i

]
> 0, Fi , Vi , W and matrices Āf 1, Āf 2, B̄f 1,

B̄f 2, L̄f satisfying

Θij + Θji < 0, 1 ≤ i ≤ j ≤ s, (27)
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where

Θij �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I 0 0 0 L̃i 0 0
∗ −I 0 0 0 L̃i 0
∗ ∗ Ψ1 0 Ψ2 Ψ3 Ψ4
∗ ∗ ∗ Ψ1 βΨ5 βΨ6 βΨ7

∗ ∗ ∗ ∗ Q̄i − P̄i 0 0
∗ ∗ ∗ ∗ ∗ −Q̄i 0
∗ ∗ ∗ ∗ ∗ ∗ −γ 2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

Ψ1 = P̄i −
[
Fi + F T

i Vi + W

∗ WT + W

]
, L̄i = [Li −L̄f i

]
,

Ψ2 =
[

F T
i A1j + θB̄f 1Cj Āf 1

V T
i A1j + θB̄f 1Cj Āf 1

]
, Ψ3 =

[
F T

i A2j + θB̄f 2Cj Āf 2

V T
i A2j + θB̄f 2Cj Āf 2

]
,

Ψ4 =
[

F T
i B1j + θB̄f 1Dj F T

i B2j + θB̄f 2Dj

V T
i B1j + θB̄f 1Dj V T

i B2j + θB̄f 2Dj

]
,

Ψ5 =
[

B̄f 1Cj 0

B̄f 1Cj 0

]
, Ψ6 =

[
B̄f 2Cj 0

B̄f 2Cj 0

]
, Ψ7 =

[
B̄f 1Dj B̄f 2Dj

B̄f 1Dj B̄f 2Dj

]
,

(28)

moreover, if the above condition is satisfied, the matrices for the filter in (4) are given
by (24).

Proof Suppose there exist matrices P̄ (α) > 0, Q̄(α) > 0, F(α), V (α), W , Āf 1, Āf 2,
B̄f 1, B̄f 2 and Lf satisfying (23); then the filter in the form of (4) exists. Now, we
use these matrices and α in the unit simplex Γ to assume the following form:

P̄ (α) =
s∑

i=1

αiP̄i , Q̄(α) =
s∑

i=1

αiQ̄i,

V (α) =
s∑

i=1

αiVi, F (α) =
s∑

i=1

αiFi.

(29)

By (29), it is easy to rewrite Θ(α) in (23) as

Θ(α) =
s∑

j=1

s∑
i=1

αiαiΘij =
s∑

i=1

α2
i Θii +

s∑
i=1

s∑
j=i+1

αiαj (Θij + Θji), (30)

where Θij takes the form of (28). On the other hand, from (27) we have

Θii < 0, i = 1, . . . , s, (31)

Θij + Θji < 0, 1 ≤ i < j ≤ s. (32)

Considering
∑s

i=1 αi = 1, αi ≥ 0, then from (30)–(32) we have Θ(α) < 0. Based on
Theorem 2, there exists a filter in the form of (4) such that the filtering error system
in (7) is stochastically stable with a given H∞ performance. �
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5 An Illustrative Example

In this section, we use an example to illustrate the effectiveness of the theoretical
results developed above.

Example Consider the model of the static field [6], which is described by the differ-
ential equation

ηi+1,j+1 = α1ηi,j+1 + α1ηi+1,j − α1α2ηi,j + ω1(i,j),

where ηi,j is the state of the field at spacial coordinates (i, j), and α1, α2 are, re-
spectively, the vertical and horizontal correlative coefficients of the random field,
satisfying

α2
1 < 1, α2

2 < 1.

Define the augmented state vector xi,j = [ηT
i,j+1 − α2η

T
i,j ηT

i,j ]T, and assume that the
measured equation and the signal to be estimated are

yi,j = α1ηi,j+1 + (1 − α1α2)ηi,j + ω2(i,j),

zi,j = ηi,j .

It is easy to transform the above equation into a 2DFM model in the form of (1), with
the corresponding system matrices given by

A1(α) =
[
α1 0
0 0

]
, A2(α) =

[
0 0
1 α2

]
, B1(α) =

[
1 0
0 0

]
,

B2(α) =
[

0 0
0 0

]
, C(α) = [α1 1

]
,

D(α) = [0 1
]
, L(α) = [0 1

]
.

It is assumed that measurements transmitted between the plant and the filter are im-
perfect, that is, the data may be lost during their transmission. Based on the above
assumption, our purpose is to design a filter in the form of (4) such that the resulting
filtering error system in (7) is mean-square asymptotically stable with a guaranteed
H∞ noise attenuation performance.

First, assume the uncertain parameters α1 and α2 are given by 0.15 ≤ α1 ≤ 0.45,
0.35 ≤ α2 ≤ 0.85. Thus, the above parameter uncertainty can be represented by a
four-vertex polytope. The stochastic variable is assumed to be θi,j = 1 (θ = 1), which
means that the measurements always reach the input of the filter successfully. Using
the method proposed in (27), the minimum H∞ performance γ ∗ = 2.4989 is obtained
and the associated filter matrices are given by

Af 1 =
[

0.4445 −0.1658
0.0096 −0.0062

]
, Af 2 =

[−0.0847 0.0109
0.2526 0.2379

]
,

Bf 1 =
[−0.1696
−0.0131

]
, Bf 2 =

[
0.0340

−0.5975

]
, Lf = [−0.0036 −1.0010

]
.
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Fig. 1 Data packet dropout

Now, assume the data may be lost during their transmission. Suppose θ = 0.8,

that is, in the communication link, the probability of the data packet missing is 0.2.
With the above assumption, we apply the filter design method in Theorem 3, and the
achieved H∞ disturbance attenuation level is γ ∗ = 3.7487 with the corresponding
filter matrices

Af 1 =
[

0.4950 −0.0795
−0.2211 0.0325

]
, Af 2 =

[
0.0366 −0.0241
0.3558 0.4773

]
,

Bf 1 =
[−0.0835

0.0234

]
, Bf 2 =

[−0.0876
−0.5332

]
, Lf = [−0.6449 −0.9351

]
.

In the following, supposing θ = 0.8, we shall show the effectiveness of the designed
H∞ filter by presenting simulation results. The data packet dropout is shown in Fig. 1,
which is generated randomly according to θ = 0.8. To show the asymptotic stability
of the filtering error system, we assume ωi,j = 0 and let the initial boundary con-
ditions be generated randomly. The obtained filtering error signal z̃i,j is shown in
Fig. 2, from which we can see that the estimation error response converges to zero
under the preceding conditions.

To illustrate the performance of the designed filter, we assume the zero boundary
conditions, and let the external disturbance ωi,j be

ωi,j =
{ [0.1 0.1 ]T, 3 ≤ i, j ≤ 19,

0, otherwise.

Figure 3 shows the response of the filtering error signal z̃i,j . By calculation, we have
‖z̃‖2 = 1.5729, ‖ω‖2 = 1.700, which yields γ ∗ = 0.9252, which is below the cor-
responding prescribed value 3.7487, showing the effectiveness of the filter design
method.

Finally, Table 1 shows the minimum guaranteed performances γ ∗ in terms of the
feasibility of (27) for different values of θ , from which we can see that the smaller
the value of θ , the larger the value of γ ∗. This is reasonable, as smaller θ implies
a higher chance of measurements missing, and thus a worse disturbance attenuation
performance γ ∗.
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Fig. 2 Filter error with ωi,j = 0

Fig. 3 Estimation error with
ωi,j 	= 0

Table 1 γ ∗ for different values
of θ θ 1 0.95 0.9 0.85 0.8 0.75

γ ∗ 2.4989 2.5844 2.9804 3.3882 3.7487 4.0809

6 Conclusions

In this paper, the problem of robust H∞ filter design for uncertain 2-D systems with
parameter uncertainties and missing measurements has been investigated. A stochas-
tic variable satisfying the Bernoulli random binary distribution is utilized to charac-
terize the data missing phenomenon. A parameter-dependent technique has been used
to design an H∞ filter such that the filtering error system is stochastically stable and
preserves a guaranteed H∞ performance, which is much less conservative than the
quadratic approach. Some slack matrices have been introduced to facilitate the H∞
filter design, and only part of the slack matrix variable has been imposed to be fixed
for the entire uncertainty domain. The corresponding results are in the form of linear
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matrix inequalities, which can be solved by standard numerical software. An example
has shown the effectiveness of the filter design approaches presented in this paper.
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