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DESIGN OF DIGITAL FIR
FILTERS USING DIFFERENTIAL

EVOLUTION ALGORITHM*

Nurhan Karaboga1 and Bahadir Cetinkaya1

Abstract. The differential evolution (DE) algorithm is a new heuristic approach with
three main advantages: it finds the true global minimum of a multimodal search space
regardless of the initial parameter values, it has fast convergence, and it uses only a few
control parameters. The DE algorithm, which has been proposed particularly for numeric
optimization problems, is a population-based algorithm like the genetic algorithms and
uses similar operators: crossover, mutation, and selection. In this work, the DE algorithm
has been applied to the design of digital finite impulse response filters, and its performance
has been compared to that of the genetic algorithm and least squares method.
Key words: FIR filter design, differential evolution algorithm, genetic algorithm.

1. Introduction

Filtering is a process by which the frequency spectrum of a signal can be modified,
reshaped, or manipulated according to some desired specifications. It may entail
amplifying or attenuating a range of frequency components, rejecting or isolating
one specific frequency component, etc. The digital filter is a digital system that
can be used to filter discrete-time signals. The main advantages of digital filters
are the traditional advantages associated with digital systems such as: (i) uncritical
component tolerances, (ii) high accuracy, (iii) small physical size, and (iv) high
reliability. A very important additional advantage of digital filters is the ease with
which their characteristics can be changed or adapted by simply changing the
contents of a finite number of registers. Because of this feature, digital filters
are naturally suited for the design of programmable filters that can be used to
perform a multiplicity of filtering tasks, and for the design of adaptive filters that
can be used in a diverse range of applications, such as system identification, chan-
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nel equalization, signal enhancement, and signal prediction. There are two main
classes of digital filters: finite impulse response (FIR) filters and infinite impulse
response (IIR) filters. FIR filters are simple to design and they are guaranteed
to be bounded-input, bounded-output; namely, they are always stable filters. By
designing the filter taps to be symmetrical about the center tap position, an FIR
filter can be guaranteed to have linear phase [15].

Heuristic optimization algorithms such as genetic algorithms, tabu search, and
simulated annealing algorithms have been widely used in the optimal design of
digital filters [2]–[5], [7]–[14], [16], [20]–[23]. In the literature, there are several
works about the application of genetic algorithms (GAs) to the digital FIR filter
design [5], [13], [14], [22], [23]. In these works, it is emphasized that filters
designed by a GA have the potential of obtaining near global optimum solu-
tions. Although standard GAs perform well for finding the promising regions
of the search space, they are not so successful at determining local minima in
terms of convergence speed. In order to overcome this disadvantage of the GA
in numeric optimization problems, a differential evolution (DE) algorithm has
been introduced by Storn and Price [17]. The DE algorithm is a new heuristic
approach having mainly three advantages; it can find the true global minimum of
a multimodal search space regardless of the initial parameter values, it has fast
convergence, and it uses only a few control parameters. The DE algorithm is a
population-based algorithm like the GAs and uses similar operators: crossover,
mutation, and selection. The studies on the design of optimal digital filters using
the DE algorithm are not as common as those on the GAs. In the literature, there
are only a few studies related to the application of the DE algorithm to digital filter
design [9], [10], [16], [21]. In [16], the task of designing an IIR filter using a DE
algorithm is investigated. In [21], the article proposes a solution to the problem
of multicriterion filter design. In contrast to the standard method, the DE method
allows one to solve problems of filter design with some sorts of limitations. The
works presented in [9], [10] describe the design of digital FIR filters based on the
DE algorithm.

In this work, a performance comparison of design methods based on the DE
algorithm, GA, and least square algorithm (LSQ) is presented for digital FIR
filters as the DE algorithm is very similar to, but much simpler than, the GA.
The paper is organized as follows. Section 2 contains a detailed review of the DE
algorithm. Section 3 describes the application of the DE algorithm to the design
of digital FIR filters. Section 4 presents the simulation results and discussion.

2. DE algorithm

The DE algorithm is a method based on the principles of GAs, but with crossover
and mutation operations that work directly on continuous-valued vectors [18].
The main difference in constructing better solutions is that GAs rely on crossover,
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whereas the DE algorithm relys on the mutation operation. This main operation,
which has been shown to be effective for global optimization of reasonably com-
plex functions and is very simple to implement, is based on the differences of
randomly sampled pairs of solutions in the population. The DE algorithm uses
mutation as a search mechanism and selection to direct the search toward the
prospective regions in the search space. The DE algorithm also uses a nonuniform
crossover that can take child vector parameters from one parent more often than
it does from others. By using the components of existing population members
to construct trial vectors, the recombination (crossover) efficiently shuffles infor-
mation about successful combinations, enabling the search for a better solution
space.

Initially, a population is constructed from the solutions randomly and uniformly
distributed within the search space. The process of generating a proposal makes
use of at least four mutually exclusive population members. First, one candidate
in the population is chosen systematically (in some predefined order) for im-
provement. Then the vector difference between two randomly chosen members,
weighted by a scalar parameter, F , is added to a third randomly chosen “parent”.
Some implementations add two or more such vector differences. A crossover
operation takes place between this produced vector and the candidate vector, to
obtain a proposal point. A function evaluation takes place at the proposal, and a
test is then performed to determine whether this is better or not than the candidate
solution. According to the outcome, either the proposal replaces the candidate or
the population remains unchanged. In either case, a new candidate for replacement
will be selected on the next iteration. Crossover is implemented here by selecting
each element of the proposal vector from either the candidate or the new vector
according to some prespecified probability PC . Proposals outside the bounds of
the search space are ignored, allowing a valid proposal to be obtained for each
candidate [1], [6], [19].

Figure 1 illustrates this process in more detail: the weighted difference between
two population members (1, 2) is added to a third population point (3). The result
(4) is subject to crossover with the candidate for replacement (5) to obtain a
proposal (6). The proposal is evaluated and replaces the candidate if it is found to
be better. Note that the proposal could be identical to (4) or (5), depending on the
outcome of the crossover [19].

The role of the vector addition is to provide proposals that are within, or near the
boundaries of, the existing population. The scalar parameter F affects the rate at
which the variance of the population is likely to decrease. Crossover prevents the
population from becoming trapped in a subspace (local minima) and may exploit
the relative independence between different directions of the search space.

An optimization task consisting of D parameters can be represented by a D-
dimensional vector. Therefore, in the DE algorithm a population of N P solution
vectors is randomly created at the start. This population is successfully improved
by applying mutation, crossover, and selection operators.
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Figure 1. Obtaining a new proposal in differential evolution.

The main steps of a basic DE algorithm are given below:

Initialization
Evaluation
Repeat

Mutation
Recombination
Evaluation
Selection

Until (termination criteria are met)

2.1. Mutation

For each target vector xi,G , a mutant vector is produced by

vi,G+1 = xi,G + K · (xr1,G − xi,G) + F · (xr2,G − xr3,G), (1)

where i, r1, r2, r3 ∈ {1, 2, . . . , N P} are randomly chosen and must be different
from each other. In equation (1), F is the scaling factor ∈ [0, 2] affecting the
difference vector (xr2,G − xr3,G), and K is the combination factor.
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2.2. Crossover

The parent vector is mixed with the mutated vector to produce trial vector u ji,G+1:

u ji,G+1 =
{

v j i,G+1 if (rnd j ≤ C R) or j = rni

x ji,G if (rnd j > C R) and j �= rni
(2)

where j = 1, 2, . . . , D, r j ∈ [0, 1] is a random number, C R stands for the
crossover constant ∈ [0, 1], and rni ∈ (1, 2, . . . , D) is the randomly chosen
index.

2.3. Selection

The performances of the trial vector and its parent are compared and the better one
is selected. This method is usually called greedy selection. All solutions have the
same chance of being selected as parents without the dependence of their fitness
value. The better one of the trial solution and its parent wins the competition; this
provides the significant advantage of converging performance over the GAs.

3. Application of DE algorithm to the problem

The transfer function of an FIR filter is given by equation (3),

H(z) =
N∑

n=0

anz−n, (3)

where an represents the filter parameters to be determined in the design process
and N represents the polynomial order of the function. Factorizing the numerator
polynomial, the zero description of the digital FIR filter can be obtained as

H(z) = K (z − z1)(z − z2) . . . (z − zi ) . . . (z − zM ), (4)

where zi represents the zero values of the function on the complex plane (z-
domain). The zeros of the transfer function are the values of z for which H(z)
equals zero. The locations of zeros on the complex plane directly affect the fre-
quency response. Therefore, the design process can be considered as an optimiza-
tion process by which the zeros are placed into suitable locations. In this work,
the DE algorithm and the GA are used for this purpose and their performances are
compared.

In the design of an FIR filter using the GA or DE algorithm, first the solutions
must be represented in a string form of parameters. The representation scheme
used in this work is shown in Figure 2.

In order to evaluate the strings representing possible FIR filters, the least mean
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a-L     a-(L-1)        .....      a-1      a0        a1            .....         a(L-1)        aL

Figure 2. Representation of solutions in string form.

Table 1. Control parameter values of DE algorithm and GA

Differential Evolution Algorithm Genetic Algorithm

Population size = 100 Population size = 100
Crossover rate = 0.8 Crossover rate = 0.8
Scaling factor (F) = 0.8
Combination factor (K ) = 0.8

Mutation rate = 0.01

Generation number = 500 Generation number = 500

squared (LMS) error is used. The strings that have higher evaluation values rep-
resent the better filters, i.e., the filters with better frequency response. The expres-
sion of the LMS function is given below:

L M S =
{∑

f

[|HI ( f )| − |HD( f )|]2

} 1
2

, (5)

where HI ( f ) is the magnitude response of the ideal filter and HD( f ) is the
magnitude response of the designed filter.

The fitness function to be maximized is defined depending on the LMS function
as follows:

f i tnessi = 1

L M Si
(6)

where f i tnessi is the fitness value of solution i and LMSi is the LMS error value
calculated when solution i is used for the filter.

4. Simulation results

The simulations have been realized for filters with the order of 8, 14, and 20. In
the simulations, the sampling frequency was chosen as fs = 1 Hz. Also, for all
the simulations the sampling number was taken as 100.

It is known that the values of control parameters such as population size,
crossover, and mutation rate and scaling and combination factors have a
significant effect on the performance of the DE algorithm and the GA. In
this work, the values suggested in the literature for these control parameters were



DIFFERENTIAL EVOLUTION ALGORITHM FOR FIR FILTERS 655

 

Figure 3. Magnitude responses of filters with the order of 8.

used [17]. The control parameter values employed for the DE algorithm and the
GA are given in Table 1.

The magnitude responses of the designed digital FIR filters for the filter with
the order of 8 are presented in Figure 3. As seen from Figure 3, the filters de-
signed by the DE algorithm and the GA have similar magnitude responses for the
passband and stopband regions. But, they have sharper transition band responses
as compared to the filter designed by the LSQ algorithm. For the stopband region,
the LSQ algorithm produces a filter whose response is a bit worse than the others.

The magnitude responses of the digital FIR filters designed using the GA and
the DE and LSQ algorithms for the filter of 14th order are demonstrated in Fig-
ure 4. As seen from Figure 4, the filters designed by GA, DE, LSQ have similar
magnitude responses for the passband region. The filters constructed using the DE
algorithm and the GA have sharper transition band responses than that produced
by the LSQ algorithm. For the stopband region, the LSQ algorithm produces a
better response.

The magnitude responses of the digital FIR filters designed using the GA, and
the DE and LSQ algorithms for the filter of 20th order are given in Figure 5. As
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Figure 4. Magnitude responses of filters with the order of 14.

Table 2. LMS error values for different filter orders

Algorithms The filter with the
order of 8

The filter with the
order of 14

The filter with the
order of 20

LSQ 1.6744 1.3572 1.2943
GA 1.4790 1.1150 0.9961
DE 1.4740 1.1100 0.9900

seen from Figure 5, for the passband region, the LSQ algorithm produces a bit
better response than the others. However, the filters designed by the GA and the
DE algorithm have sharper transition band responses than that produced when the
LSQ algorithm is used. For the stopband region, the filters designed by the three
methods produce similar responses.

In order to compare the algorithms in terms of the convergence speed, Figure 6
shows the evolution of best solutions obtained when the GA and the DE algorithm
are employed. From the figures drawn for three filters, it is seen that the DE
algorithm is significantly faster than the GA for finding the optimum filters.

The performance of the algorithms can be compared in terms of the computa-
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Table 3. Coefficients of the designed filters

(a) Filters with the order of 20

a(n) GA DE LSQ

a(1) = a(21) 0.0001 −0.0047 −0.0166
a(2) = a(20) −0.0355 0.0351 0.0260
a(3) = a(19) −0.0003 0.0053 0.0181
a(4) = a(18) 0.0458 −0.0453 −0.0379
a(5) = a(17) −0.0003 −0.0047 −0.0192
a(6) = a(16) −0.0633 0.0635 0.0581
a(7) = a(15) 0.0000 0.0053 0.0201
a(8) = a(14) 0.1065 −0.1060 −0.1027
a(9) = a(13) 0.0001 −0.0047 −0.0206

a(10) = a(12) −0.3181 0.3183 0.3172
a(11) −0.5000 0.5053 0.5208

(b) Filters with the order of 14

a(n) GA DE LSQ

a(1) = a(15) −0.0452 −0.0454 −0.0384
a(2) = a(14) 0.0000 −0.0054 −0.0177
a(3) = a(13) 0.0641 0.0635 0.0584
a(4) = a(12) −0.0000 0.0046 0.0185
a(5) = a(11) −0.1058 −0.1061 −0.1029
a(6) = a(10) 0.0000 −0.0054 −0.0190
a(7) = a(9) 0.3187 0.3182 0.3172

a(8) 0.5000 0.5046 0.5192

(c) Filters with the order of 8

a(n) GA DE LSQ

a(1) = a(9) −0.0000 0.0042 0.0201
a(2) = a(8) −0.1054 −0.1060 −0.1024
a(3) = a(7) 0.0000 −0.0058 −0.0207
a(4) = a(6) 0.3191 0.3183 0.3171

a(5) 0.5000 0.5042 0.5209

tion time, too. The DE algorithm requires about 5–6 seconds to design an optimal
filter, whereas the GA needs approximately 70 seconds for 500 generations. In
Table 2, the LMS error values obtained for the three examples are given. From the
table it is clear that the performances of the DE algorithm and the GA are similar
to each other in terms of LMS error. But their performance is significantly better
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Figure 5. Magnitude responses of filters with the order of 20.

than that of the LSQ algorithm. The coefficients of the designed filters found by
the three methods are given in Table 3.

5. Conclusion

The DE algorithm has been applied to the design of digital FIR filters with differ-
ent orders. Although the DE algorithm has a more simple structure than the GA,
for the same population size and generation number, the DE algorithm demon-
strates a similar performance in terms of magnitude response and hence LMS
error. Consequently, the DE algorithm has successfully designed FIR filters with
desired magnitude responses and also found optimal filters much quicker than the
GA. Therefore, the DE algorithm can be successfully used in digital FIR filter
design.
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                              (a)                                                                      (b)

  (c)

Figure 6. Performance comparison between DE algorithm and GA: (a) 8th order, (b) 14th order, (c)
20th order.
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