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ARYABHATA REMAINDER

THEOREM: RELEVANCE TO

PUBLIC-KEY

CRYPTO-ALGORITHMS*

T. R. N. Rao1 and Chung-Huang Yang2

Abstract. Public-key crypto-algorithms are widely employed for authentication, signa-
tures, secret-key generation and access control. The new range of public-key sizes for
RSA and DSA has gone up to 1024 bits and beyond. The elliptic-curve key range is from
162 bits to 256 bits. Many varied software and hardware algorithms are being developed
for implementation for smart-card crypto-coprocessors and for public-key infrastructure.
We begin with an algorithm from Aryabhatiya for solving the indeterminate equation
a ·x+c = b · y of degree one (also known as the Diophantine equation) and its extension to
solve the system of two residues X mod mi = Xi (for i = 1, 2). This contribution known
as the Aryabhatiya algorithm (AA) is very profound in the sense that the problem of two
congruences was solved with just one modular inverse operation and a modular reduction
to a smaller modulus than the compound modulus.

We extend AA to any set of t residues, and this is stated as the Aryabhata remain-
der theorem (ART). An iterative algorithm is also given to solve for t moduli mi (i =
1, 2, . . . , t). The ART, which has much in common with the extended Euclidean algorithm
(EEA), Chinese remainder theorem (CRT) and Garner’s algorithm (GA), is shown to have
a complexity comparable to or better than that of the CRT and GA.
Key words: Diophantine equation, Aryabhata, Aryabhatiya, modular arithmetic, residue
number system, modular inverse.

1. Introduction

We begin with an algorithm of Aryabhata (Pearce [10] states: “we can accurately
claim that Aryabhata was born in 476 A.D., ... he was 23 years old when he
wrote his most significant mathematical work Aryabhatiya in 499 A.D . . . .”)
found in the text Aryabhatiya [2], [6], [12], which solves the linear indeterminate
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equation a · x + c = b · y, for positive integers a, b, and c (sometimes called a
Diophantine equation). This algorithm also solves for X , given the pair of residues
X mod mi = xi (for i = 1, 2). There is some underlying principle of simplicity
in this solution, which has been found to be applicable to solving the general case
of n residues in an iterative manner, requiring as few inverse operations as any
we know of today and also without requiring a final modular reduction operation.
This leads us to state this idea as the Aryabhata remainder theorem (ART). The
ART algorithm presented here is comparable and in some ways more efficient
than the CRT algorithm of Gauss [4], the original Garner algorithm [3], and the
later version of GA given in [8], [9].

1.1. Aryabhata algorithm (AA)

In the field of pure mathematics, one of the most significant contributions of
Aryabhata is his solution to the indeterminate equation a · x + c = b · y. We
copy here the example and discussion given by Pearce [10] from Aryabhatiya [2],
[12]

Example 1.

137 · x + 10 = 60 · y (1)

                       60)137(2    (60 divides into 137 twice with remainder 17, etc)
                             120
                          -----------
                               17)60 (3
                                    51
                                ------------
                                     9)17 (1
                                          9
                                     ----------
                                                  9 (1
                                                  8
                                            ----------

1

8

The column of quotients known as valli (Vertical line) is constructed:




2
3
1
1




Remark. This method was called kuttaka, which literally means “pulverizer,” on
account of the process of continued division that is carried out to obtain succes-
sively smaller remainders. This is traditionally called a Euclidean algorithm. This
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process in traditional textbook format of n equations is written as follows:

a = b · q1 + r1

b = r1 · q2 + r2

...

rn−2 = rn−1 · qn + rn




(2)

In some books [1], this is given as a continued fraction version of Euclid’s algo-
rithm. The number of quotients, omitting the first one, is 3, which is odd. Hence,
we choose a multiplier k such that on multiplication by the last residue, 1 (in the
dashed rectangle), and subtracting 10 from the product the result is divisible by the
penultimate remainder, 8 (in the dashed circle). If the number of quotients, after
omitting the first one, is even, then adding 10 is required instead of subtracting.

We have 1 · 18− 10 = 1 · 8. Then we can form the following table:

2 2 2 2 297
3 3 3 130 130
1 1 37 37
1 19 19

k = 18 18
1

This can be explained as follows.
The number 18, and the number above it in the first column, multiplied and

added to the number below it, gives the last but one number in the second column.
Thus, 18·1+1 = 19. The same process is applied to the second column, giving the
third column result: 19 · 1+ 18 = 37. Similarly, 37 · 3+ 19 = 130, 130 · 2+ 37 =
297. Then x = 130, y = 297 are solutions of the given equation. Noting that
297(mod 137) = 23 and 130(mod 60) = 10, we get x = 10 and y = 23 as simple
solutions. Thus, we have 137 · 10+ 10 = 60 · 23 as a solution for equation (1).

1.2. Improved Aryabhata algorithm (IAA)

We show how to simplify considerably the above procedure. First replace c with
d = gcd(a, b) = gcd (137, 60) = 1 in equation (1) to obtain the following.

Example 2.

137 · x + 1 = 60 · y (3)

We obtain qi as before. Form a table with the first column as the iteration variable
i , and the valli of qi as the second column. The third column of Si is obtained
from the bottom up in a similar manner as in Example 1. We start with S5 = 1,
S4 = q4 as initial values and use the recursion formula:

Si = qi · Si+1 + Si+2 (4)
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i qi Si

1 2 16
2 3 7
3 1 2
4 1 1
5 – 1

We compute the Si ’s from the bottom up.

S3 = q3 · S4 + S5 = 1 · 1+ 1 = 2

S2 = q2 · S3 + S4 = 3 · 2+ 1 = 7

S1 = q1 · S2 + S3 = 2 · 7+ 2 = 16

We note the number of quotients n = 4, and gcd (137, 60) = d = 1. We give
the answer to equation (3) as 137 · S2 + (−1)n d = 60 · S1. Thus, we have
137 · 7+ 1 = 60 · 16. To solve equation (1), we multiply the solution for equation
(3) by 10 to get 137 · 70+ 10 = 60 · 160. By taking out 137 · 60 from both sides,
we get the simple solution 137 · 10+ 10 = 60 · 23.

Improved IAA for solving a · x + d = b · y

INPUT: a and b are positive integers and d = gcd(a, b)

1. i ← 1, r−1 = a, r0 = b

2. while (ri ← ri−2 mod ri−1 �= 0) do the following:
qi ← quotient(ri−2/ri−1)

i ← i + 1

3. n← i − 1, Sn+1 = 1, Sn = qn

4. For i from n − 2 down to 1 do the following:
Si = qi · Si+1 + Si+2

OUTPUT: x = [(−1)n · S2]mod b, y = [(−1)n · S1]mod a

Definition 1. We define the value for S1 to be optimal if 0 < S1 < a, and S2 to
be optimal if 0 < S2 < b. Any solution to a · x + c = b · y is said to be optimal
if 0 < x < b or 0 < y < a.

Remark. Lemma 1, given later, shows that the IAA obtains optimal values for
S1 and S2.

The relevance of the solution 137 ·7+1 = 60 ·16 for us is that 137−1 mod 60 =
−7 mod 60 = 53 and 60−1 mod 137 = 16. Thus, we get both inverses, a−1 mod b
and b−1 mod a, by this method. Also, these lead us to the solution to the problem
of two residues, as shown in Section 2.

The theory behind the results of the preceding two examples can be put in the
form of two lemmas and a theorem as follows.



ARYABHATA REMAINDER THEOREM 5

Lemma 1. Let a, b, c, qi , ri , Si , d, and n be as defined in the previous examples.
For a · x+d = b · y, the IAA yields optimal values for S1 and S2, i.e., 0 < S1 < a
and 0 < S2 < b.

Lemma 2. The optimal solution to a · x + d = b · y is given by

x = [(−1)n · S2]mod b,

y = [(−1)n · S1]mod a.

Theorem 1. An optimal solution to a · x + c = b · y is given by

x = [(−1)n · S2(c/d)]mod b

y = (−1)n · S1(c/d)+ ka, where k = {x − [(−1)n · S2(c/d)]/b.

The proofs of these lemmas and the theorem are simple and are not required to
understand what follows. Therefore, we conveniently move them to the Appendix.
For a clearer understanding, a few examples are also provided there.

2. The problem of two residues

Consider X mod 60 = 0 and X mod 137 = 10. Clearly, X = 60y for some y and
also X = 137x + 10 for some x . That means we solve 137 · x + 10 = 60 · y,
which we did in the previous section. Thus, X = 60 · 23 = 1380. Let us now
modify the problem slightly by adding a 5 to both of the residues. Then we have
X mod 60 = 5 and X mod 137 = 15.

The answer here is just to add 5 to the previous solution and we get X = 1385.
This is the very important underlying principle in Aryabhata’s solution to the

problem of two residues: we solve the problem of two residues by first solving
the Diophantine equation a · x + c = b · y and then adding a constant. Solving the
equation amounts to finding the modular inverse of b mod a and then a modular
multiplication with c mod a. This is a profound and significant contribution of
Aryabhata, which should be recognized by the cryptology community. Its exten-
sion for the t-moduli we present here will also be of great importance due to the
PCKS # 1 v2.1 of the RSA cryptographic standard [11], which discusses modulus
n of 2048 bits, a composite of four primes each of 512 bits. In this context,
every contribution in residue operations and number conversions will become
important both now and in the future. This was called the Aryabhata algorithm
(AA) by Kak [6]. That paper also contains a detailed historical presentation on the
system of multiple residues in India and the work of Sun Tzu and others in China.
Kak also discusses how the Aryabhata algorithm was used to solve problems in
astronomy in India. Here we develop the solution as a formal theorem and call
it the Aryabhata reminder theorem (ART) as a tribute to perhaps the greatest
mathematician and astronomer of the classical period (the fifth century to the
twelfth century A.D.).
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2.1. Aryabhata remainder theorem (ART)

Theorem (ART). Let m1 and m2 be relatively prime moduli and M = m1m2.
Given X mod m1 = x1, X mod m2 = x2, X has a unique solution in Z M given by

X = ART (x1, x2;m1, m2;M)

= ART (0, c;m1, m2;M)+ x1, where c = (x2 − x1) mod m2

= A + x1, where A = m1[(c · m−1
1 ) mod m2].

Proof. First we show that X = A + x1 ∈ Z M . Because A = m1 · b for some
b ∈ Zm2 , A must be less than or equal to m1(m2 − 1). Because x1 < m1, A + x1
must be less than M = m1m2, and therefore X ∈ Z M . Now consider (A +
x1) mod m1. Because A is a multiple of m1, we have (A + x1) mod m1 = x1.
Because A mod m2 = c due to the cancellation of the terms m1 and m−1

1 , we have
(A+ x1) mod m2 = c+ x1 = x2. Thus, A+ x1 = X satisfies the two congruences
as required and is a solution in Z M . It is easy to show that A + x1 is a unique
solution in Z M . If Y ∈ Z M is another solution, then (X − Y ) mod mi = 0, for
i = 1, 2, and (X − Y ) mod M = 0. Thus, X = Y . ✷

A formal extension of ART to any number of moduli is rather straightforward and
is given in Section 5. Here we illustrate by an example.

Example 3. Let X mod 3 = x1 = 1, X mod 4 = x2 = 3, and X mod 5 = x3 = 3.
Then X = ART (1, 3, 3; 3, 4, 5; 60).

Step 1.

X ′ = X mod 12 = ART (1, 3; 3, 4; 12)

= ART (0, 2; 3, 4; 12)+ 1

= 3[(2 · 3−1) mod 4] + 1

= 3 · 2+ 1 = 7

Step 2.

X = ART (7, 3; 12, 5; 60)

= ART (0, (3− 7) mod 5; 12, 5; 60)+ 7

= ART (0, 1; 12, 5; 60)+ 7

= 12[(1 · 12−1) mod 5] + 7

= 12 · 3+ 7 = 43

3. Multiplicative inverse

Given positive pairwise prime integers a and b, it is very often necessary to find
a−1 mod b. That is, to find x ∈ Zb such that a · x mod b = 1. In RSA, the private
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key d is generated by finding the inverse of public-key e mod∅(n), where ∅(n) =
(p − 1)(q − 1). The extended Euclidean algorithm (EEA) [8], [9] given below
obtains a · x + b · y = 1, for given a and b. Finding the multiplicative inverse is
illustrated in Example (4).

3.1. Extended Euclidean algorithm (EEA)

The EEA is available in most texts [8], [9]. The simpler version of the Euclidean
algorithm from [7] will illustrate the principle as well.

Example 4. Let a = 137 and b = 60.

i ri qi xi yi

−1 137 1
0 60 – 0 1
1 17 2 1 −2
2 9 3 −3 7
3 8 1 4 −9
4 1 1 −7 16

5 0

qi ← quotient(ri−2/ri−1), ri ← ri−2 mod ri−1

xi ← xi−2 − qi · xi−1, yi ← yi−2 − qi · yi−1

From the table above we have x = −7 mod 60 = 53 and y = 16. Therefore
137−1 mod 60 = −7 mod 60 = 53 and 60−1 mod 137 = 16.

The EEA requires a series of successive division steps as in the GCD algorithm,
while calculating xi and yi iteratively to ultimately obtain the final values. This
procedure requires n divisions, 2n multiplications, and 2n subtractions, where
n is the number of iterations. However the IAA requires n divisions and n − 2
multiplications and n − 2 additions to find s2, the inverse of a mod b. Whereas
the EEA derives the values xi and yi in a forward direction as qi are generated,
the IAA will have to generate all qi ’s and then apply the iterations in a reverse
manner. This requires storing qi ’s and is an undesirable feature. Thus, the EEA
is superior in that sense. Also if one needs only one inverse (i.e., a−1 mod b), the
yi column is not required and, in that case, just n multiplication and subtraction
steps are needed. Knuth [8] obtains n, the average number of divisions required
for GCD for given x and a random y < x by the formula

n ≈ 1.94 log10 x .

For a 100-digit decimal number a and a randomly chosen b < a, the average
number of division steps will be about 194.
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3.2. Multiplicative inverse algorithm

The EEA can be improved to perform better if only one inverse is required. For
instance, if a−1 mod b is required for a > b, we may just as well begin with
a mod b = c and find c−1 mod b. In that case, the xi computation will be one less
step. Further, if the initial values are set appropriately, the inverse can be obtained
in n − 2 forward steps (each step: one multiplication and one addition), the same
number of steps as in the IAA (Section 1.2). We illustrate this by using the same
example as before with another table.

Example 5. Find 137−1 mod 60 (a = 137 and b = 60)

We start with r0 = b = 60, r1 = a mod 60 = 17, and x1 = 1. The iterations
begin from i = 2 with the normal division process: qi ← quotient(ri−2/ri−1),
ri ← ri−2 mod ri−1, and x2 = q2.

The iteration proceeds: xi ← xi−1 · qi + xi−2 (for i > 2).

i ri qi xi

0 60 – –
1 17 – 1
2 9 3 3
3 8 1 4
4 1 1 7

5 0

From this we observe the following:

a · xi (−1)i−1 mod b = ri for i ≥ 1, 137 · 7(−1)4−1 mod 60 = 1,

X = 137−1 mod 60 = 60− 7 = 53.

We can now state the following lemma.

Lemma 3. Let a, b, ri , qi , and xi be defined as above. Then a−1 mod b exists iff
xn = 1 (for some n > 1) and is given by

a−1 mod b = xn(−1)n−1.

Proof. First, we need to prove that a · xi (−1)i−1 mod b = ri holds for i ≥ 1.
For i = 1, we have x1 = 1 and a · x1(−1)i−1 mod b = r1. For i = 2, we have
the division equation r2 = r0 − q2 · r1 = r0 − x2 · r1. Taking mod b on both
sides, we get (−x2) · r1 mod b = r2, which is the same as (−x2)a mod b = r2.
For i = 3, we start with r3 = r1 − q3 · r2 = r1 · x1 − q3(r0 − x2 · r1) =
r1(x2 · q3 + x1) − q3 · r0 = r1 · x3 − q3 · r0. Taking mod b on both sides, we
have r1 · x3 mod b = r3 and a · x3 mod b = r3. Continuing this process, we obtain
a · xn(−1)n−1 mod b = rn = 1 and a−1 mod b = xn(−1)n−1. ✷
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Algorithm for a−1 mod b

Step 1. r0 ← b
r1 ← a mod b
if r1 = 0, then go to Step 4

else x1 ← 1
ι← 2

Step 2. qi ← quotient(ri−2/ri−1)

ri ← ri−2 mod ri−1
If ri = 0, then go to step 3

else if i = 2, then xi ← qi

else xi ← xi−1 · qi + xi−2
i ← i + 1
go to Step 2

Step 3. If ri−1 = 1, then if i is even,
then return (xi )

else return (b − xi )

Step 4. print “Inverse does not exist”

4. Chinese remainder theorem (CRT)

Let X = C RT (v1, v2, . . . , vt ; m1, m2, . . . , mt ; M =∏t
i=1 mi ) for (mi , m j ) = 1,

for all i �= j . Then X is given by

X =
[

t∑
i=1

vi (M/mi )yi

]
mod M,

where yi = (M/mi )
−1 mod mi .

Example 6. X = C RT (2, 1, 3, 8; 5, 7, 11, 13; 5005)

y1 = (5005/5)−1 mod 5 = (1001)−1 mod 5 = 1

y2 = (5005/7)−1 mod 7 = (715)−1 mod 7 = 1

y3 = (5005/11)−1 mod 11 = (455)−1 mod 11 = 3

y4 = (5005/13)−1 mod 13 = (385)−1 mod 13 = 5

X = 2 · 1001 · 1+ 1 · 715 · 1+ 3 · 455 · 3+ 8 · 385

= (2002+ 715+ 4095+ 15400) mod 5005 = 2192.

Remark. CRT requires t inverse operations and a reduction operation modulo
M . As explained in [9], the number of bit operations O(k2t2) = O(n2), where k
is the maximum bit size of the residues and n is the combined number of bits in
modular representation of v(x).
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4.1. Garner’s algorithm (GA) compared with CRT

Garner [3] deduced an algorithm to convert the residue code of a number X =
(v1, v2, . . . , vt ) with respect to pairwise relatively prime modulo m1, m2, . . . , mt

to a mixed radix number with weight 1, mt , mt−1mt , and so on up to the last
one m2m3 . . . mt . Then its radix equivalent can be easily computed using those
weights. As an example he chose (1, 2, 0, 4) for moduli set (2, 3, 5, 7) and con-
verted to the mixed radix form of (0, 2, 3, 4) whose weights are (105, 35, 7, 1)

respectively. Then X = (1, 2, 0, 4) represented 0 · 105+ 2 · 35+ 3 · 7+ 4 = 95.
A refined version of Garner’s algorithm has been given in [9] as follows.

INPUT: a positive integer M = ∏t
i=1 mi , with gcd (mi , m j ) = 1 for all i �= j ,

and a modular representation v(x) = (v1, v2, . . . , vt ) of x for the mi .

OUTPUT: the integer x in radix b representation.

1. For i from 2 to t do the following:
Ci ← 1.
For j from 1 to (i − 1) do the following:

u ← m−1
j mod mi

Ci ← u · Ci mod mi

2. u ← v1, x ← u

3. For i from 2 to t do the following: u ← (vi − x) · Ci mod mi ,
x ← x + u ·∏i−1

j=1 m j

4. Return (x).

x returned by algorithm (GA) satisfies 0 ≤ x < M , x ≡ vi (mod mi ), 1 ≤ i ≤ t .

Example 7 Garner’s algorithm [9]. Let m1 = 5, m2 = 7, m3 = 11, m4 = 13,
M = ∏4

i=1 mi = 5005, and v(x) = (2, 1, 3, 8). The constants Ci = computed
are C2 = 3, C3 = 6, C4 = 5. The values (i, u, x) computed in Step 3 of
the algorithm are (1, 2, 2), (2, 4, 22), (3, 7, 267), and (4, 5, 2192). Hence, the
modular representation v(x) = (2, 1, 3, 8) corresponds to the integer X = 2192.

Menezes et al. [9] provide a discussion on the computational efficiency of GA as
follows:

If Garner’s algorithm is used repeatedly with the same modulus M and the same
factors of M, then step 1 can be considered as a precomputation, requiring the
storage of t − 1 numbers. The classical algorithm for the CRT typically requires
a modular reduction with modulus M, whereas Garner’s algorithm does not.
Suppose M is a kt-bit integer and each mi is a k-bit integer. A modular reduction
by M takes O((kt)2) bit operations. Whereas a modular reduction by mi takes
O(k2) bit operations. Since Garner’s algorithm only does modular reduction with
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mi , 2 ≤ i ≤ t , it takes O(tk2) bit operations in total for the reduction phase, and
is thus more efficient.

However, the GA requires t (t − 1)/2 inverse mod mi operations. Because the
inverse requires O(k2) bit operations, the complexity of inversions is O(t2k2).
The CRT requires mod M reduction, which has a complexity of O(log M)2 =
O(t2k2). The original algorithm of Garner [3] required only t − 1 inversions but
required a considerably larger number of modular reductions O(k2) and residue
vector operations of the O(t). The overall complexity of the GA can be shown to
be O(t2k2). The ART algorithm developed in the next section requires only t − 1
inversions. Also as in the GA, it does not require mod M reduction and thus has a
complexity of O(tk2) bit operations.

5. ART algorithm

The underlying principle behind Aryabhata’s solution for the problem of two
residues is that it requires only one modular inverse operation and any modu-
lar reduction is to the smaller moduli mi rather than to the composite M . This
simplicity is of paramount importance. This principle has been exploited in many
applications and the performance, for instance, of the RSA signature has improved
for smart-card processors by a factor greater than 3.6 [5], [11]. The ART algorithm
is an extension of this principle to t moduli.

X = ART (v1, v2, . . . , vt ;m1, m2, . . . , mt ;M)

Step 1. X1 = v1

Step 2. X2 = ART (v1, v2;m1, m2;M2) M2 = m1m2
= ART (0, |v2 − v1|m2;m1, m2;M2)+ v1

Step 3. X3 = ART (X2, v3;M2, m3;M3) M3 = m1m2m3
= ART (0, |v3 − X2|m3;M2, m3;M3)+ v2

. . . . . . . . .

Step t. Xt = ART (Xt−1, vt ;Mt−1, mt ;Mt ) Mt = M
= ART (0, |vt − Xt−1|mt ;Mt−1, mt ;Mt )+ vt

The algorithmic form of this process is as follows.

INPUT: a positive integer M = ∏t
i=1 mi , with gcd (mi , m j ) = 1 for all i �= j ,

and a modular representation v(x) = (v1, v2, . . . , vt ) of x for the mi .

1. N1 ← 1, X1 ← v1
2. For i from 2 to t do the following:

Ni ← Ni−1 · mi−1

Ci ← N−1
i mod mi (also denote |N−1

i |mi )
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Ui ← [(vi − Xi−1) · Ci ]mod mi

Xi ← Xi−1 +Ui · Ni

OUTPUT: Return Xt

This is illustrated by an example.

Example 8. Find X = ART (2, 1, 3, 8; 5, 7, 11, 13; 5005)

i Ni Ni mod mi Ci Ui Xi

1 1 – – – 2
2 5 5 |5−1|7=3 |(1− 2) · 3|7=4 2+ 4 · 5=22
3 5 · 7=35 |35|11=2 |2−1|11=6 |(3− 22) · 6|11=7 22+ 7 · 35=267
4 35 · 11=385 |385|13=8 |8−1|13=5 |(8− 267) · 5|13=5 267+ 5 · 385=2192

Steps 2, 3, and 4 in the table are iterations of the ART, solving for 2 residues in
each of these steps. The final value X = X4 = 2192.

6. Conclusion

The underlying principle behind Aryabhata’s solution for the problem of two
residues and its simplicity are of paramount importance. Historians of mathe-
matics have acknowledged this fact by writing about the Aryabhata algorithm
([6]), but as part of the cryptology community, we are now trying to redress this
balance. This principle has been reinvented quite independently by Garner and
exploited in many applications by others [5], [11]. The performance, for instance,
of the RSA signature using this principle has improved for smart-card processors
by a factor greater than 3.6. However, Aryabhata has not been recognized for
this contribution when the CRT is mentioned. We emphasize about this fact and
thus give long-overdue credit to a great mathematician. We have provided here
the Aryabhata remainder theorem as an extension to t moduli of his original
contribution. Its complexity is shown to be comparable to or better than that of
the CRT and GA.

Appendix

For the following lemmas and the discussion, let a, b, c, qi , ri , Si , d, and n be as
defined in Section 1.

Lemma 1. For a · x + d = b · y, IAA yields optimal values for S1 and S2, i.e.,
0 < S1 < a, and 0 < S2 < b.

Proof of Lemma 1. First, we note the ordering a > b > r1 > r2 > · · · > rn =
d ≥ 1.
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Also, we have rn−1 > Sn+1 = 1 and rn−2 > qn = Sn as a starter. Then using
the last division equation, we have rn−3 = rn−2 ·qn−1+rn−1 > Sn ·qn−1+Sn+1 =
Sn−1, giving us rn−3 > Sn−1.

Continuing this to the next division equation, we get rn−4 > Sn−2. This proce-
dure leads us to r0 > S2 and r−1 > S1. Because b = r0 and a = r−1, we have
proved the lemma. ✷

Lemma 2. The optimal solution to a · x + d = b · y is given by:

x = [(−1)n · S2]mod b,

y = [(−1)n · S1]mod a.

Proof of Lemma 2. We start with the nth equation of kuttaka (sequence of divi-
sions):

d = rn = rn−2 − rn−1 · qn .

Because Sn+1 = 1 and Sn = qn , we can write the above as

d = rn−2 · Sn+1 − rn−1 · Sn .

Substituting the equation for rn−1 above, we get

d = rn−2 · Sn+1 − (rn−3 − rn−2 · qn−1)Sn

= rn−2(qn−1 · Sn + Sn+1)− rn−3 · Sn

= rn−2 · Sn−1 − rn−3 · Sn

= (rn−3 · Sn − rn−2 · Sn−1)(−1).

Continuing the substitution for rn−2, rn−3, . . . , we get successively

d = (rn−4 · Sn−1 − rn−3 · Sn−2)(−1)2 and finally

d = (a · S2 − b · S1)(−1)n−1.

The last equation can be rewritten as

a · S2(−1)n + d = b · S1(−1)n .

A solution to ax + d = b y follows easily from the above as

x = S2(−1)n,

y = S1(−1)n .

From Lemma 1 we note that 0 < S1 < a and 0 < S2 < b. Consider placing
mod b and mod a to the above equations respectively. When n is even that makes
no difference. When n is odd, it amounts to adding b to −S2 and a to −S1, which
amounts to adding a · b to both sides of the equation, while making x and y
positive optimal values. This completes the proof. ✷

A few examples will illustrate the application of kuttaka and the preceding lem-
mas.
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Example 9. 17x + 1 = 4y.
By using kuttaka and the IAA, we obtain S1 = 4, S2 = 1, and n = 1. As one

solution we have 17(−1)+1 = 4(−4). Taking the respective moduli, we have−1
mod 4 = 3 and−4 mod 17 = 13, giving us the optimal solution 17 ·3+1 = 4 ·13.

Example 10. 7x + 1 = 4y.
By using kuttaka and the IAA, we obtain S1 = 2, S2 = 1, and n = 2. As one

solution we have 7(1) + 1 = 4(2). Here both values for x = 1 and y = 2 are
optimal.

For a more general case, let us make c = 11 in the above example.

Example 11. 7x + 11 = 4y.

Multiplying the previous solution by 11, we get 7 ·11+11 = 4 · (2 ·11). To obtain
an optimal solution, we may apply the modular reduction 11 mod 4 = 3 and 22
mod 7 = 1. Then we get 7 · 3 + 11 = 4 · 1, clearly a false solution. The correct
way to get an optimal solution is to subtract (or add) a suitable multiple of a · b
to both sides of the equation to obtain an optimal value for either x or y. If we
subtract 2ab from both sides, then we have 7 · (11− 2 · 4)+ 11 = 4 · (22− 2 · 7),
yielding 7 · 3 + 11 = 4 · 8, a correct solution. Here the solution is optimal, as
x = 3 is optimal. Note that, in this case, y = 8 is not optimal but the solution is
optimal by Definition 1.

Proof of Theorem 1. As an easy extension to the general case a · x + c = b · y
(for c, a multiple of d), we have a solution x ′ = (−1)n · S2(c/d) and y′ =
(−1)n ·S1(c/d). Here x ′ and y′ may not be optimal. To obtain an optimal solution,
we consider adding kb to x ′ and ka to y′ such that at least one of them becomes
optimal. For that we first take modular reduction x = x ′mod b. Then x = x ′ + kb
for some k. To balance the equation we take y = y′ + ka. This proves Theorem 1.

Theorem 1. An optimal solution to a · x + c = b · y is given by:

x = [(−1)n · S2(c/d)]mod b,

y = (−1)n · S1(c/d)+ ka, where k = {x − [(−1)n · S2(c/d)]}/b.
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