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Abstract. We have proposed a chaotic cryptographic scheme based on iterating the logistic
map and updating the look-up table dynamically. However, it has been broken recently. In
this paper, the weaknesses of the original dynamic look-up table scheme are analyzed and
a more secure chaotic encryption scheme based on this dynamic look-up table concept is
proposed. Theoretical analysis indicates that the modified scheme can resist the reported
attacks. Moreover, simulation results show that this encryption scheme leads to a flat
ciphertext distribution.
Key words: Chaos, cryptography, logistic map.

1. Introduction

The growing research interest in chaos and cryptography has resulted in a number
of digital chaotic cryptographic approaches that realize private key cryptography
with chaos [1], [5], [12]. Among these chaotic cryptographic schemes, the one
proposed by Baptista [5] has attracted much interest. Since its publication in
1998, a number of variants [6], [7], [9]–[11], [13]–[15] have been suggested.
The concept of this type of chaotic cryptosystem is very simple. The interval
of interest in the phase space of the chaotic map is divided into a number of
partitions equal to the total number of possible plaintext blocks. Each plaintext
block is encrypted as the number of iterations applied in the chaotic map in order
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to reach the partition correspondent to that block [5]. The resultant ciphertexts
are integers and are suitable to be transmitted through public data communication
networks.

There are two major drawbacks with Baptista’s approach. First, the ciphertexts
usually concentrate on a small number of iterations and so their distribution is not
flat enough to ensure high security. Second, the cryptographic scheme is too slow
to make it suitable for practical use, such as in the secure transmission of large
multimedia files through the internet. Finally, the ciphertext size is usually long,
at least twice that of the original plaintext. To deal with the first drawback, we
have modified the original method so as to obtain a flatter ciphertext distribution
[15]. To increase the encryption speed, we have proposed a fast approach using a
smaller look-up table that is updated dynamically [13]. Moreover, a short cipher-
text encryption scheme is suggested in [14] to reduce the length of the ciphertext.

A number of attempts for the cryptanalysis of the original Baptista-type chaotic
cryptosystem and its variants have been performed [2]–[4], [8], [9]. The first
attempt was reported in [8]. Only one attack was proposed and it is in partial
form. In the analysis made in [2], it was found that this type of chaotic cryptosys-
tem actually behaves as a stream cipher although it operates like a block cipher
in that a fixed number of plaintext bits are encrypted to an integer number of
iterations. Based on this observation, a keystream attack was applied to break the
cryptosystem successfully. A similar attack [3] was used to break the variant for
generating flat ciphertext distribution [15]. Our modification based on a dynamic
look-up table [13] has also been broken recently [4]. The objective of this paper
is to analyze the weaknesses of the original dynamic look-up table scheme and to
propose a more secure chaotic encryption scheme based on this dynamic look-up
table concept.

2. The original dynamic look-up table scheme

We first review the chaotic cryptographic method proposed in [13], which is based
on a dynamic look-up table. As in Baptista’s method [5], the chaotic map chosen
is the simple one-dimensional logistic map governed by the following equation

xn+1 = bxn(1 − xn), (1)

where b is the gain and xn ∈ [0, 1]. An initial look-up table, containing the
mapping of each possible plaintext block to equal-width partitions in the interval
[xmin, xmax] of the phase space of the logistic map, should be set in advance.
This initial mapping can be in order or at an agreed setting. For the encryption
of the i th input block, we let the logistic map iterate until the trajectory first
falls into the region corresponding to the ASCII code of this block. Similar to
Baptista’s method, the iteration will continue if the current number of iterations
is smaller than a predefined minimum number of iterations. This prevents crypt-
analysis upon the loophole of zero or just a few iterations. On the other hand,
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if the current number of iterations is large enough, it is sent immediately as the
ciphertext and no random numbers need to be generated. This is an advantage
to a resource-constraint computing environment such as smartcard because no
additional hardware or software random number generators are required. Before
encrypting the next message block, we have to update the look-up table dynami-
cally by exchanging the i th entry ei with another entry e j . In [13], the interval v

between these two entries is solely determined by the current value of x using the
following formula

v =
(

x − xmin

xmax − xmin

)
∗ N , (2)

where N is the total number of entries in the table, xmax is the maximum value of
x in the chosen phase space region, and xmin is the minimum value.

The interval obtained from (2) is used to locate the other entry e j to be swapped
with ei as the value of j is equal to the sum of i and v. This sum may be larger
than N . In this case, we have to perform a modulus operation so that the index
increment is in a cyclic manner and the value of j is still within N . As a result,

j = i + v mod N . (3)

In order to make the look-up tables for consecutive plaintext blocks as unlike
as possible, just swapping a single pair of entries in the table after the encryption
of a single plaintext block is no longer enough. An approach for achieving this
was proposed in [14]. Instead of just swapping one pair of entries in the table,
we can swap more pairs by making use of the interval, v, between two swapping
entries obtained from (2). Starting from the current entry i , we swap the entries at
locations i and (i +v mod N ). Then we continue to swap (p −1) pairs of entries
starting from the entry next to the one last visited, i.e., (i + v + 1 mod N ) ↔
(i +2v+1 mod N ), (i +2v+2 mod N ) ↔ (i +3v+2 mod N ), . . . , (i +(p−
1)v + p − 1 mod N ) ↔ (i + pv + p − 1 mod N ), where p is the total number
of pairs to be swapped during the encryption of each plaintext block. After that,
the look-up table updating process is completed and we can start the iterations on
the logistic map for the next block. Then we perform the p-pair swapping in the
look-up table again by increment i and calculate a new value of interval. Notice
that if the index i reaches the bottom of the table, it will start from the top again.

An illustration of this generalized dynamic updating of the look-up table is
given in Figure 1. Suppose that the input block size is 8-bit. Therefore N equals
256 and there are 256 entries in the table, from e0 to e255. Moreover, xmin and
xmax are chosen as 0.2 and 0.8, respectively. Suppose that we are now encrypting
the fourth 8-bit input block. The current x value is 0.4395. By using (2) and (3),
we obtain v = 102 and j = 4 + 102 = 106. The entry e4 is swapped with e106. If
p is chosen as 3, we have to swap two more pairs, i.e., e107 ↔ e209, e210 ↔ e56,
as shown in Figure 1.
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Figure 1. An illustration of the original dynamic updating of the look-up table as proposed in [13].

3. Weaknesses of the original dynamic look-up table
scheme

There are a number of weaknesses in the dynamic look-up table scheme that make
it vulnerable to cryptanalysis. As pointed out in [4], although the current chaotic
state x is involved in (2) for calculating v, the output value actually depends
solely on the plaintext, but not on the key. Therefore an attacker can recover the
keystream used for encryption and so the cryptosystem is broken [4]. Second, the
mapping of the plaintext block with the entries in the look-up table is fixed during
the encryption of each plaintext block and the table update operation is performed
only after the completion of the encryption of each plaintext block. Moreover, the
swapping process starts from the first entry of the look-up table, which is fixed for
all keys and plaintexts.

In order to enhance the security of the Baptista-type chaotic cryptosystem based
on the dynamic look-up table scheme, the following modifications should be
made:

1. The update of the look-up table must depend on the current chaotic state x .
2. The mapping of plaintext should be changed in the course of encrypting a

plaintext block, but not after the completion of it.
3. The table update process should be done in the course of encrypting a

plaintext block, but not after the completion of it.
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4. The table update process should not start strictly from the first table entry,
but should depend on the key.

In the next section we will propose a more secure dynamic look-up table chaotic
encryption scheme that includes the above modifications.

4. The proposed scheme

The plaintext sequence is divided into a number of blocks of size M . The total
number of partitions in the phase space of the chaotic map is twice the number
of possible plaintext blocks, i.e., 2M+1. If the plaintext sequence is read by bytes,
the total number of partitions is 512. It is equal to 32 if the plaintext sequence is
divided into a number of 4-bit blocks. The 2M+1 partitions are divided into two
groups, half of them are marked while the other half are unmarked. This leads
to an equal number of marked and unmarked partitions to achieve the highest
entropy, i.e., most difficult to guess the location of the marked and unmarked
partitions correctly. This look-up table is similar to the association map used in
[6]. The 2M marked partitions each associates uniquely with a possible plaintext
block by a one-to-one mapping. The initial location of the marked partitions as
well as the initial mapping is random and should be kept secret. A typical look-up
table is shown in Figure 2(a) while the corresponding mapping with the plaintext
block can be found in Figure 2(b).

The encryption procedures can start when the initial look-up table has been
prepared. The first plaintext block is read and the chaotic map starts to iterate
using the initial condition x0. After each iteration, the value of the current chaotic
state x will be checked. If it falls in an unmarked partition, this iteration is not
considered as an effective iteration. Nothing will be modified and the iteration
will continue until the chaotic orbit lands on a marked partition. Then the iter-
ation is considered as an effective one and a counter of the number of effective
iterations made in the encryption of this plaintext block will be incremented. If
that marked partition corresponds to the current plaintext block, the number of
effective iterations made in encrypting this plaintext block will be taken as the
ciphertext.

On the other hand, if the marked partition that the chaotic orbit falls in does
not correspond to the current plaintext block, some modifications on the look-
up table should be done. However, these modifications should not be performed
regularly in each landing so as not to favor cryptanalysis. They can be made
intermittently such as updating the look-up table every three or five times of
landing on the marked partitions. This updating can be realized by swapping
the marking status of the current partition with the next partition with opposite
marking status. This means that the current partition is changed from marked to
unmarked. Then we search for an unmarked partition from the next partition and
turn it as marked. In order to change the look-up table substantially, more pairs
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Index Marking Status
0 X
1 X
2
3
4 X
5
6
7 X
8 X
9 X
10 X
11
12
13
14 X
15

(a)

Plaintext Block Index in Look-up Table
000 1
001 9
010 10
011 8
100 0
101 14
110 7
111 4

(b)

Figure 2. An initial look-up table with M = 3, i.e., each plaintext block contains three bits; The
partitions with an “X” symbol are marked. (b) A mapping of the plaintext blocks with the index of the
look-up table.

of swapping are required. From the partition that has just been marked, we search
down for the next marked partition, make it unmarked and then mark the next
unmarked partition. Notice that the search and swap operations are performed in
a cyclic manner. This means that if the end of the look-up table is encountered, it
will continue from the top.
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After the mark and unmark processes, the total number of marked partitions in
the table is still 2M as we always swap pairs of marked and unmarked partitions.
However, these 2M newly marked partitions may no longer correspond to the
original ones mapped to the 2M plaintext blocks. Therefore we have to perform
a remap operation, starting from the current partition that the chaotic orbit falls
in. This means that the next marked partition is mapped to the all-zero plaintext
block. Then we search in the look-up table and map the next marked partition
to the plaintext block with all-zero but a “1” in least significant bit. This remap
operation continues in a cyclic manner until all the newly marked partitions are
associated with all the possible plaintext blocks uniquely. Note that the remapping
process can be performed in a very quick manner: record all marked partitions in
an array U [0, . . . , 2M − 1] and use an index, i , to point to the partition corre-
sponding to “0”. In this way, the j th marked partition corresponds to the plaintext
symbol ( j − i) mod 2M .

The table update and remap processes are illustrated by an example. Assume
that the table shown in Figure 2(a) is used and that the chaotic orbit falls into
partition 4. Moreover, three pairs of marked and unmarked partitions have to
be swapped. This means that we have to swap partitions 4 and 5 first. Then
we go down and find that partition 7 is marked. This is swapped with partition
11. Finally, we swap partitions 14 and 15. The new look-up table is shown in
Figrue 3(a). As the current chaotic orbit stays in partition 4, the next marked
partition will be mapped to the all-zero plaintext block. Similarly, we map the
remaining marked partitions with the corresponding plaintext block in order to
obtain a new association table, as given in Figure 3(b).

Under this table update and remap scheme, the new look-up table depends on
the current chaotic state x . This is because the start point of the swapping is the
current partition that the chaotic orbit falls in. The latter is determined by x which
is obtained by iterating the chaotic map, (1). The new look-up table will be dif-
ferent if the start point of the swapping is changed. This satisfies criterion (1) set
in Section 3. The table update and remap processes are performed intermittently
when the current partition that the chaotic orbit lands on is not the target partition.
These conditions will be encountered a number of times before the chaotic orbit
falls in the target partition finally, i.e., the completion of encrypting the current
plaintext block. Therefore, criteria (2) and (3) stated in Section 3 are fulfilled. In
the remap operation, the mapping starts from the current partition that the chaotic
orbit lands on and so the last criterion set in Section 3 is also satisfied.

As the ciphertext is the number of effective iterations the chaotic orbit falls in
before reaching the target partition, the probability of occurrence of small cipher-
text is much higher than that of large ones. Therefore the ciphertext distribution
will decrease with its magnitude and will not be flat. To achieve a flat ciphertext
distribution, we can make use of the masking scheme proposed by Li et al. [9],
[10]. However, here we do not choose to mask the current ciphertext using the
information obtained from the encryption of the current plaintext block. This is
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Index Marking Status
0 X
1 X
2
3
4
5 X
6
7
8 X
9 X
10 X
11 X
12
13
14
15 X

(a)

Plaintext Block Index in Look-up Table
000 5
001 8
010 9
011 10
100 11
101 15
110 0
111 1

(b)

Figure 3. (a) The resultant look-up table updated from the one shown in Figure 2(a); and (b) the
corresponding new associate map. Assume that the chaotic orbit falls into partition 4 and three pairs
of marked and unmarked partitions are swapped.

because there may be the chance that two or more combinations of the current
plaintext and current chaotic state will result in exactly the same ciphertext, as
analyzed in [10]. Instead we will use the information obtained from encrypting
the previous plaintext block.

As described before, the updating of the look-up table will be performed inter-
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mittently when the chaotic orbit falls in marked partitions. For the iterations that
the chaotic orbit falls in marked partitions but the look-up table is not updated,
we can perform a bitwise XOR operation of the index of the current partition
accumulatively so as to store the partial history of the chaotic orbit. The resultant
(M +1)-bit accumulated XOR value will be used to mask the next ciphertext. For
the first ciphertext block, there is no such previous partial history and we can use
a random (M + 1)-bit sequence, i.e., an initial vector, instead.

The ciphertext is the number of effective iterations the chaotic orbit falls in
before reaching the target partition. It could be a number much longer than an
(M+1)-bit. In such a case, we have to divide the ciphertext into a number of (M+
1)-bit blocks before masking with the (M+1)-bit last accumulative partial chaotic
history. For example, if M is chosen as 4 but the current number of effective
iterations is 62, there will be three 5-bit ciphertext blocks (31, 31, 0). Each block
is masked with the 5-bit last accumulative partial chaotic history before sending
out as the final ciphertext. The receiver should possess the exact knowledge of
the last accumulative partial chaotic history before he/she can recover the correct
number of effective iterations for decryption. As a result, this masking scheme not
only leads to a flat ciphertext distribution, but also further enhances the security.

A block diagram of the whole encryption process is shown in Figure 4. The
decryption process requires nearly the same operations as in encryption such as
iterating the chaotic map, an update, and remap the look-up table intermittently.
However, unmasking of the ciphertext blocks should be done at the beginning
of each decryption so as to obtain the number of effective iterations required in
finding the current plaintext block. Moreover, instead of checking whether the
landed partition corresponds to the target one, the checking in the decryption
process is whether the number of effective iterations has been reached. If this
is the case, the decrypted plaintext is the one associated with the final partition
the chaotic orbit lands on.

5. Simulation results

In order to test the effectiveness and the efficiency of the chaotic cryptographic
scheme described in Section 4, it is proposed to encrypt and decrypt the following
four types of source files:

File 1: audio (.mp3) file of size 98,304 bytes.
File 2: Word document (.doc) file of size 210,944 bytes.
File 3: executable (.exe) file of size 487,000 bytes.
File 4: video clip (.avi) file of size 1,087,430 bytes.

The encryption and decryption processes are implemented using the C++ pro-
gramming language running on a personal computer with a Pentium IV 2 GHz
processor and 512 MB RAM. The value of M is 4. This means that the plaintext
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Figure 4. A block diagram of the whole encryption process.

file is read in blocks of length 4 bits. As a result, there is a total of 32 partitions
in the look-up table and each ciphertext block is a 5-bit sequence. The value of b
in (1) is selected as 3.9999995 while x0 is chosen arbitrarily as 0.1777. The range
of interest in the phase space is from 0 to 1, which is wider than the range from
0.2 to 0.8, as used in most Baptista-type cryptosystems. This choice increases the
encryption speed but will not affect the distribution of ciphertext as the mapping
is changed dynamically. The look-up table is updated every three times when
the chaotic orbit falls in a marked partition. The initial mask is a 5-bit random
sequence.

In Table 1, the encryption time, decryption time, number of iterations, length
of ciphertext, and other statistics obtained from ten sets of randomly generated
initial look-up tables are measured and listed in max–mean–min format. The total
number of iterations means the number of times the chaotic map is iterated for one
byte (8 bits) of plaintext. The number of effective iterations refers to the number
of times the chaotic orbit falls into a marked partition during the encryption of
one byte of plaintext.
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Figure 5. A plot of the plaintext and the two corresponding ciphertext sequences encrypted by two
very close but not identical look-up tables (plaintext: *, ciphertext: + and ◦).

All the encrypted files are decrypted successfully. As nearly the same oper-
ations are performed at both the transmission and the receiving sides, the en-
cryption and decryption processes require approximately the same amount of
time. However, the decryption time is usually a little shorter. This is because
looking-up in the association map is required in the encryption process, while
the corresponding operation in the decryption process is just a check of whether
the total number of effective iterations is equal to the desired one. The last row of
Table 1 indicates that the ciphertext length is usually about 1.5 times that of the
plaintext. This is shorter than the double-sized ciphertext obtained in most of the
Baptista-type chaotic cryptosystems [5], [13], [15].

Theoretical analysis shows that the ciphertext depends substantially on the
initial look-up table. This is verified here by plotting, in Figure 5, the values of
the plaintext (the graph marked by ∗) and two corresponding ciphertext sequences
(the graphs marked by + and ◦), both with very close look-up tables except that
a pair of marked and unmarked partitions are swapped. The graph shows that
the resultant ciphertexts are totally different. Moreover, at positions 8 to 19, the
plaintext value is zero but the corresponding ciphertext still appears randomly.

In order to analyze the distribution of the ciphertext, we have recorded the
number of occurrences of each ciphertext block for the four input files using fixed
b and x0 but random initial look-up tables. The ciphertext distribution is plotted
in Figure 6, which shows that the distribution is very flat due to the masking
operation.
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Figure 6. Distribution of the ciphertext. The graph from top to bottom corresponds to File 4, File 3,
File 2 and File 1, respectively.

6. Conclusion

In summary, we have modified the original dynamic look-up table scheme [13],
[14] so as to make the updating of look-up tables depend on the current chaotic
state which in turn is determined by the key. It is believed that the modified
scheme is more secure and can resist the attacks described in [4]. Moreover,
simulation results show that this encryption scheme leads to a flat ciphertext
distribution.
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