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Abstract. A bipolar Quantum Drift Diffusion Model including generation-recombination terms
is considered. Existence of solutions is proven for a general setting including the case of vanishing
particle densities at some parts of the boundary. The proof is based on a Schauder fixed point
iteration combined with a minimization procedure. It is proven that, contrary to the classical
drift-diffusion model, vacuum can only appear at the boundary. In the case of nonvanishing
boundary data, the semiclassical limit is carried out rigorously. The variational structure of the
model allows to prove strong H1 convergence of particle densities, Fermi levels and electrostatic
potential.

Mathematics Subject Classification (1991). 35J50, 35J55, 35J70, 35Q40, 35Q55, 49J45,
49K20, 81Q20.

Keywords. Bipolar quantum hydrodynamic model, stationary states, existence of solutions,
elliptic boundary value problems of degenerate type, voltage current characteristics, variational
formulation, minimization of energy functionals, semi-classical limit, drift-diffusion model.

1. Introduction

Due to the ongoing miniaturization of electronic devices, mathematical models of
ultra small semiconductors have to be capable for the descripton of quantum me-
chanical effects. Recently, the Schrödinger-Poisson system has gained considerable
attention to describe quantum phenomena (tunneling effects, negative differential
resistance in resonant tunneling diodes). Whole space problems were proven to
be well-posed and the semiclassical limit has been carried out leading to collision-
less kinetic models [17, 19, 13]. An important ingredient of these investigations is
the introduction of the Wigner function solving a kinetic-like collisionless equation
(Wigner equation) [7, 8]. Concerning the derivation and analysis of quantum mod-
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els on bounded domains, an increasing effort has been made during the very last
years. First, equilibrium states of the Schrödinger-Poisson systems were analyzed
by minimization techniques [21, 22, 23]. Current carrying models and absorbing
boundary conditions were recently investigated [24, 2, 1, 16, 5].

The incorporation of collisions in quantum models is one of the important issues
of mesoscopic semiconductor modelling. It would imply a better understanding of
quantum macroscopic models (hydrodynamic, drift-diffusion). However, macro-
scopic ”Quantum Hydrodynamic Models (QHD)”, based on moment expansions,
are derived from the Wigner equation or the many particle Schrödinger equation
[9, 11]. Being numerically rather tractable [10, 12] the capability of QHD to simu-
late ultra small semiconductor devices is a field of intensive mathematical research.
Also the consistency problem is of importance: It has to be expected that the solu-
tions of QHD converge to solutions of semiclassical models as the Planck constant
~ tends to zero.

Ancona and Iafrate proposed in [4, 3] a stationary ”Quantum Drift Diffusion
Model (QDD)” dedicated to describe the behaviour of electrons in the vicinity of
strong inversion layers. We shall extend this model to bipolar devices including
generation-recombination processes. We prove the existence of solutions for fixed
Planck constant in the case of vanishing particle densities at the strong inversion
layer. The proof is based on a minimization argument coupled with Schauder’s
fixed point theorem. The essential estimates concern lower bounds away from zero
in the interior of the domain. In the case of nonvanishing particle density on the
boundary the semiclassical limit is performed leading to the classical drift-diffusion
model.

The scaled QDD stated on a bounded domain Ω ⊂ Rd, d = 1, 2 or d = 3 reads

F = V + hN (n)− ε2 ∆
√
n√
n
, G = −V + hP (p)− ξε2 ∆

√
p

√
p

~Jn = µn n∇F, ~Jp = −µp p∇G
∇ · ~Jn = R0(n, p)R1(F,G), ∇ · ~Jp = −R0(n, p)R1(F,G)

−λ2∆V = n− p− C

(1.1)

The physical parameters of (1.1) are the scaled Planck constant ε, the scaled
ratio ξ of effective electron mass and effective hole mass, the mobilities µn, µp of
electrons and holes and the scaled minimal Debye length λ. All these quantities
are assumed to be positive constants. hN(.), hP (.) are the enthalpy functions
of electrons and holes. Generation-recombination processes are incorporated by
the algebraic functions R0(., .), R1(., .). The doping profile C = C(x) (x being
the spatial variable) represents a fixed background charge distribution of donator
and acceptor impurities. In (1.1) the electron density n(x) ≥ 0, the hole density
p(x) ≥ 0, the electric potential V (x), the Quantum Quasi Fermi Levels F (x), G(x)
of electrons and holes, and the current densities ~Jn(x), ~Jp(x) of electrons and holes
are unknown.
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The boundary ∂Ω splits into two parts. The contact region ΓD where charge
densities, electric potential and Quantum Quasi Fermi Levels are prescribed and
the isolating region ΓN where homogeneous Neumann boundary conditions are
assumed. The contact region may contain inversion layers Γ◦ where the charge
densities vanish. This fact was pointed out by Ancona [3] as being an important
issue which can be dealt with in the framework of QDD whereas it is not possible
to assume vanishing charge densities within classical drift-diffusion models.

The paper is organized as follows. In section 2 existence of solutions of (1.1)
involving strong inversion layers is proven. In the case of nonvanishing boundary
conditions for the charge densities, the analysis can be carried out further. We
prove in section 3 that in the semiclassical limit ε→ 0, the solutions of the QDD
converge strongly to solutions of the classical drift diffusion model. We end the
paper with some concluding remarks in section 4.

2. Existence of solutions

2.1. Assumptions

We shall make use of the following assumptions.
A1) Ω ⊂ Rd, d = 1, 2 or d = 3 is a bounded domain. ∂Ω is C0,1 and piecewise

regular. ∂Ω splits into disjoint sets ΓD,ΓN such that ΓD has nonvanishing
d − 1-dimensional Hausdorff measure. ΓD = Γ+ ∪ Γ◦. Γ̃ is the union of
ΓD ∩ ΓN and the non regular parts of ∂Ω.

A2) The enthalpy functions hN , hP belong to C((0,∞) : R), are strictly mono-
tone increasing with

lim
u→∞

hN (u) = lim
u→∞

hP (u) =∞

and the map
u 7→

√
uhN,P (u)

belongs to C([0,∞) : R).
A3) R0 belongs to C(R× R : [0,∞)).
A4) R1 belongs to C(R×R : R) is monotone increasing in each argument and has

the following property: Given m,M ∈ R,m ≤M there exist F, F ,G,G ∈ R
such that F,G ≤ m ≤M ≤ F,G and

R1(F,G) = R1(F,G) = 0.

A5) The doping profile C is in L∞(Ω).
In assumption A1) the boundary part Γ◦ (which may be void) represents strong

inversion layers. ΓN is the isolating part of the boundary. The monotonicity
of the enthalpy functions hN , hP is satisfied in the isothermal case (hN,P (u) =
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Figure 1.
The domain and the boundary conditions

Tn,pu with Tn,p > 0) and leads to convexity properties used in the proofs. The
assumptions on R0, R1 are trivially satisfied in case no generation-recombination
processes (R0 = R1 = 0) are taken into account. In classical drift-diffusion models
standard generation-recombination terms can be written as

R = R0(n, p)R1(F,G) =
1

a0 + a1|n|+ a2|p|
(

exp(F +G)− δ2
)

with positive constants a0, a1, a2, δ. We note that δ is chosen such that the
generation-recombination rate vanishes in thermal equilibrium. We supply (1.1)
with the following boundary conditions.

Γ+ : n = n+(x), p = p+(x), V = Veq(x) + Vext(x),
F = Feq + Vext(x), G = Geq − Vext(x)

Γ◦ : n = 0, p = 0, V = Veq(x) + Vext(x)

ΓN : ∇V · ν = ∇F · ν = ∇G · ν = 0.

(2.2)

We assume that n+, p+ are nonnegative functions of L∞(Ω)∩H1(Ω) which are
uniformly bounded away from zero. Veq is the equilibrium potential and Vext is
the applied voltage. We assume that Veq , Vext ∈ L∞(Ω)∩H1(Ω). The equilibrium
values Feq , Geq of the Quantum Quasi Fermi Potentials are constant [25].
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2.2. The result

The main result of this section is

2.1. Under the assumptions of subsection 2.1 the system (1.1) with boundary con-
ditions (2.2) possesses a solution n, p, V, F,G ∈ L∞(Ω) ∩ H1(Ω). Furthermore,
n, p, V, F,G ∈ CB(Ω), n(x), p(x) > 0 for all x ∈ Ω and n, p satisfy homogeneous
Neumann boundary conditions on ΓN .

The proof of this theorem is carried out in several steps.

Step 1: We introduce new variables which make the analysis more tractable.
Given f ∈ L2(Ω) we define Φ[f ] = Φ to be the (unique) H1-solution of

−λ2∆Φ = f, Φ = 0 on ΓD,∇Φ · ν = 0 on ΓN .

Standard results guarantee that Φ[.] is a weakly sequentially L2(Ω)-H1(Ω) contin-
uous mapping. Furthermore, Φ[.] maps L2(Ω) continuously into L∞(Ω). Let Φe
be the (unique) H1-solution of

−∆Φe = 0, Φe = Veq + Vext on ΓD, ∇Φe · ν = 0 on ΓN .

Note that Φe is in L∞(Ω). With these notations the electrostatic potential can be
written as V = Φ[n− p− C] + Φe.

Next, we introduce ρ =
√
n and σ =

√
p as new variables. For given Quantum

Quasi Fermi Potentials F,G the system (1.1),(2.2) is formally equivalent to the
Euler-Lagrange equations of the functional

Eε(ρ, σ) = ε2
∫
|∇ρ|2 + ξε2

∫
|∇σ|2

+
∫
HN (ρ2) +

∫
HP (σ2) +

1
2

∫
|∇Φ[ρ2 − σ2 − C]|2

+
∫

(ρ2 − σ2)Φe −
∫

(Fρ2 +Gσ2)

(2.3)

where
HN,P (s) =

∫ s

1
hN,P (u) du. (2.4)

Once ρ, σ are computed as minimizers of Eε the Fermi levels F,G have to be
recomputed from the current relations (second and third equation of (1.1). Hence
one may wish to apply a Schauder fixed point argument to prove the existence
of solutions. However, this idea meets several difficulties essentially due to the
existence of vacuum on parts of the boundary. Vacuum in general leads to a lack
of differentiability of the functional Eε and to degeneration of the current relations.
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Step 2: To cope with the problems mentioned above, a modified functional Eδ
and modified current relations are introduced.

Eδ(ρ, σ) = ε2
∫
|∇ρ|2 + ξε2

∫
|∇σ|2

+
∫
Hδ
N (ρ2) +

∫
Hδ
P (σ2) +

1
2

∫
|∇Φ[ρ2 − σ2 − C]|2

+
∫

(ρ2 − σ2)Φe −
∫

(Fρ2 +Gσ2)

(2.5)

where δ ∈ (0,∞) and

Hδ
N,P (t) =

∫ t

1
hδN,P (s) ds. (2.6)

with hδN,P = max{hN,P , hN,P (δ)}. The current relations are replaced by

∇ · (µn[ρ2]δ∇F ) = R0(ρ2, σ2)R1(F,G), (2.7)

∇ · (µp[σ2]δ∇G) = R0(ρ2, σ2)R1(F,G). (2.8)

where
[ρ2]δ = max{ρ2, δ} , [σ2]δ = max{σ2, δ}.

For each δ > 0 we define an operator Tδ on

C = {(F,G) ∈ L2(Ω)× L2(Ω) : F ≤ F ≤ F,G ≤ G ≤ G} (2.9)

where F,G, F ,G ∈ R are chosen such that assumption A4) of subsection 2.1 is
satisfied with

m = min{Feq, Geq} − ‖Vext‖∞ − 1, (2.10)

M = max{Feq, Geq}+ ‖Vext‖∞ + 1. (2.11)

Given (F,G) ∈ C we shall prove the existence and uniqueness of a non negative
minmizer (ρ, σ) of the functional Eδ in the set (ρ◦, σ◦)+H1

0 (Ω∪ΓN ), where ρ◦, σ◦ ∈
L∞(Ω) ∩H1(Ω) satisfy

on Γ+ : ρ◦ =
√
n+(x), σ◦ =

√
p+(x),

on Γ◦ : ρ◦ = 0, σ◦ = 0.
(2.12)

Then Tδ(F,G) = (F ∗, G∗) is computed as a solution of

∇ · (µn[ρ2]δ∇F ∗) = R0(ρ2, σ2)R1(F ∗, G), (2.13)

∇ · (µp[σ2]δ∇G∗) = R0(ρ2, σ2)R1(F,G∗) (2.14)

such that the set C is invariant under Tδ. The existence of a fixed point (Fδ, Gδ) of
Tδ follows with the aid of standard estimates from Schauder’s fixed point theorem.

Step 3: We derive δ-independent estimates on ρδ, σδ, Fδ, Gδ. The most important
estimates are lower bounds away from zero for ρδ, σδ on compact subsets of Ω not
intersecting Γ◦ ∪ Γ̃. These estimates allow to pass to the limit δ → 0 and to finish
the proof of the theorem 2.1.
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2.3. Existence of Fixed Points of Tδ

In this subsection we prove that for all δ > 0 and all given F,G ∈ L∞(Ω) the
functional Eδ possesses a unique non negative minimizer (ρ, σ) in (ρ◦, σ◦)+H1

0 (Ω∪
ΓN ).

Theorem 2.2. Under the assumptions of subsection 2.1 and for given F,G ∈
L∞(Ω), δ ∈ (0, 1], the functional Eδ possesses a unique non negative minimizer
(ρδ, σδ) in (ρ◦, σ◦)+H1

0 (Ω∪ΓN ). Additionally, (ρδ, σδ) has the following properties:
a) ρδ, σδ belong to CB(Ω).
b) There exists D = D(‖F‖∞, ‖G‖∞) > 0 independent of δ such that

‖ρδ‖∞, ‖ρδ‖H1 , ‖σδ‖∞, ‖σδ‖H1 ≤ D.

c) ρδ, σδ are solutions of the Euler-Lagrange equations associated with Eδ:

ε2∆ρδ = ρδ

(
Vδ + hδN (ρ2

δ )− F
)

ξε2∆σδ = σδ
(
−Vδ + hδP (σ2

δ )−G
)

−λ2∆Vδ = ρ2
δ − σ2

δ − C

(2.15)

Furthermore, (F,G) 7→ (ρδ, σδ) is a continuous map from C, endowed with the
L2(Ω)× L2(Ω)-norm, into H1(Ω)×H1(Ω).

Proof of theorem 2.2. SetM = (ρ◦, σ◦) +H1
0 (Ω∪ΓN ). Due to limu→∞ hδN,P (u) =

∞ the functional Eδ is bounded from below and coercive with respect to the
L2(Ω) × L2(Ω) norm. Hence infM Eδ exists and minimizing sequences of Eδ in
M are bounded in L2(Ω) × L2(Ω). Actually, with respect to this observation
and due to the leading terms of Eδ each minimizing sequence of Eδ is bounded
in H1(Ω) × H1(Ω) and therefore possesses subsequences weakly convergent in
H1(Ω) ×H1(Ω). Now the existence of minimizers of Eδ follows from the H1(Ω)-
weakly sequentially lower semicontinuity of Eδ (which is easy to see) and the fact
that M is H1(Ω) × H1(Ω)- weakly sequentially closed. The existence of a non
negative minimizer is due to the fact that, when (ρ, σ) ∈ M then (|ρ|, |σ|) ∈ M
and

Eδ(|ρ|, |σ|) = Eδ(ρ, σ).

The uniqueness of the non negative minimizer follows from the pseudo convexity
inequality (see [23]):

Eδ

(√
1
2
ρ2

1 +
1
2
ρ2

2,

√
1
2
σ2

1 +
1
2
σ2

2

)
<

1
2
Eδ(ρ1, σ1) +

1
2
Eδ(ρ2, σ2)

when (|ρ1|, |σ1|) 6≡ (|ρ2|, |σ2|).
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Furthermore, it is readily seen that for varying δ ∈ (0, 1], the infima of Eδ inM
range in a ‖F‖∞, ‖G‖∞-dependent compact subset of R. This gives in connection
with the previous investigations

‖ρδ‖H1(Ω), ‖σδ‖H1(Ω) ≤ D′

where D′ = D′(‖F‖∞, ‖G‖∞) > 0 is independent of δ ∈ (0, 1]. Now assertions
a),b),c) follow in analogy to the proof of Theorem 1 in [25]. The continuous
dependence of (ρδ, σδ) on (F,G) with respect to the specified norms is readily seen
due to the pseudo convexity of Eδ. �

Given (F,G) ∈ C, Theorem 2.2 defines (ρδ, σδ) uniquely. To compute Tδ(F,G) =
(F ∗, G∗) we have to solve (2,13), (2.14) in C.

Lemma 2.3. Under the assumptions of subsection 2.1 and for given (F,G) ∈ C,
δ ∈ (0, 1], let (ρδ, σδ) be as in Theorem 2.2. Then the system

∇ · (µn[ρ2
δ ]δ∇F ∗) = R0(ρ2

δ , σ
2
δ )R1(F ∗, G), (2.16)

∇ · (µp[σ2
δ ]δ∇G∗) = R0(ρ2

δ , σ
2
δ )R1(F,G∗) (2.17)

subject to the boundary conditions

F ∗ − Feq − Vext, G∗ −Geq + Vext ∈ H1
0 (Ω ∪ ΓN ∪ Γ◦) (2.18)

possesses a unique solution (F ∗, G∗) ∈ C (cf (2.9)). Furthermore, given any D > 0
the map (ρδ, σδ) 7→ (F ∗, G∗) is continuous from

D = {(ρδ, σδ) ∈ L2(Ω)× L2(Ω) : ‖ρδ‖∞, ‖σδ‖∞ ≤ D},

into C, provided both C, D are endowed with the L2(Ω)× L2(Ω) norm.

Proof of Lemma 2.3. The proof is carried out by means of Schauder’s fixed point
theorem. (A similiar argumentation in case R1(F,G) = exp(F + G) − a2 can be
found in [18].) Given (f, g) ∈ C consider the following system of equations for
f∗, g∗

∇ · (µn[ρ2
δ ]δ∇f∗) = R0(ρ2

δ , σ
2
δ )R1(f,G), (2.19)

∇ · (µp[σ2
δ ]δ∇g∗) = R0(ρ2

δ , σ
2
δ )R1(F, g) (2.20)

subject to the boundary conditions

f∗ − Feq − Vext, g∗ −Geq + Vext ∈ H1
0 (Ω ∪ Γ−). (2.21)

The right hand sides of (2.19), (2.20) belong to L∞(Ω). Due to the definition
of [.]δ and ρ, σ ∈ L∞(Ω), equations (2.19), (2.20) are uniformly elliptic. The
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standard theory for elliptic PDE’s of order two (see e.g. [14]) provides existence
and uniqueness of a solution f∗, g∗ ∈ CB(Ω) ∩H1(Ω). It is easy to see that the
map (f, g) 7→ (f∗, g∗) from C to H1(Ω)×H1(Ω) is compact and continuous if C is
endowed with the L2(Ω)× L2(Ω) norm. Defining

S(f, g) ≡ ([f∗]FF , [g
∗]GG)

where for given k,K ∈ R, k ≤ K
[.]Kk : H1(Ω)→ H1(Ω)

φ 7→ [φ]Kk ≡


K if K ≤ φ
φ if k < φ < K

k if φ ≤ k
it is readily seen that S is a compact, continuous operator from C into C. C being a
closed, convex subset of L2(Ω)×L2(Ω), the existence of a fixed point of S follows
from Schauder’s fixed point theorem. Let (F ∗, G∗) = ([f∗]FF , [g

∗]GG ∈ C be a fixed
point of S. To establish (2.19), (2.20) it remains to show that F ≤ f∗ ≤ F,G ≤
g∗ ≤ G. Since f∗ ∈ C(Ω) the set {f∗−F < 0} is open and due to the definition of
F (see (2.10)), each component Ω− of {f∗−F < 0} does not intersect Γ+. Hence,
one gets on Ω−

∇ · (µn[ρ2
δ ]δ∇[f∗ − F ]) = R0(ρ2

δ , σ
2
δ )R1(F ∗, G), (2.22)

subject to the boundary conditions

f∗ − F ∈ H1
0 (Ω− ∪ (∂Ω− ∩ Γ−)). (2.23)

Making use of the assumed properties of R0, R1 (see A4)) it follows for all x ∈ Ω−

R0(ρ2
δ , σ

2
δ )R1(F ∗, G) = R0(ρ2

δ , σ
2
δ )R1(F,G) ≤ R0(ρ2

δ , σ
2
δ )R1(F,G) = 0,

which leads to f∗ − F ≥ 0 on Ω− by the maximum principle. This contradiction
shows that Ω− = ∅ i.e. f∗ ≥ F . The remaining inequalities f∗ ≤ F , G ≤ g∗ ≤ G
follow in analogy. This shows that (2.16), (2.17), (2.18) has at least one solution.
Uniqueness of the solution follows from the assumed monotonicity of R1, the non
negativity of R0, the continuity of each solution of (2.16), (2.17), (2.18) belonging
to C and from the maximum principle.

Finally, the continuity of the map (ρδ, σδ) 7→ (F ∗, G∗) follows from the uniform
boundedness of ρδ, σδ in L∞(Ω), the uniform ellipticity of the involved differential
operators and the continuity of R0, R1. �

Fixed point of Tδ. We first recall Tδ(F,G) = (F ∗, G∗) ∈ C ∩ (H1(Ω)×H1(Ω))
where (F ∗, G∗) is defined as in Lemma 2.3. Due to Theorem 2.2 and Lemma 2.3,
the map Tδ : C → C is continuous and compact provided C is equipped with the
L2(Ω) norm. As C is a closed, convex subset of L2(Ω)× L2(Ω), the existence of a
fixed point of Tδ follows from Schauder’s fixed point theorem. �
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2.4. δ-independent estimates

Throughout this subsection we assume that the assumptions of subsection 2.1 hold.
Furthermore, let ρδ, σδ, Fδ, Gδ, Vδ be solutions of

ε2∆ρδ = ρδ
(
Vδ + hδN (ρ2

δ)− Fδ
)

ξε2∆σδ = σδ
(
−Vδ + hδP (σ2

δ )−Gδ
)

−λ2∆Vδ = ρ2
δ − σ2

δ − C
∇ · (µn[ρ2

δ ]δ∇Fδ) = R0(ρ2
δ , σ

2
δ )R1(Fδ, Gδ),

∇ · (µp[σ2
δ ]δ∇Gδ) = R0(ρ2

δ , σ
2
δ )R1(Fδ, Gδ)

(2.24)

subject to the boundary conditions

Γ+ : ρδ =
√
n+(x), σδ =

√
p+(x), V = Veq(x) + Vext(x),

Fδ = Feq + Vext(x), Gδ = Geq − Vext(x)

Γ◦ : ρδ = 0, σδ = 0, Vδ = Veq(x) + Vext(x)

ΓN : ∇Vδ · ν = ∇Fδ · ν = ∇Gδ · ν = 0

(2.25)

where (Fδ, Gδ) is a fixed point of Tδ in C and δ ∈ (0, 1]. Due to Theorem 2.2 and
Lemma 2.3 the following δ-independent estimates are available:

‖ρδ‖∞, ‖ρδ‖H1 , ‖σδ‖∞, ‖σδ‖H1 ≤ D, (2.26)

F ≤ Fδ ≤ F , G ≤ Gδ ≤ G, (2.27)

where here and in the sequel D are various positive constants independent of δ.
Due to the L∞(Ω)-estimates of (2.26) it follows from Poisson’s equation of (2.24)
and the boundary conditions (2.25) that

‖Vδ‖∞, ‖Vδ‖H1 ≤ D. (2.28)

By a slight abuse of notation let (δ) be a sequence of positive real numbers in (0, 1]
tending to zero such that

ρδ → ρ◦, σδ → σ◦, Vδ → V◦

strongly in all Lr(Ω)-spaces with r ∈ [1,∞), weakly in H1(Ω), weak* in L∞(Ω)
and a.e. in Ω.
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Furthermore it can be assumed without loss of generality that Fδ → F◦, Gδ →
G◦ weak* in L∞(Ω) with

F ≤ F◦ ≤ F , G ≤ G◦ ≤ G

as δ → 0. These types of convergence are by far sufficient to pass to the limit
δ → 0 in the first three equations of (2.24):

ε2∆ρ◦ = ρ◦
(
V◦ + hN(ρ2

◦)− F◦
)

ξε2∆σ◦ = σ◦
(
−V◦ + hP (σ2

◦)−G◦
)

−λ2∆V◦ = ρ2
◦ − σ2

◦ − C

(2.29)

subject to the boundary conditions

Γ+ : ρ◦ =
√
n+(x), σ◦ =

√
p+(x), V◦ = Veq(x) + Vext(x),

Γ◦ : ρ◦ = 0, σ◦ = 0, V◦ = Veq(x) + Vext(x)

ΓN : ∇V◦ · ν = 0.

(2.30)

The main difficulty when passing to the limit δ → 0 in the current relations as
well as in the boundary conditions for Fδ, Gδ is the lack of uniform ellipticity due
to the assumed vanishing particle density on Γ◦.

To cope with this difficulty, we first claim that ρ◦(x), σ◦(x) > 0 for all x ∈ Ω.
Indeed, two cases are possible

• If limu→0 hN (u) ∈ R, i.e. if hN is bounded from below then the right hand
side of the first equation of (2.29) is of the form ”ρ◦ × L∞(Ω)-function” such
that Harnack’s inequality (see e.g. [14]) applies: As ρ◦ ≥ 0 either ρ◦ ≡ 0 or
ρ◦(x) > 0 for all x ∈ Ω must hold. As ρ◦ > 0 on Γ+, we have ρ◦ > 0 in Ω.
• If limu→0 hN (u) = −∞ consider the set Ω0 = {x ∈ Ω : ρ◦(x) = 0}. By

continuity of ρ◦, this set is closed in the relative topology of Ω. On the other
hand, if Ω0 is nonvoid, choose an x◦ ∈ Ω0. Then by continuity ρ◦(V◦+hN (ρ2

◦)−
F◦) ≤ 0 in an open ball B∗ containing x◦ contained in Ω. Hence ∆ρ◦ ≤ 0 in the
open set B∗. As ρ◦ assumes its non negative infimum 0 in B∗ it follows that
ρ◦ = 0 in B∗ which proves that Ω0 is relatively open in Ω. As Ω is connected,
Ω0 = Ω or Ω0 = ∅ must hold. Since ρ◦ > 0 on Γ+ it follows that Ω0 = ∅,
i.e. ρ◦ > 0 in Ω. It follows in analogy that σ◦ > 0 in Ω.

Now let K be the closure of a smooth subdomain K◦ of Ω not intersecting Γ̃∪Γ◦
(we recall that Γ̃ is the set of singular points of ∂Ω). One readily verifies with the
aid of the piecewise smoothness of ∂Ω, ∂K and Hopf’s principle that infK ρ◦ > 0.
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Figure 2.
The set K

Furthermore, ρδ can be written as ρB+ ρ̃δ where ρB is the unique (not depend-
ing on δ) harmonic extension of the boundary data and ρ̃δ satisfies homogeneous
boundary conditions on ∂Ω. Analogously, we have

ρ◦ = ρB + ρ̃◦.

It follows from a straightforward extension of Lemma A.2 of [6] that

||∇ρ̃δ||2L∞(K) ≤ C(K)
(
||∆ρ̃δ||L∞(Ω)||ρ̃δ||L∞(Ω)

)
.

Since the right hand side of this inequality is bounded independently of δ, then
we have

ρ̃δ → ρ̃◦ strongly in C(K)

Since ρB ∈ L∞(Ω), the sequence ρδ converges strongly in L∞(K) towards ρ◦.
As infK ρ◦ > 0 one gets for ρδ a uniform lower bound away from zero for all
sufficiently small δ. It follows from the fourth and fifth equation of (2.24) that the
H1(K◦)-norm of Fδ is bounded for all δ ∈ (0, 1]. Hence

Fδ → F◦ weakly in H1(K◦)

which implies
Fδ → F◦ weakly in H1

loc(Ω ∪ Γ+ ∪ ΓN ).

Similarly, we can prove

Gδ → G◦ weakly in H1
loc(Ω ∪ Γ+ ∪ ΓN ).
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It follows from this result that Fδ and Gδ converge strongly in L2
loc(Ω) which

implies the almost everywhere convergence. The uniform L∞ bounds on Fδ and
Gδ imply that the convergence actually holds in Lr(Ω) for every r < ∞. Hence
we can pass to the limit in the current relations (last two equations of (2.24)) and
in the boundary conditions on Γ+ ∩ ΓN (2.25). Therefore F◦ and G◦ satisfy

∇ · (µnρ2
◦∇F◦) = R0(ρ2

◦, σ
2
◦)R1(F◦, G◦),

∇ · (µpσ2
◦∇G◦) = R0(ρ2

◦, σ
2
◦)R1(F◦, G◦)

(2.31)

subject to the boundary conditions

Γ+ : F◦ = Feq + Vext(x), G◦ = Geq − Vext(x)
ΓN : ∇F◦ · ν = ∇G◦ · ν = 0

(2.32)

This finishes the proof of Theorem 2.1. �

3. The semiclassical limit ε→ 0

This section is concerned with the question whether solutions of the QDD converge
to solutions of classical drift-diffusion models as ε → 0. This question arises
whenever the semiconductor device under consideration is subject to constraints
close to classical settings.

3.1. Boundary conditions

Throughout section 3 it is assumed that assumptions A1)-A5) of subsection 2.1
hold.

In classical drift-diffusion models the boundary data for electrons and holes are
usually assumed to be respective thermal equilibrium values. This motivates the
replacement of (2.2) by

Γ+ : n = nεeq(x), p = pεeq(x), V = V εeq(x) + Vext(x),
F = F εeq + Vext(x), G = Gεeq − Vext(x),

Γ◦ = ∅,

ΓN : ∇V · ν = ∇F · ν = ∇G · ν = 0,

(3.33)

where for fixed ε > 0 the equilibrium functions nεeq, pεeq, V εeq are in CB(Ω)∩H1(Ω),
see [25]. Let us also recall that

V εeq(x) + hN (nεeq(x)) − F εeq = −V εeq(x) + hP (pεeq(x)) −Gεeq = 0. (3.34)
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Furthermore standard drift-diffusion models employ additional assumptions on
the enthalpy functions hN,P . For low densities the particle pressure Pn,p =∫
h′n,p(u)u du is assumed to be a linear function of the charge density which

amounts to
hN,P (u) = Tn,p log u for ”small” positive u.

As u→∞ however asymptotic expansions of exchange-correlation terms based on
Fermi Dirac statistics give [15]

hN,P (u) = O(u2/3) as u→∞.

We shall therefore make use of the following additional assumptions on hN,P :
A6) hN,P are locally Lipschitz continuous and

lim
u→0

hN,P (u) = −∞ , lim inf
u→∞

hN,P (u)u−1/2−δ =∞

for some positive δ.
Let us notice that the enthalpy functions described above satisfy the hypothesis
A6). We shall assume
A7) Veq+hN (neq)−Feq = −Veq+hP (peq)−Geq = 0, nεeq → neq, p

ε
eq → peq, V

ε
eq →

Veq strongly in H1(Ω) and weak* in L∞(Ω) as ε → 0 and there exists a
K > 0 such that K ≤ nεeq, pεeq for all ε > 0. Furthermore, F εeq → Feq , G

ε
eq →

Geq as ε→ 0.
We note that all assumptions of A7) have been proven in [25].

The generation-recombination rate R0(., .)R1(., .) vanishes in thermal equilibrium.
Therefore it depends in general on ε. We shall assume
A8) lim

ε→0
Rε0 = R0, lim

ε→0
Rε1 = R1 locally in C(R2).

In the sequel we shall employ the following notations:
For given ε > 0 let ρε, σε, V ε, F ε, Gε ∈ CB(Ω) ∩ H1(Ω) be as in Theorem 2.1 a
solution of

ε2∆ρε = ρε
(
V ε + hN

(
(ρε)2

)
− F ε

)
ξε2∆σε = σε

(
−V ε + hP

(
(σε)2

)
−Gε

)
−λ2∆V ε = (ρε)2 − (σε)2 − C

∇ ·
(
µn (ρε)2∇F ε

)
= Rε0

(
(ρε)2

, (σε)2
)
Rε1 (F ε, Gε) ,

∇ ·
(
µp (σε)2∇Gε

)
= Rε0

(
(ρε)2

, (σε)2
)
Rε1 (F ε, Gε)

(3.35)



Vol. 49 (1998) On the stationary quantum drift-diffusion model 265

subject to the boundary conditions

Γ+ : ρε =
√
nεeq(x), σε =

√
pεeq(x), V ε = V εeq(x) + Vext(x),

F ε = F εeq + Vext(x), Gε = Gεeq − Vext(x),

ΓN : ∇V ε · ν = ∇F ε · ν = ∇Gε · ν = 0,

(3.36)

The asymptotic result

It is the aim of the subsequent analysis to prove the following result:

Theorem 3.1. Let the assumptions of subsection 3.1 hold. Then there exists a se-
quence (ε) of positive real numbers converging to zero and functions n, p, V, F,G ∈
CB(Ω) ∩H1(Ω) satisfying

0 = V + hN (n)− F
0 = −V + hP (p)−G

−λ2∆V = n− p− C
∇ · (µnn∇F ) = R0 (n, p)R1 (F,G) ,
∇ · (µpp∇G) = R0 (n, p)R1 (F,G)

(3.37)

subject to the boundary conditions

Γ+ : n = neq(x), p = peq(x), V = Veq(x) + Vext(x),
F = Feq + Vext(x), G = Geq − Vext(x),

ΓN : ∇V · ν = ∇F · ν = ∇G · ν = 0,

(3.38)

such that

ρε →
√
n, σε →√p, V ε → V, F ε → F,Gε → G strongly in H1(Ω), weak* in L∞(Ω)

as ε→ 0.

The proof of this Theorem is carried out in several steps.
Step 1: First of all, we prove that the first three equations of 3.37 are equivalent
to the minimization of

F(n, p) =
∫
HN (n) +

∫
HP (p) +

1
2

∫
|∇Φ[n− p− C]|2

+
∫

(n− p)Φe −
∫

(Fn+Gp)
(3.39)
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in L3/2(Ω) × L3/2(Ω). Using the regularity of unique positive minimizer (n∗, p∗)
of (3.39), we construct comparison functions for (ρε, σε). We recall that (ρε, σε)
is a solution of (3.35), (3.36) and is a minimizer of the functional

Eε(ρ, σ) = ε2
∫
|∇ρ|2 + ξε2

∫
|∇σ|2

+
∫
HN (ρ2) +

∫
HP (σ2) +

1
2

∫
|∇Φ[ρ2 − σ2 − C]|2

+
∫

(ρ2 − σ2)Φe −
∫

(F ερ2 +Gεσ2)

(3.40)

in Mε =
(√

nεeq,
√
pεeq

)
+H1

0 (Ω ∪ ΓN ).

Step 2: By means of the comparison functions, we derive ε independent estimates
on ρε, σε, V ε, F ε, Gε. By construction, F ε, Gε are bounded in L∞(Ω) independent-
ly of ε. This fact and the growth condition on hN,P ensure that V ε is uniformly
bounded in L∞(Ω). This allows to estimate ρε, σε uniformly from above and - in
view of limu→0 hN,P (u) = −∞ - away from zero from below. Hence a uniform
H1(Ω)-estimate on F ε, Gε is available. The assumed H1(Ω)-convergence of the
equilibrium solutions determining the boundary conditions and the comparison
technique mentioned above allows to pass to the limit ε→ 0 then.

3.3. The limiting problem

Lemma 3.2. Under the assumptions of subsection 3.1, let F,G be fixed in L∞(Ω).
Then the functional F admits a unique non negative minimizer (n, p) ∈ L3/2(Ω)×
L3/2(Ω). The minimizer satisfies

0 = V + hN (n)− F
0 = −V + hP (p)−G

−λ2∆V = n− p− C, V − Veq − Vext ∈ H1
0 (Ω ∪ ΓN )

is actually in L∞(Ω) and there exists K > 1 depending on the L∞ norms of F
and G such that

1
K
≤ n, p ≤ K.

Moreover, if F and G are additionally in H1(Ω), then the same holds for n and
p.

Proof. It is readily seen that F is a srictly convex coercive lower semi continuous
functional in the set of non negative pairs of functions of L3/2(Ω). This implies
existence and uniqueness of the minimizer (n, p).
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Let us now prove that the set Ω0 = {n = 0} has zero measure. We remark that

1
t

(
F(n+ t1Ω0 , p)−F(n, p)

)
≥ 0, ∀ t ≥ 0. (3.42)

But it is easy to see that the left hand side of this inequality is equal to

H(t)
t

meas (Ω0) +O(1), as t→ 0+.

The above expression tends to −∞ whenever meas (Ω0) > 0 contradicting (3.42).
Hence meas (Ω0) = 0. It follows in analogy that meas ({p = 0}) = 0.

Let us now establish the Euler-Lagrange equations satisfied by (n, p). For given
K ∈ N let ΩK = {1/K ≤ n ≤ K}. Due to the positivity almost everywhere of n
we have

Ω =
⋃
K∈N

ΩK .

Fix K ∈ N and let ϕ ∈ L∞(Ω) supported in ΩK . It follows that n + tϕ is
nonnegative for t small enough and the Gateaux differential ofF at (n, p) following
the direction (ϕ, 0) exists and is equal to zero.

F ′(n, p)[ϕ, 0] =
∫

ΩK
(V + hN (n)− F )ϕ = 0 (3.43)

where V is the solution of

−λ2∆V = n− p− C, V − Veq − Vext ∈ H1
0 (Ω ∪ ΓN ).

Due to the growth condition A6), we have n, p ∈ L3/2+δ(Ω) which immediately
gives V ∈ L∞. Hence due to (4.3), we have

hN (n) = F − V (3.44)

almost everywhere on Ω which gives thanks to A6) the existence of K > 1 such
that

1
K
≤ n ≤ K.

The estimate concerning p follows in the same manner. The regularity of n, p for
F,G in H1(Ω) follows from (3.44) (hN,P are locally Lipschitz continuous). �
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3.4. End of the proof of theorem 3.1

We first prove uniform bounds on ρε, σε, V ε, F ε and Gε. Due to the construction
of F ε and Gε and due to hypothesis A7) we have uniform L∞ estimates on F ε

and Gε. Now it is easy to see that inf
Mε
Eε is uniformly bounded. It follows from

the assumed growth conditions on hN,P that each term of Eε(ρε, σε) is uniformly
bounded. In particular,

||ρε||L3+δ , ||σε||L3+δ , ||V ε||H1 ≤ D.

This leads, together with A7) to the boundedness of ||V ε||L∞ . An application of
the maximimum principle as in subsection 2.4 together with A7) and the uniform
L∞ bounds of F ε, Gε, V ε gives

1/K ≤ ρε, σε ≤ K (3.45)

where K > 1 does not depend on ε. It follows from the current relations that∫
µn(ρε)2|∇F ε|2 −

∫
(ρε)2 ∇F ε · ∇Vext

=
∫
Rε0

(
(ρε)2, (σε)2

)
R1(F ε, Gε)(F ε − F εeq − Vext)

∫
µp(σε)2|∇Gε|2 +

∫
(σε)2 ∇Gε · ∇Vext

=
∫
Rε0

(
(ρε)2, (σε)2

)
R1(F ε, Gε)(Gε −Gεeq + Vext)

which gives in connection with (3.45), A3,A4),A8) and Vext ∈ L∞(Ω)∩H1(Ω), see
subsection 2.1,

||F ε||H1 , ||Gε||H1 ≤ D

for a D > 0 independent of ε. We therefore have after passing to a subsequence

(ρε)2 → n, (σε)2 → p weak* in L∞(Ω),

F ε → F, Gε → G weakly in H1(Ω) , weak* in L∞(Ω),

V ε → V strongly in H1(Ω)

where clearly
1/K ≤ n, p ≤ K

and F,G, V ∈ L∞(Ω) ∩H1(Ω) as well as

−λ2∆V = n− p− C, V − Veq − Vext ∈ H1
0 (Ω ∪ ΓN )
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and finally

F − Feq − Vext , G−Geq + Vext ∈ H1
0 (Ω ∪ ΓN ).

From now on the functions F and G appearing in the definition of F (3.39) are
the weak limits of F ε and Gε. We shall prove now that (n, p) is nothing but the
minimizer (n∗, p∗) of F in the set of pairs of non negative functions of L3/2(Ω).
Indeed it follows from Lemma 3.2 that such a minimizer of F exists uniquely and
satisfies

0 = V + hN (n∗)− F
0 = −V + hP (p∗)−G

which implies, in view of A7), on one hand that (n∗, p∗) ∈ (neq, peq)+H1
0 (Ω∪ΓN )

and on the other hand that there exists a constant K > 1 such that 1/K ≤
n∗, p∗ ≤ K.

Given ε > 0 let

Mε = (
√
nεeq,

√
pεeq) +H1

0 (Ω ∪ ΓN ).

We note that for all ε > 0 the pair
(√

n∗ −√neq +
√
nεeq,
√
p∗ −√peq +

√
pεeq

)
belongs to Mε. Hence due to the minimizing property of (ρε, σε),

lim sup
ε→0
Eε(ρε, σε) ≤ lim sup

ε→0
Eε
(√

n∗ −√neq +
√
nεeq,
√
p∗ −√peq +

√
pεeq

)
which gives due to A7)

lim sup
ε→0
Eε(ρε, σε) ≤ F(n∗, p∗). (3.46)

On the other hand, we have

Eε(ρε, σε) = F((ρε)2, (σε)2) + ε2
∫
|∇ρε|2 + ξε2

∫
|∇σε|2 +

∫
(F − F ε)(ρε)2

+
∫

(G−Gε)(σε)2 +
∫

(Φεe − Φ◦e)((ρ
ε)2 − (σε)2)

The last three terms of the right hand side of the above formula tend to zero thanks
to the strong convergence of F ε, Gε,Φεe in L2(Ω). Therefore, it follows from the
weak lower sequential semicontinuity of F in L2(Ω)× L2(Ω) that

lim inf
ε→0
Eε(ρε, σε) ≥ F(n, p). (3.47)
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It follows from (3.46), (3.47) that actually F(n, p) ≤ F(n∗, p∗) and we deduce
from Lemma 3.2 and from the minimizing property of (n∗, p∗) that

(n∗, p∗) = (n, p).

This settles the algebraic relations

V = F − hN (n) = hP (p)−G.

Hence, we have proven that (3.41) holds in the limit and that all the boundary
conditions (3.38) are satisfied. It remains now to pass to the limit in the current
relations. Due to their nonlinearity, we need strong Lr convergence of ρε and σε.

Strong Lr convergence of densities

Due to the convexity of HN,P we have after a possible extraction of a subsequence

lim
ε→0

∫
HN ((ρε)2) ≥

∫
HN (n), lim

ε→0

∫
HP ((σε)2) ≥

∫
HP (p).

Furthermore, since
F(n, p) = lim

ε→0
Eε(ρε, σε)

it follows that the above inequalities are actually equalities. Applying Corollary 1
of [25] leads to the strong L1(Ω) convergence of (ρε)2, (σε)2 towards n, p. Due to
the positivity of ρε and σε, we have

ρε →
√
n, σε →√p in L2(Ω) strong.

Actually, the convergence holds strongly in each Lr(Ω) because of the uniform
L∞(Ω) estimates on ρε and σε. In the same spirit, we deduce from the L2 strong
convergence of F ε, Gε and from the boundedness of their L∞ norms, that F ε and
Gε converge strongly in each Lr(Ω). This implies, in view of A8), that

Rε0

(
(ρε)2, (σε)2

)
Rε1 (F ε, Gε)→ R0 (n, p)R1 (F,G)

strongly in in all Lr(Ω) spaces, r ∈ [1,∞), as ε → 0. This is sufficient to insure
that F,G satisfy { ∇ · (µnn∇F ) = R0 (n, p)R1 (F,G) ,

∇ · (µpp∇G) = R0 (n, p)R1 (F,G)

subject to the boundary conditions

F − Feq − Vext, G−Geq + Vext ∈ H1
0 (Ω ∪ ΓN ).
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Strong H1 convergence of Fermi levels

We have
∇ · (µnn∇F ) = S

and
∇ · (µnnε∇F ε) = Sε

where S and Sε are in L2(Ω) and Sε converges strongly in L2(Ω) towards S and
nε = (ρε)2 is bounded in L∞ and converges strongly to n in L2(Ω). Multiplying
the above equations by F ε−F , taking the difference and integrating on Ω, we find∫

Ω
n|∇(F ε − F )|2 dx =

∫
Ω

(Sε − S)(F ε − F ) dx

+ (F εeq − Feq)
∫

Γ+

(nε∇F ε − n∇F ) · ν ds

−
∫

Ω
(nε − n)∇F · (∇F ε −∇F ) dx.

It is readily seen that the first term of the right hand side converges to zero as
ε tends to zero. Let us now prove that the second term tends to zero as ε → 0.
Since F εeq tends to Feq, it is sufficient to prove that

∫
Γ+

(nε∇F ε − n∇F ) · ν ds is
bounded. For this aim, we let ñε be the unique harmonic function with the same
boundary conditions as nε. Assumption A7) implies that ñε is bounded in H1 as
ε goes to zero. To prove that

∫
Γ+

nε∇F ε.ν ds is bounded, we just recall that F ε

is bounded in H1 and that∫
Γ+

nε∇F ε.ν ds = −
∫

Γ+

F ε∇ñε.ν ds+
∫

Ω
∇ñε.∇F ε dx.

To deal with the third term, we notice that nε converges to n almost everywhere
and nε is bounded in L∞. Hence the Lebesgue dominated convergence theorem
implies that (nε − n)∇F tends to zero strongly in L2(Ω). This implies together
with the weak H1 convergence of F ε that the third term goes to zero in the limit.

This proves, in view of the uniform bound of n away from zero, that

F ε → F, Gε → G strongly in H1(Ω).

Using the variational structure of the problem, we are now able to prove the,

Strong H1 convergence of densities

Given ε > 0 consider the following system of PDE’s:

0 = W ε + hN ((rε)2)− F ε

0 = −W ε + hP ((sε)2)−Gε

−λ2∆W ε = (rε)2 − (sε)2 − C
(3.48)



272 N. Ben Abdallah and A. Unterreiter ZAMP

subject to the boundary conditions

W − V εeq − Vext ∈ H1
0 (Ω ∪ ΓN ). (3.49)

We see with the aid of Lemma 3.2 that (3.48), (3,49) possesses a unique nonneg-
ative solution (rε, sε) in L3(Ω) × L3(Ω). It additionally follows from Lemma 3.2
that rε, sε belong to L∞(Ω) ∩H1(Ω). Thanks to the uniform L∞(Ω) and H1(Ω)
bounds for F ε, Gε and V εeq + Vext we get

1/K ≤ rε, sε ≤ K (3.50)

for a K > 1 independent of ε as well as

‖rε‖H1 , ‖sε‖H1 ≤ D

for a constant D independent of ε. Equations 3.48 are the Euler-Lagrange equa-
tions of

Eεclass(r, s) =
∫
HN (r2) +

∫
HP (s2) +

1
2

∫
|∇Φ[r2 − s2 − C]|2

+
∫

(r2 − s2)Φεe −
∫

(F εr2 +Gεs2)

This observation makes it easy to verify that

Eεclass(rε, sε) ≤ Eεclass(ρε, σε).

On the other hand, (rε, sε) belongs to Mε (see (3.34). Hence

Eε(ρε, σε) ≤ Eε(rε, sε).

These two inequalities imply∫
|∇ρε|2 + ξ

∫
|∇σε|2 ≤

∫
|∇rε|2 + ξ

∫
|∇sε|2 ≤ D (3.51)

where D is independent of ε. Hence

‖ρε‖H1 , ‖σε‖H1 ≤ D

which gives
ρε →

√
n , σε →√p weakly in H1(Ω). (3.52)

Thanks to the Lipschitz continuity of hN,P , the strong H1(Ω) convergence of
F ε, Gε and V εeq , it follows from (3.48), (3.49) that

(rε)2 → n , (sε)2 → p strongly in H1(Ω),
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which gives due to (3.50)

rε →
√
n , sε →√p strongly in H1(Ω),

and therefore

lim
ε→0

∫
|∇rε|2 =

∫
|∇
√
n|2 , lim

ε→0

∫
|∇sε|2 =

∫
|∇√p|2.

It follows from (3.51) that

lim sup
ε→0

(∫
|∇ρε|2 + ξ

∫
|∇σε|2

)∫
|∇
√
n|2 + ξ

∫
|∇√p|2 (3.53)

while the weak H1(Ω) convergence (3.52) implies∫
|∇
√
n|2 ≤ lim inf

ε→0

∫
|∇ρε|2 ,

∫
|∇√p|2 ≤ lim inf

ε→0

∫
|∇σε|2. (3.54)

Now it is readily seen that (3.53), (3.54) together imply

lim
ε→0

∫
|∇ρε|2 =

∫
|∇
√
n|2 , lim

ε→0

∫
|∇σε|2 =

∫
|∇√p|2,

i.e.
‖ρε‖H1 → ‖

√
n‖H1 , ‖σε‖H1 → ‖√p‖H1

as ε→ 0. By the uniform convexity of H1(Ω) and the weak convergence of (3.52)
the strong convergence of ρε, σε in H1(Ω) follows. �

The following corollary asserts - roughly speaking - that the voltage-current
characteristics of the QDD converge to the voltage-current characteristics of the
limiting classical drift-diffusion model.

Corollary 3.3. Under the hypotheses of Theorem 3.1, given any compact subset
K of Ω with unit outward vector ~ν and any θ ∈ C∞(K),

lim
ε→0

∫
∂K

θ ~Jε · ~ν ds =
∫
∂K

θ ~J · ~ν ds

where
~Jε = µn(ρε)2∇F ε − µp(σε)2∇Gε , ~J = µnn ∇F − µpp ∇G.

Proof. Since
∇ · ~Jε = ∇ · ~J = 0

then ∫
∂K

θ ~J · ~ν ds =
∫
K

~Jε.∇θ dx.

To prove the corollary, we just recall that ∇F ε,∇Gε, (ρε)2 and (σε)2 converge
strongly in L2(Ω) which implies that ~Jε converges strongly in L1(Ω). �
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4. Concluding remarks

In this paper we investigated a QDD incorporating generation-recombination ef-
fects. The required structure of the generation-recombination rate R extends clas-
sical models based on mass-action laws. It should be noted that the analysis
applies if no generation-recombination effects are taken into account e.g. as in [3].
The mobilities µn,p need not be constant. The analysis can be extended by as-
suming that they are positive continuousL∞ functions of x, n, p,∇V, . . . uniformly
bounded away from zero.

In our analysis, we assumed, for the sake of minimizing the already heavy
notations, that electron and hole densities vanish on the same part of the boundary.
The proof is essentially the same if one assumes that electron and hole densities
vanish on different parts of the density. The analysis can also be carried out in
the case where electrons are in a quantum regime whereas holes are considered as
classical particles [3].

In the proof of the semiclassical limit (Section 3), a fundamental hypothesis is
that limu→0 hN,P (u) = −∞. This prevents the appearence of vacuum in Ω for the
classical drift diffusion model. In the case limu→0 hN,P (u) > −∞, it is proven in
[20] that vacuum sets for the classical drift diffusion model may appear. This is
in significant contrast with QDD for which we proved in section 2 that vacuum
appears at most on the boundary.
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