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Abstract. This work presents a systematic analysis on the transient responses of a piezoelectric
half space to mixed anti-plane mechanical/in-plane electrical line sources, which is in fact the
Lamb’s problem for a transversely isotropic piezoelectric half space.

A key assumption of the classical piezoelectricity theory is the so-called “quasi-static”
approximation, and it reduces the Maxwell equations to the charge equation of the electrostatics
— an elliptic partial differential equation. Consequently, the dynamic piezoelectricity equations
are no longer a hyperbolic system, which then poses serious difficulties in studying the transient
behaviors of piezoelectric materials, a problem that has profound engineering significance. To
circumvent this difficulty, a so-called “quasi-hyperbolic” approximation is introduced in this pa-
per. Under this assumption, the simplified Maxwell-Christoffel equations remain as a hyperbolic
system of partial differential equations.

Based on the proposed equations, two types of mixed boundary value problems have been
solved: (1) anti-plane mechanical line source with boundary surface covered by a conductive
film; (2) anti-plane mechanical / in-plane electric line sources with boundary surface abutted
to another vacuum half space. In addition to the responses of shear-horizontal (SH) acoustic
wave and transverse electric (TE) wave, the closed form solutions obtained here reveal that there
exit other transient responses due to the electroacoustic surface wave—the celebrated Bleustein-
Gulyaev wave, electroacoustic head wave, as well as a purely electric head wave.
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1. Introduction

The systematic study of the piezoelectricity, from theoretical and applied mechan-
ics point of view, can be traced back at least for half a century ( e.g. Cady
[1946], Toupin [1956], [1963], Tiersten [1969], Auld [1973ab], Parton & Kudryatv-
sev [1988]), and, as a branch of physics, it has been studied for more than a century
(e.g. Currie brothers [1881], Voigt [1899]) . Today, piezoelectric sensors and ac-
tuators are the most prominent transducers used in modern technologies, because
they have high resolution ( order of nanometer), good frequency response ( order
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of kHz ), and generate large forces. Aerospace industrial has been implementing in
large scale the integrated distributed sensor and actuator to control various flexible
structures. These distributed sensors and actuators are made of predominantly
piezoelectric polymer, which, as part of an adaptive control system, can sense and
detect any undesirable deflections of the structures, and correct them in a “smart”
fashion (Rao & Sunar [1994]).

All these applications are involved with wave propagations through the piezo-
electric components, and hence, their dynamic, or transient behaviors are the
primary concern in design as well as in performance. Although this is a linear
problem in an established field, the surprising fact is that even today, to this au-
thor’s knowledge, there are few analytical results available, if there are any correct
results at all, in describing the transient behaviors of piezoelectric materials.

In this paper, an analysis is presented to study the transient behaviors of
a transversely isotropic piezoelectric material – 6mm symmetric class – under
external, anti-plane mechanical and in-plane electrical line sources, because this
is a special situation that exhibits the distinct feature of piezoelectricity, which is
fundamentally different from the behaviors of ordinary elasto-dielectric solids.

The main reason that transient problems for piezoelectric media are difficult
to manage is because of lacking an appropriate mathematical modelling. Initially,
both Maxwell equations as well as the equations of motion (elastodynamics) are
hyperbolic in nature. After the quasi-static approximation—an assumption that
is universally accepted, the simplified Maxwell equations, the charge equation
of electrostatics, loses hyperbolicity, i.e. it becomes an elliptic type of partial
differential equation. Unfortunately this simplification does not always make life
easy, especially, for dynamic problems. In fact, the quasi-static approximation
sacrifices the structure of the fundamental solutions of the original wave equations
for mathematical simplicity. More precisely, the quasi-static approximation alters
the structure of the Green’s function of the coupled wave propagation problem;
consequently, the solutions of the wave propagation problem based on the quasi-
static approximation may not reflect the physical reality.

To remedy this deficiency caused by quasi-static approximation, in this paper,
a so-called quasi-hyperbolic approximation is proposed for a class of transversely
isotropic piezoelectric materials to replace the quasi-static approximation. By do-
ing so, the newly derived governing partial differential equations of piezoelectricity
recover hyperbolicity, and at the same time enjoy the simplicity that the classical
piezoelectricity theory possesses.

Based on the proposed governing equations, the transient responses of a piezo-
electric half space to both mechanical as well as electrical line sources are sought
by integral transform method with Cagniard–de Hoop technique. Literally speak-
ing, we are studying the Lamb’s problem (Lamb [1903]) for a transversely isotropic
piezoelectric medium, which is considered as one of the fundamental problems in
electro-elastodynamics.

Some new and interesting results are obtained from the analysis, such as the dis-
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turbances of electroacoustic surface wave, i.e. Bleustein-Gulyaev wave (Bleustein
[1968], Gulyaev [1969]), the disturbances of electroacoustic head wave, and the
differences as well as ramifications between mechanical surface loads and electri-
cal surface loads. The analysis provides a sound theoretical ground for a better
understanding of the transient behaviors of piezoelectric materials.

The arrangement of the paper is as follows. In section 2, the mathematical
formulation of piezoelectricity theory under the quasi-hyperbolic approximation
is derived in detail. Section 3 presents the solution procedures of the first type
mixed boundary value problem— mechanical line source with boundary surface
covered by a virtual metallic film. The second type of mixed boundary value
problem, mechanical/electrical line sources with boundary surface abutted with
vacuum half space, is solved in section 4.

2. Formulations of the problem

By adopting the notations in Auld [1990ab], all relevant equations of linear piezo-
electricity theory are listed as follows:

(i) Maxwell’s equations

−∇×E =
∂B
∂t

, (2.1)

∇×H =
∂D
∂t

, (2.2)

where E, B, and H are the electric field, magnetic induction, and magnetic field
respectively;

(ii) Equations of motion

∇ · σ = ρ
∂2u
∂t2
− F , (2.3)

where σ is the Cauchy stress tensor, u is the displacement vector, and F is the
body force;

(iii) Constitutive equations

B = µ0H , (2.4)
D = εs ·E + e : ε , (2.5)
σ = −e ·E + cE : ε , (2.6)

where εs, e, and cE are the specific dielectric tensor, piezoelectric stress tensor,
and elastic stiffness tensor respectively; µ0 is the magnetic permeability constant
in the vacuum.
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In the constitutive equations (2.5) and (2.6), the strain tensor ε is defined as

ε :=
1
2
(
∇u + (∇u)T

)
=: ∇su (2.7)

By proper manipulation and letting the body force F = 0, one may derive the
following fully-coupled Maxwell-Christoffel equations ( see Auld [1990a] page 292,
Eq. (8.105) and (8.106))

∇ · cE : ∇su = ρ
∂2u
∂t2

+∇ · (e ·E) , (2.8)

−∇×∇×E = µ0ε
s · ∂

2E
∂t2

+ µ0e : ∇s
∂2u
∂t2

, (2.9)

which are a hyperbolic system.
Consider the coupling between the anti-plane acoustic mode and the in-plane

electromagnetic mode, i.e. assuming,

u = (0, 0, w(x1, x2, t)) (2.10)
E = (E1(x1, x2, t), E2(x1, x2, t), 0) . (2.11)

The coupled wave equations (2.8) and (2.9) can be simplified drastically. For the
hexagonal symmetry (6mm) piezoelectric material, in terms of the compressed
matrix notation or Voigt notation ( contrasting to the full tensor notation ), Eq.
(2.8) and (2.9) reduce to

cE44∇2w = ρ
∂2w

∂t2
+ e15∇ ·E , (2.12)

−∇×∇×E = µ0ε
s
11
∂2E
∂t2

+ µ0e15∇
∂2w

∂t2
, (2.13)

where the differential operator ∇ and the electric field E are understood as 2-D
vectors, i.e.

∇ := i
∂

∂x1
+ j

∂

∂x2
(2.14)

E := E1i +E2j . (2.15)

Let
E = −∇φ− 1

c`

∂A
∂t

, (2.16)

where φ and A are a scalar potential and a vector potential respectively, and the
constant, c` := (µ0ε

s
11)−1/2, is the speed of light in the piezoelectric medium.
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The decomposition (2.16) can be uniquely determined by imposing the following
Lorentz gauge within the transversely isotropic plane,

∇ ·A +
1
c`

∂φ

∂t
= 0 . (2.17)

Subsequently, the coupled wave equations (2.12), (2.13) can be further split
into two groups, namely,

(a) The purely electro-acoustic wave equations,
cE44∇2w − ρ∂

2w

∂t2
= −e15

(
∇2φ− 1

c`2
∂2φ

∂t2

)
,

e15
εs11
∇2w =

(
∇2φ− 1

c`2
∂2φ

∂t2

)
;

(2.18)

(b) The rotational part of electromagneto-acoustic wave equations,
∇2A1 −

1
c`2

∂2A1
∂t2

= −µ0e15c`
∂2w

∂t∂x1
,

∇2A2 −
1
c`2

∂2A2
∂t2

= −µ0e15c`
∂2w

∂t∂x2
.

(2.19)

Define

c̄44 := cE44 +
e15

2

εs11
, (2.20)

cs :=
(
c̄44
ρ

)1/2
, (2.21)

Cf :=
c`

2

c`2 − c2s
; (2.22)

and introduce a new scalar potential function ψ,

ψ := φ− e15
εs11

Cfw
. (2.23)

Accordingly, the relevant constitutive equations can be expressed in terms of
w, ψ, and Ai,

σ13 = c̃44
∂w

∂x1
+ e15

∂ψ

∂x1
+
e15
c`

∂A1
∂t

(2.24)

σ23 = c̃44
∂w

∂x2
+ e15

∂ψ

∂x2
+
e15
c`

∂A2
∂t

(2.25)

D1 = e15(1− Cf )
∂w

∂x1
− εs11

∂ψ

∂x1
− εs11

c`

∂A1
∂t

(2.26)

D2 = e15(1− Cf )
∂w

∂x2
− εs11

∂ψ

∂x2
− εs11

c`

∂A2
∂t

(2.27)
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where c̃44 := c̄44 − (1− Cf )e15
2/εs11.

Furthermore, the purely electro-acoustic wave equations (2.18) can be com-
pletely decoupled as follows,


∇2w − 1

c2s

∂2w

∂t2
= 0 , (a)

∇2ψ − 1
c`2

∂2ψ

∂t2
= 0 . (b)

(2.28)

In most piezoelectric materials, the induced magnetic field is negligible. From
this standpoint, the quasi-static approximation (See: Tiersten [1969] page 30)
assumes that the rotational part of the electric field satisfies the condition∣∣ Ȧi/c` ∣∣<<∣∣ φ,i ∣∣ (2.29)

Since each time derivative of Ai is supposedly bringing down a factor of c`, condi-
tion (2.29) suggests the following asymptotic estimate

|Ai| ∼ O
( φ
c`

)
, or O

(w
c`

)
(2.30)

where c−1
` << 1 is chosen as the perturbation parameter.

Since the vector potential A is a higher order term, in the zero-th order approx-
imation, the rotational part of the governing equations (2.19) can be neglected.
Note that µ0e15c` ∼ 1/c` in (2.19) .

In addition, the quasi-static approximation further assumes that

c` →∞, Cf → 1 (2.31)

It then recovers the classical equations for linear piezoelectric materials of 6mm
symmetry class in transverse space, i.e.

∇2w − 1
c2s

∂2w

∂t2
= 0 , (2.32)

∇2ψ = 0 . (2.33)

and

σ13 = c̄44
∂w

∂x1
+ e15

∂ψ

∂x1
(2.34)

σ23 = c̄44
∂w

∂x2
+ e15

∂ψ

∂x2
(2.35)

D1 = −εs11
∂ψ

∂x1
(2.36)

D2 = −εs11
∂ψ

∂x2
(2.37)
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One may notice that Eq. (2.33) has lost hyperbolicity. To remedy this defi-
ciency, we discard the conventional “quasi-static” approximation, and adopt the
following “quasi-hyperbolic” approximation:

Assumption 2.1. (Quasi-hyperbolic approximation). The so-called “quasi-hyper-
bolic” approximation assumes:

(i) The rotational electric field is neglected;
(ii) The light speed is finite; �

Technically speaking, after asymptotic analysis, the quasi-hyperbolic assump-
tion only discards Eq. (2.19) and the terms involved with Ai in (2.24)–(2.27),
but keeps Eq.(2.18), or Eq.(2.28(a),(b)) intact. The governing equations of piezo-
electricity in the transversely isotropic space, formulated under quasi-hyperbolic
approximation, are Eqs. (2.23), (2.28), and

σ13 = c̃44
∂w

∂x1
+ e15

∂ψ

∂x1
(a)

σ23 = c̃44
∂w

∂x2
+ e15

∂ψ

∂x2
(b)

D1 = e15(1− Cf )
∂w

∂x1
− εs11

∂ψ

∂x1
(c)

D2 = e15(1− Cf )
∂w

∂x2
− εs11

∂ψ

∂x2
(d)

(2.38)

which are highlighted by fitting them into a box.

Remark 2.1. (1.) Both quasi-static approximation and quasi-hyperbolic approxi-
mation are zero-th order approximation, but by including some higher order terms
in Eq.(2.28(a),(b)) we restore the hyperbolicity into the simplified system.

(2.) Without adopting any approximation, some exact solutions of surface
waves on piezoelectric half space are given in Li [1996], which, on the other hand,
has shown how involved it could be by taking into the full account of electromag-
netic effect.

(3.) Under quasi-hyperbolic approximation, the electromagneto-acoustic wave
problem in the transversely isotropic piezoelectric space degenerates to the cou-
pling problem between the shear-horizontal (SH) acoustic wave and the transverse
electric (TE) wave, or simply electric wave (Jackson [1974] page 342). �

For the sake of consistency, the above assumption is also applied to the other
dielectric media that are within the same environment as the piezoelectric medium
under the consideration. For instance, if the piezoelectric medium is in contact
with a free space, the rotational part of electromagnetic field in the vacuum space
is also neglected, and the simplified Maxwell equations in the free space are then
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reduced to a single wave equation instead of Laplace equation under the quasi-
static approximation, namely

∇2φ̃− 1
c20

∂2φ̃

∂t2
= 0

(2.39)

where c0 = (µ0ε0)−1/2 is the light speed in the vacuum.
Since electromagnetic field is ubiquitous, all the boundaries are in fact inter-

faces. The corresponding prescribed boundary conditions are then imposed as the
standard form in continuum mechanics (e.g. Achenbach [1973]) and electrody-
namics (e.g. Jackson [1974], Felsen & Marcuvitz [1994]),

n · [|σ|] = T0 , x ∈ ∂Ωσ (2.40)
u = ū , x ∈ ∂Ωu (2.41)

n · [|D|] = q0 , x ∈ ∂ΩD (2.42)
n× [|E|] = 0 , x ∈ ∂ΩE (2.43)

Note that ∂Ωσ ∩ ∂Ωu = ∅, but ∂ΩD ∩ ∂ΩE 6= ∅.
In addition, it is assumed that the displacement field w as well as the electrical

scalar potential φ have the quiescent history before the line sources are applied,
i.e., ∀t < 0

w(x1, x2, t) = ẇ(x1, x2, t) = 0 (2.44)

φ(x1, x2, t) = φ̇(x1, x2, t) = 0 (2.45)

φ̃(x1, x2, t) = ˙̃
φ(x1, x2, t) = 0 (2.46)

3. Lamb’s problem with shielded surface

(a) Transform solutions
In piezoelectric media, field variables consist of both mechanical variables as well
as electric variables. Hence, the term “Lamb’s problem used here is in a generalized
sense, namely, a half space problem with line sources. In particular, the Lamb’s
problem with shielded surface is referred to as a half space problem in which the
surface of the piezoelectric half space is covered with a virtual, conductive thin
sheet, i.e. having a short-circuit boundary as shown in Figure (1). Mathematically
it reads as {

σ23(x1, 0, t) = −σ0δ(x1)F (t) ; t > 0
φ(x1, 0, t) = 0 ; t > 0

(3.1)
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Figure 1.
Mechanical line source applying to a piezoelectric half space with short-circuit surface

Applying the following unilateral and bilateral Laplace transforms to a function,
f(x, t), 

f∗(x, p) =
∫ ∞

0
f(x, t) exp(−pt)dt

f(x, t) =
1

2πi

∫ p0+i∞

p0−i∞
f∗(x, p) exp(pt)dp

(3.2)


f̂∗(ζ, p) =

∫ ∞
−∞

f∗(x, p) exp(−pζx)dx

f∗(x, p) =
p

2πi

∫ ζ0+i∞

ζ0−i∞
f̂∗(ζ, p) exp(pζx)dζ

(3.3)

The wave equations (2.28(a)), (2.28(b)) become( d2

dx2
2
− p2a2(ζ)

)
ŵ∗(ζ, x2, p) = 0 (3.4)

( d2

dx2
2
− p2e2(ζ)

)
ψ̂∗(ζ, x2, p) = 0 (3.5)

where a(ζ) =
√
s2
s − ζ2, e(ζ) =

√
s2
` − ζ2 and the slownesses ss := 1/cs, s` :=

1/c`.
The relevant solutions are

ŵ∗(ζ, x2, p) = A(ζ, p) exp(−pa(ζ)x2) , a(ζ) :=
√
s2
s − ζ2 ; (3.6)

ψ̂∗(ζ, x2, p) = B(ζ, p) exp(−pe(ζ)x2) , e(ζ) :=
√
s2
` − ζ2 ; (3.7)
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From the transformed boundary conditions,

σ̂∗32(ζ, 0, p) = −p
[
c̃44a(ζ)A(ζ, p) + e15e(ζ)B(ζ, p)

]
= −σ0F

∗(p)
(3.8)

ψ̂∗(ζ, 0, p) =
e15
εs11

CfA(ζ, p) +B(ζ, p) = 0 , (3.9)

one can derive that

A(ζ, p) =
( σ0
c̃44

)(F ∗(p)/p
(1− k4

e )

) [a(ζ) + k2
ee(ζ)]

(sbge + ζ)(sbge − ζ)
(3.10)

B(ζ, p) = −e15
εs11

CfA(ζ, p) (3.11)

where sbge :=

√
s2
s − k4

es
2
`

1− k4
e

, k2
e :=

e15
2

εs11c̃44
Cf , and cbge = 1/sbge.

Remark 3.1.
(1) Take c` →∞ (s` → 0). Then Cf → 1, k2

e → e15
2/(εs11c̃44), and

cbge → cs

√
1− k4

e (3.12)

which is the expression of the Bleustein-Gulyaev wave speed in classical piezoelec-
tric theory with short-circuit electric boundary condition.

(2) Define Bleustein-Gulyaev function

BG(ζ) := a(ζ)− k2
ee(ζ) . (3.13)

The Bleustein-Gulyaev function was first introduced by Li & Mataga (Li & Mataga
[1996]). As shown in Appendix A,†the Bleustein-Gulyaev function can be further
decomposed as

BG(ζ) = (1− k2
e )

(sbge + ζ)(sbge − ζ)√
(ss + ζ)(ss − ζ)

S+(ζ)S−(ζ) (3.14)

where

S±(ζ) = exp

{
1
π

∫ ss

s`

arctan

[
k2
e

√
(η − s`)(η + s`)√

(ss − η)(ss + η)

]
dη

η ± ζ

}
. (3.15)

�
† There is sign error in Li & Mataga [1996ab]
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The full set of integral representations of the field variables are as follows

w∗(x1, x2, p) =
p

2πi

∫ ζa+i∞

ζa−i∞
A(ζ, p) exp[−p(a(ζ)x2 − ζx1)]dζ (3.16)

φ∗(x1, x2, p) =
p

2πi
e15
εs11

Cf

{∫ ζa+i∞

ζa−i∞
A(ζ, p) exp[−p(a(ζ)x2 − ζx1)]dζ

−
∫ ζe+i∞

ζe−i∞
A(ζ, p) exp[−p(e(ζ)x2 − ζx1)]dζ

}
(3.17)

and

σ∗31(x1, x2, p) =
c̃44p

2

2πi

{∫ ζa+i∞

ζa−i∞
ζA(ζ, p) exp[−p(a(ζ)x2 − ζx1)]dζ

−k2
e

∫ ζe+i∞

ζe−i∞
ζA(ζ, p) exp[−p(e(ζ)x2 − ζx1)]dζ

}
(3.18)

σ∗32(x1, x2, p) = − c̃44p
2

2πi

{∫ ζa+i∞

ζa−i∞
a(ζ)A(ζ, p) exp[−p(a(ζ)x2 − ζx1)]dζ

−k2
e

∫ ζe+i∞

ζe−i∞
e(ζ)A(ζ, p) exp[−p(e(ζ)x2 − ζx1)]dζ

}
(3.19)

D∗1(x1, x2, p) =
e15fp

2

2πi

{
(1− Cf )

∫ ζa+i∞

ζa−i∞
ζA(ζ, p) exp[−p(a(ζ)x2 − ζx1)]dζ

+Cf
∫ ζe+i∞

ζe−i∞
ζA(ζ, p) exp[−p(e(ζ)x2 − ζx1)]dζ

}
(3.20)

D∗2(x1, x2, p) = −e15fp
2

2πi

{
(1− Cf )

∫ ζa+i∞

ζa−i∞
a(ζ)A(ζ, p) exp[−p(a(ζ)x2 − ζx1)]dζ

+Cf
∫ ζe+i∞

ζe−i∞
e(ζ)A(ζ, p) exp[−p(e(ζ)x2 − ζx1)]dζ

}
(3.21)

where −s` < ζa, ζe < s`.

(b) Cagniard-de Hoop inversion

The conventional Cagniard-de Hoop technique (Cagniard [1939], de Hoop [1960])
is adopted in inversion.

Three different inversion paths are shown in Figure (2): Γa,Γae,Γe, in which

a(ζ)x2 − ζx1 = t , ζ ∈ Γa,Γae
e(ζ)x2 − ζx1 = t , ζ ∈ Γe (3.22)
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Figure 2.
Cagniard-de Hoop inversion paths for the Lamb’s problem with shielded surface

Remark 3.2. It should be noted that at ζ = −ss cos θ, path Γa intercepts the real
axis Re(ζ). Thus, a supplement path Γae is needed to circumvent the branch cut

of multivalued function e(ζ) =
√
s2
` − ζ2. This, in turn, represents an electroa-

coustic head wave, which has no counterpart in purely elastic media. Indeed, the
physical presence of such type electroacoustic head waves has been experimentally
confirmed by Lin et al. (1989).

Along path Γae, −ss cos θ ≤ ζ ≤ −s`, there is a restraint on θ,

0 ≤ θ ≤ θaecr , or π ≤ θ ≤ π − θaecr (3.23)

where θaecr := cos−1
(
s`/ss

)
. Since s`/ss ∼ 10−5, θ→ π/2, which suggests that the

electroacoustic head wave almost propagates in parallel with the boundary surface
as shown in Figure (3). In Figure (3), the region, Hea is where the electroacoustic
head wave sweeps through. �

Let x1 = r cos θ, x2 = r sin θ. One then has

ζa± =
1
r

[−t cos θ ± i sin θ
√
t2 − s2

sr
2] , ssr ≤ t <∞ (3.24)

ζae± =
1
r

[−t cos θ ± i sin θ
√
s2
sr

2 − t2]± iε , tab ≤ t < ssr (3.25)

ζe± =
1
r

[−t cos θ ± i sin θ
√
t2 − s2

`r
2] , s`r ≤ t <∞ (3.26)

where tae =
√
s2
s − s2

`x2 + s`x1.
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Following de Hoop (1960), one may show that

∂ζa±
∂t

=
±ia(ζa±)√
t2 − s2

sr
2

; a(ζa±) =
sin θ
r

t± icos θ
r

√
t2 − s2

sr
2 ;

(3.27)
∂ζae±
∂t

=
∓a(ζae±)√
s2
sr

2 − t2
; a(ζae±) =

sin θ
r
t± cos θ

r

√
s2
sr

2 − t2 ;
(3.28)

∂ζe±
∂t

=
±ie(ζe±)√
t2 − s2

` r
2

; e(ζe±) =
sin θ
r

t± icos θ
r

√
t2 − s2

`r
2 ;

(3.29)

and subsequently,

w∗(x1, x2, p) =
( σ0
c̃44

)( F ∗(p)
1− k4

e

) 1
π
·{∫ ∞

ssr

Re
( a(ζ) + k2

ee(ζ)
(sbge + ζ)(sbge − ζ)

a(ζ)√
t2 − s2

sr
2

) ∣∣∣
ζ∈Γa+

exp(−pt)dt

−
∫ ssr

tae

Im
( a(ζ) + k2

ee(ζ)
(sbge + ζ)(sbge − ζ)

a(ζ)√
s2
sr

2 − t2
) ∣∣∣

ζ∈Γae+
exp(−pt)dt

}
(3.30)

and

φ∗(x1, x2, p) =
(e15
εs11

f
)( σ0

c̃44

)( F ∗(p)
1− k4

e

) 1
π
·{∫ ∞

ssr

Re
( a(ζ) + k2

ee(ζ)
(sbge + ζ)(sbge − ζ)

a(ζ)√
t2 − s2

sr
2

) ∣∣∣
ζ∈Γa+

exp(−pt)dt

−
∫ ssr

tae

Im
( a(ζ) + k2

ee(ζ)
(sbge + ζ)(sbge − ζ)

a(ζ)√
s2
sr

2 − t2
) ∣∣∣

ζ∈Γae+
exp(−pt)dt

−
∫ ∞
s`r

Re
( a(ζ) + k2

ee(ζ)
(sbge + ζ)(sbge − ζ)

e(ζ)√
t2 − s2

`r
2

) ∣∣∣
ζ∈Γe+

exp(−pt)dt

 (3.31)

In this study, we are mainly interested in impulsive loading, namely, F (t) =
δ(t), because the responses of arbitrarily time dependent line sources can be always
represented by the following superpositions:

w(x1, x2, t) =
∫ t

0
wδ(x1, x2, τ)F (t − τ)dτ (3.32)

φ(x1, x2, t) =
∫ t

0
φδ(x1, x2, τ)F (t− τ)dτ (3.33)
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Figure 3.
The transient wave patterns in the shielded half space

where the superscript “δ” represents the transient response due to impulsive line
loads.

As shown in (3.30) and (3.31), in this case, the transient waves of displacement
and electrical potential can be distinguished from three different sources,

wδ(x1, x2, t) = wδa(x1, x2, t) + wδeah(x1, x2, t) (3.34)
φδ(x1, x2, t) = φδa(x1, x2, t) + φδeah(x1, x2, t) + φδe(x1, x2, t)

(3.35)

in which, subscript “a” stands for acoustic contribution, “eah” stands for the
contribution from the electroacoustic head wave, and subscript “e” stands for the
contribution from the electric wave.

Specifically, in this example,

wδa(x1, x2, t) =
( σ0
c̃44

)[H(t− ssr)
π(1− k4

e )

]
·Re

( a(ζ) + k2
ee(ζ)

(sbge + ζ)(sbge − ζ)
a(ζ)√
t2 − ssr2

) ∣∣∣
ζ∈Γa+ (3.36)

wδeah(x1, x2, t) = −
( σ0
c̃44

)[H(t− tae)−H(t− ssr)
π(1− k4

e )

]
· Im

( a(ζ) + k2
ee(ζ)

(sbge + ζ)(sbge − ζ)
a(ζ)√
ssr2 − t2

) ∣∣∣
ζ∈Γae+ (3.37)
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and

φδa(x1, x2, t) =
(e15
εs11

Cf
)( σ0

c̃44

)[H(t− ssr)
π(1− k4

e )

]
·Re

( a(ζ) + k2
ee(ζ)

(sbge + ζ)(sbge − ζ)
a(ζ)√
t2 − ssr2

) ∣∣∣
ζ∈Γa+ (3.38)

φδeah(x1, x2, t) = −
(e15
εs11

Cf
)( σ0

c̃44

)[H(t− tae)−H(t− ssr)
π(1− k4

e )

]
· Im

( a(ζ) + k2
ee(ζ)

(sbge + ζ)(sbge − ζ)
a(ζ)√
ssr2 − t2

) ∣∣∣
ζ∈Γae+ (3.39)

φδe(x1, x2, t) = −
(e15
εs11

Cf
)( σ0

c̃44

)[H(t− s`r)
π(1− k4

e )

]
·Re

( a(ζ) + k2
ee(ζ)

(sbge + ζ)(sbge − ζ)
e(ζ)√
t2 − s2

`r
2

) ∣∣∣
ζ∈Γe+ (3.40)
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Figure 4.

The disturbance of surface displacement.
(

Ω(τ) :=
c̃44πx1

σ0cs
wδ(x1, 0, t)

)
Let

τ :=
cst

x1
, τbge :=

sbge
ss

=
1√

1− k4
e

, τ` :=
s`
ss

=
cs
c`
. (3.41)
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The transient response of displacement field on the surface x2 = 0 can be expressed
as

c̃44πx1
σ0cs

wδ(x1, 0, t) = − 1
1− k4

e

{ √
τ2 − 1

(τbge + τ)(τbge − τ)
H(τ − 1)

+
k2
e

√
τ2 − τ2

`

(τbge + τ)(τbge − τ)
H(τ − τ`)

 (3.42)

which is plotted in Figure (4) with different electro-mechanical coupling coefficient
ke. One may also verify that at x2 = 0, φδ(x1, 0, t) ≡ 0.

It should be noted that when x2 = 0 there is a simple pole ζ = −sbge along
the integration paths Γa± and Γe±, the integrations (3.30) and (3.31) should be
understood as the Cauchy principle value, and the simple pole contribution is
due to the effect of the electroacoustic surface wave—Bleustein-Gulyaev wave,
which can be calculated by residual theorem. In an analogy to the Rayleigh
wave, this simple pole contribution represents an impulsive surface disturbance
that is nondecaying and does not change shape. In this particular case, however,
the simple pole lies on an unphysical Riemann sheet, and its contribution to the
displacement field is zero, because

lim
ζ→−sbge

Re

{
2πi(ζ + sbge)

[ a(ζ) + k2
ee(ζ)

(sbge + ζ)(sbge − ζ)

{
a(ζ)
e(ζ)

}] ∣∣∣
ζ=−sbge

}
= 0 , (3.43)

which means that there is no impulsive singular surface disturbances for both
displacement and electrical potential. On the other hand, the BG surface wave
has the potential to create the leaky mode, if the boundary conditions across the
interface are slightly altered.

As shown in Eq.(3.42), the singularity of the surface displacement disturbance
due to Bleustein-Gulyaev wave is at order O((τ − τbge)−1), which is the remi-
niscence of Rayleigh disturbance in vertical surface displacement mode in purely
elastic half space (Miklowitz [1978]).

Nevertheless, the impulsive Bleustein-Gulyaev disturbance can still be felt in
other situations. Consider the step loading F (t) = H(t). From Eq.(3.21), one
may find that the transient response of electric displacement component D2 on
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Figure 5.

The disturbance of the electric displacement on the surface. (∆(τ) :=
c̃44πx1

σ0e15
D2(x1, 0, t))

the surface is as follows

c̃44πx1
σ0e15

D2(x1,0, t) =
1

1− k4
e

(1− Cf )
k2
e

√
τ2 − τ2

`

√
1− τ2

(τbge + τ)(τbge − τ)

[
H(τ − 1)

−H(τ − τ`)
]

+ Cf

√
τ2 − τ2

`

√
1− τ2

(τbge + τ)(τbge − τ)

[
H(τ − 1)−H(τ − τ`)

]
+

π

2(1− k4
e )

(1− Cf )

√
τ2
bge − 1

(√
τ2
bge − 1 + k2

e

√
τ2
bge − τ2

`

)
τbge

+ Cf

√
τ2
bge − τ2

`

(√
τ2
bge − 1 + k2

e

√
τ2
bge − τ2

`

)
τbge

 δ(τ − τbge)
(3.44)

The second term in (3.44) represents a singular impulsive disturbance con-
tributed by the simple pole at ζ = −sbge, which is nondecaying and does not
change in shape. Figure (5) displays the profiles of the surface disturbance for
various electro-mechanical coupling coefficients ke ( the optical effect is too small
to be shown ). In addition, one may notice that in Figure (5) the transient response
of electric displacement vanishes after acoustic SH wave arrives.
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4. Lamb’s problem with an adjoining vacuum half space

(a) Equal-light-speed approximation

In reality, the piezoelectric space is usually in contact with other dielectric spaces.
In this section, we consider the problem of the piezoelectric half space that is abut-
ted with an adjacent vacuum half space (Figure(6)). Based on the formulations in
section 2, the following wave propagation problem is considered,

∇2w − 1
c2s

∂2w

∂t2
= 0 , x2 > 0 (4.1)

∇2ψ − 1
c2`

∂2ψ

∂t2
= 0 , x2 > 0 (4.2)

∇2φ̃− 1
c20

∂2φ̃

∂t2
= 0 , x2 < 0 (4.3)

where φ̃ is the electrical potential in the free space, and c0 > c` > cs (s0 < s` < ss).
The following mixed boundary value problem describes the general mixed type of
line sources that are placed between the piezoelectric half space and vacuum half
space.

++++++++++

-------

- -

-−σ0

++

X

F(t)δ ( )

X

2

1

x

q0δ ( )G(t)x
n

φ , ε , µs
11 0C ,44

E

X 3

( Vacuum )
φ , ε , µ0 0

+

-

--

∼

Figure 6.
Lamb’s problem with an adjoining vacuum half space

σ23(x1, 0, t) = −σ0δ(x1)F (t) (4.4)

E1(x1, 0, t) = Ẽ1(x1, 0, t) (4.5)

D2(x1, 0, t)− D̃2(x1, 0, t) = −q0δ(x1)G(t) (4.6)
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Here, the anti-plane mechanical line load and the in-plane electrical line load are
simultaneously applied onto the interface.

Applying the double Laplace transforms to the wave equations (4.1)–(4.3), one
may find the following convergence solutions

ŵ∗(ζ, x2, p) = A(ζ, p) exp(−pa(ζ)x2) , a(ζ) :=
√
s2
s − ζ2 ; (4.7)

ψ̂∗(ζ, x2, p) = B(ζ, p) exp(−pe(ζ)x2) , β(ζ) :=
√
s2
` − ζ2 ; (4.8)

ˆ̃
φ
∗
(ζ, x2, p) = C(ζ, p) exp(pf(ζ)x2) , f(ζ) :=

√
s2
0 − ζ2 . (4.9)

The transformed boundary conditions at x2 = 0,

c̃44
∂ŵ∗

∂x2
+ e15

∂ψ̂∗

∂x2
= −σ0F

∗(p); (4.10)

−
(e15
εs11

Cf
∂ŵ∗

∂x1
+
∂ψ̂∗

∂x1

)
= −∂

ˆ̃φ
∗

∂x1
; (4.11)

e15(1− Cf )
∂w∗

∂x2
− εs11

∂ψ̂∗

∂x2
+ ε0

∂
ˆ̃
φ
∗

∂x2
= −q0G∗(p), (4.12)

yield the relationships among unknown image functions A(ζ, p), B(ζ, p), andC(ζ, p):

c̃44α(ζ)A(ζ, p) + e15e(ζ)B(ζ, p) = σ0
F ∗(p)
p

(a)

e15
εs11

CfA(ζ, p) +B(ζ, p) = C(ζ, p) (b)

e15(1− Cf )α(ζ)A(ζ, p) − εs11e(ζ)B(ζ, p) − ε0γ(ζ, p)C(ζ) = q0
G∗(p)
p

(c)

(4.13)
Solving the above system of algebraic equations yields

A(ζ, p) =
[σ0F

∗(p)
p

+
( e15e(ζ)
εs11e(ζ) + ε0f(ζ)

)q0G∗(p)
p

][ εs11e(ζ) + ε0f(ζ)
c̄44ε

s
11e(ζ) + c̃44ε0f(ζ)

]
·
[
a(ζ)− k2

e

ε0f(ζ)
c̄44ε

s
11e(ζ) + c̃44ε0f(ζ)

e(ζ)
]−1

(4.14)

B(ζ, p) =
e15(1− Cf )a(ζ) − (e15Cf/ε

s
11)ε0f(ζ)

εs11e(ζ) + ε0f(ζ)
A(ζ, p) − q0G

∗(p)/p
(εs11β(ζ) + ε0f(ζ))

(4.15)

C(ζ, p) =
e15(1− Cf )a(ζ) + e15Cfe(ζ)

ε0e(ζ) + εs11f(ζ)
A(ζ, p)− q0G

∗(p)/p
(εs11e(ζ) + ε0f(ζ))

(4.16)
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By examining the expressions (4.14)–(4.16) closely, one may find that the al-
gebraic structures of these image kernel functions are somewhat complicated, and
the physical meaning of the expressions is not all clear.

Since the image function A(ζ, p) is the transformed displacement ŵ∗(x1, 0, p),
it is then an “acoustic image”. One may note that both mechanical line source
as well as electrical line source attribute their influences on the image function
A(ζ, p), which is the piezoelectric coupling effect that we expect. Shown by (4.15)
and (4.16), the image kernel functions B(ζ, p), C(ζ, p) have two parts: (a) acous-
tics part, which is associated with the kernel function A(ζ, p); and (b) electric
part, which is solely credited to electrical line sources, and the electro-mechanical
coupling is broken here.

To make the ensuing inversion process manageable, the following approximation
is adopted:

Assumption 4.1. (Equal-light-speed approximation). Based on above observa-
tions and the fact that c`, c0 >> cs, the optical effect on acoustic wave is always
negligible; thus, in “acoustic image” function A(ζ, p) and in the acoustic parts of
image functions B(ζ, p) and C(ζ, p), we take

e(ζ)
f(ζ)

=

√
s2
` − ζ2√
s2
0 − ζ2

≈ 1 . (4.17)

This implies that at acoustic end, one cannot distinguish the difference between
the different light speeds in different dielectric media. �

It should be noted that this approximation is not applied to the electric part
of the image functions B(ζ, p), C(ζ, p).

Let cε44 := (c̄44ε
s
11 + c̃44ε0)/(εs11 + ε0). After simplification, the expressions

(4.14)–(4.16) take a succinct form

A(ζ, p) =
[σ0F

∗(p)
cε44p

+
e15

ε0 + εs11

q0G
∗(p)

cε44p

] a(ζ) + k2
ve(ζ)

(1− k4
v)(s2

bgv − ζ2) (4.18)

B(ζ, p) =
[
e15(1− Cf )a(ζ) −

(e15
εs11

f
)
ε0f(ζ)

] A(ζ, p)
εs11e(ζ) + ε0f(ζ)

− q0(G∗(p)/p)
(εs11e(ζ) + ε0f(ζ))

(4.19)

C(ζ, p) =
[
e15(1− Cf )a(ζ) + e15Cfe(ζ)

] A(ζ, p)
εs11e(ζ) + ε0f(ζ)

− q0(G∗(p)/p)
(εs11e(ζ) + ε0f(ζ))

(4.20)
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where kv := ke

√
c̃44ε0

c̄44ε0 + c̃44ε
s
11

, sbgv :=

√
s2
s − k4

vs
2
`

1− k4
v

, and cbgv = 1/sbgv.

Again, as c` →∞, (s` → 0),

k2
v →

e15
2

c̄44ε
s
11

ε0
ε0 + εs11

cbgv → cs

√
1− k4

v

which recovers the classical expression of Bleustein-Gulyaev wave speed, that is
travelling through the interface between piezoelectric medium and vacuum space
(Bleustein [1968], Gulyaev [1969], and Maugin [1983]).

Transient wave solutions

To this end, we are in a position to discuss the transient waves that are excited by
mixed type (mechanical/electrical) line sources. Choose the following Cagniard-de
Hoop inversion paths as shown in Figure (7):

Γa : ζα± =
1
r

[
−t cos θ ± i sin θ

√
t2 − s2

sr
2
]
; ssr ≤ t <∞ (4.21)

Γae : ζae± =
1
r

[
−t cos θ ± sin θ

√
s2
sr

2 − t2
]
± iεae; tae ≤ t < ssr

(4.22)

Γe : ζe± =
1
r

[
−t cos θ ± i sin θ

√
t2 − s2

`r
2
]
; s`r ≤ t <∞ (4.23)

Γef : ζβγ± =
1
r

[
−t cos θ ± sin θ

√
s2
` r

2 − t2
]
± iεef ; tef ≤ t < s`r

(4.24)

Γf : ζf± =
1
r

[
−t cos θ ± i sin θ

√
t2 − s2

0r
2
]
; s0r ≤ t <∞ (4.25)

where tae =
√
s2
s − s2

`x2 + s`x1, tef =
√
s2
` − s2

0x2 + s0x1, and εab, εef are the
radius of small circles at the tip of inversion paths Γαβ and Γβγ respectively.

It can be further derived that

∂ζa±
∂t

= ±i a(ζa±)√
t2 − s2

sr
2

; α(ζα±) =
sin θ
r

t± icos θ
r

√
t2 − s2

sr
2

(4.26)
∂ζae±
∂t

= ∓ a(ζae±)√
s2
sr

2 − t2
; a(ζae±) =

sin θ
r
t± cos θ

r

√
s2
sr

2 − t2
(4.27)

∂ζe±
∂t

= ±i a(ζe±)√
t2 − s2

`r
2

; a(ζβ±) =
sin θ
r

t± icos θ
r

√
t2 − s2

`r
2

(4.28)
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Figure 7.
Cagniard-de Hoop inversion paths for the Lamb’s problem within vacuum environment

∂ζef±
∂t

= ∓ a(ζef±)√
s2
` r

2 − t2
; a(ζef±) =

sin θ
r

t± cos θ
r

√
s2
`r

2 − t2
(4.29)

∂ζf±
∂t

= ±i a(ζf±)√
t2 − s2

0r
2

; a(ζf±) =
sin θ
r
t± icos θ

r

√
t2 − s2

0r
2

(4.30)

Remark 4.1. At above, there are two supplement inversion paths: Γae± and
Γef±, in order to circumvent branch cuts caused by e(ζ) and f(ζ). The physical
interpretations of the supplement paths are: the integral along Γae± represents an
electroacoustic head wave, which is similar to the one discussed in section 3, and
the integral along Γef± represents a purely electric head wave. These head waves
only occur in specific regions, because they are generated by incident electric waves
grazing through the surface, and then propagate to the interior at certain angles.
The electroacoustic head wave occurs in the region

0 ≤ θ ≤ θaecr and π ≤ θ ≤ π − θaecr (4.31)

where θaecr = cos−1
( s`
ss

)
. The purely electric head wave occurs in the region that

0 ≤ θ ≤ θefcr and π ≤ θ ≤ π − θefcr (4.32)

where θefcr := cos−1
(s0
s`

)
= cos−1

( ε0
εs11

)
. The specific regions for both head waves

are schematically illustrated in Figure (8). In Figure (8), the region marked as
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Hea is the region affected by electroacoustic head wave, and region marked as He

is the region disturbed by the purely electric head wave. �

Consider the impulsive line sources, i.e. F (t) = δ(t). Let σ̄0 = σ0+q0e15/(εs11+
ε0). The analytical solutions can then be expressed in closed form:

wδ(x1,x2, t) =
1
π

( σ̄0
cε44(1− k4

v)

){
Re
[ a(ζ) + k2

ve(ζ)
(sbgv − ζ)(sbgv + ζ)

a(ζ)√
t2 − s2

sr
2

] ∣∣∣
ζ∈Γa+

·H(t− ssr) − Im
[ a(ζ) + k2

ve(ζ)
(sbgv − ζ)(sbgv + ζ)

a(ζ)√
s2
sr

2 − t2
] ∣∣∣

ζ∈Γae+

·
(
H(t− tae)−H(t− ssr)

)}
(4.33)

ψδ(x1,x2, t) =
1
π

σ̄0
cε44(1− k4

v)

{
Re
[(
e15(1− Cf )a(ζ) −

(e15
εs11

Cf
)
ε0f(ζ)

)
·
(a(ζ) + k2

vβ(ζ)
(s2
bge − ζ2)

e(ζ)
εs11e(ζ) + ε0f(ζ)

)] ∣∣∣
ζ∈Γe+

H(t− s`r)√
t2 − s2

` r
2

− Im
[(
e15(1− Cf )a(ζ)−

(e15
εs11

Cf
)
ε0f(ζ)

)
(a(ζ) + k2

ve(ζ)
(s2
bgv − ζ2)

)( e(ζ)
εs11e(ζ) + ε0f(ζ)

)] ∣∣∣
ζ∈Γef+

(H(t− tae)−H(t− ssr)√
s2
` r

2 − t2

)
− q0
π

Re[ e(ζ)
εs11e(ζ) + ε0f(ζ)

] ∣∣∣
ζ∈Γe+

H(t− s`r)√
t2 − s2

` r
2

− Im
[ e(ζ)
εs11e(ζ) + ε0f(ζ)

] ∣∣∣
ζ∈Γef+

H(t− tef )−H(t− s`r)√
s2
`r

2 − t2

 (4.34)

and

φ̃(x1, x2, t) =
1
π

σ̄0
cε44(1− k4

v)

{
Re
[(
e15(1− Cf )a(ζ) +

(e15
εs11

Cf
)
εs11e(ζ)

)
·
(a(ζ) + k2

ve(ζ)
s2
bgv − ζ2

)( f(ζ)
εs11e(ζ) + ε0f(ζ)

)] ∣∣∣
ζ∈Γf+

H(t− s0r)√
t2 − s2

0r
2

}

− q0
π

Re[ f(ζ)
εs11e(ζ) + ε0f(ζ)

] ∣∣∣
ζ∈Γf+

H(t− s0r)√
t2 − s2

0r
2

 (4.35)
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Figure 8.
Transient waves propagate on the piezoelectric half space

It would be interesting to examine the transient responses on the interface due
to the mixed, impulsive line sources. Let

τ0 :=
s0
s`

, (4.36)

τbgv :=
sbgv
ss

, (4.37)

The displacement response on the surface, (x2 = 0), takes the following dimen-
sionless form

cε44π|x1|
σ̄0cs

wδ(x1, 0, t) =
−1

1− k4
v


√
τ2 − 1H(τ − 1)

(τbgv − τ)(τbgv + τ)
+
k2
v

√
τ2 − τ2

` H(τ − τ`)
(τbgv − τ)(τbgv + τ)


(4.38)

which is very similar to the displacement solution obtained in section 3. As a
matter of fact, in Eq. (3.42), let ke → kv, σ0 → σ̄0 and τbge → τbgv; one recovers
(4.38), which is another reason why Lamb’s problem with shielded surface is a good
bench mark problem, because it represents an intrinsic characteristic of Lamb’s
problem for piezoelectric materials.

Nevertheless, unlike the Lamb’s problem with shielded surface, one may notice
that here both mechanical and electrical loads are responsible for surface displace-
ment disturbance, and the parameter σ̄0 reveals how the electro-mechanical cou-
pling interplays. In practice, one can certainly adjust the ratio between mechanical
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load and electrical load to either enhance or suppress the surface displacement dis-
turbance.
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Figure 9.
Transient response of electroacoustic head wave on the free surface:(

Φαβ(τ) :=
εs11c

ε
44π|x1|

e15σ̄0cs
φδeah(x1, 0, t)

)
;

The solution of electrical potential, on the other hand, is quite different from
the solution of the Lamb’s problem with shielded surface. Unlike the electrical
potential solution obtained in section 3, in which the electrical potential on the
surface is always zero as prescribed by the boundary condition, there is a rich
complexity of electrical potential disturbance on the interface; it consists of several
parts in general:

φδ(x1, 0, t) = φδa(x1, 0, t) + φδeah(x1, 0, t) + φδe(x1, 0, t) + φδeh(x1, 0, t) (4.39)

where the subscript “eh” is referred to as the contribution by a purely electric
head wave.

Let

εp :=
εs11

2 + εs11ε0 + ε0
2

εs11 + ε0
(4.40)

sp :=
√
µ0εp ,

(
cp =

1
sp

)
(4.41)

τp :=
sp
ss

(4.42)
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ε :=
εs11
ε0

(4.43)

The different electrical potential responses on the surface are given as follows:

φδa(x1, 0, t) = −
(e15
εs11

Cf
) σ̄0
cε44(1− k4

v)

( cs
π|x1|

)

·

√τ2 − 1 + k2
v

√
τ2 − τ2

`

(τbgv + τ)(τbgv − τ)
H(τ − 1)

− ( σ̄0
cε44(1− k4

v)

)

·
( cs
π|x1|

)(e15
ε0

)k2
v(1− Cf )

√
τ2τ2

` − (Cf/ε)
√
τ2 − τ2

0

(τbgv + τ)(τbgv − τ)


·

√
τ2 − 1H(τ − 1)

εs11

√
τ2 − τ2

` + ε0

√
τ2 − τ2

0

(4.44)

φδeah(x1, 0, t) = −
(e15
εs11

Cf

) k2
v σ̄0

cε44(1− k4
v)

( cs
π|x1|

)

·

√
τ2 − τ2

`

(
H(τ − τ`)−H(τ − 1)

)
τ2
bgv − τ2 (4.45)

φδe1(x1, 0, t) = − q0cs
π|x1|

· H(τ − τ`)

εs11

√
τ2 − τ2

` + ε0

√
τ2 − τ2

0

(4.46)

φδe2(x1, 0, t) = − e15σ̄0
cε44(1− k4

v)

( cs
π|x1|

)

·

( (1− Cf )(τ2 − 1)− (k2
vCf/ε)

√
τ2 − τ2

0

√
τ2 − τ2

`

(τbgv + τ)(τbgv − τ)

)

·
( H(τ − τ`)

εs11

√
τ2 − τ2

` + ε0

√
τ2 − τ2

0

) (4.47)

φδeh(x1, 0, t) =
( cs
π|x1|

)( ε0

εs11
2 − ε02

)
·
{( e15σ̄0

cε44(1− k4
v)

)(
(1− Cf )

√
1− τ2 + Cf

√
τ2
` − τ2

)

·

√1− τ2 + k2
v

√
τ2
` − τ2

τ2
bgv − τ2

− q0
}√

τ2 − τ2
0

τ2
p − τ2

· (H(τ − τ0)−H(τ − τ`)) (4.48)
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It is interesting to note that on the surface the electric waves at optical speed,
φδe(x1, 0, t) and φδeh, are solely dependent on electrical line source q0, whereas
electroacoustic waves, φδa(x1, 0, t) and φδeah(x1, 0, t), can be excited by both line
sources.

In Figure (9) and (10), the transient responses of electroacoustic head wave
φδeah, transverse electric wave φδe1(x1, 0, t) and φδe2(x1, 0, t) on the surface are plot-
ted for comparison. Figure (9) shows that the surface disturbance of electroacous-
tic head wave reaches to an abyss around τ = 1, because τbgv is very close to 1,
whereas the surface disturbance of the electric wave φδe1(x1, 0, t) reaches another
abyss around τ = 0, since τ` is very small.

5. Conclusions

In this paper, a notion of quasi-hyperbolic approximation is introduced for a class
of transversely isotropic piezoelectric materials to restore hyperbolicity in the sim-
plified Maxwell-Christoffel equations. The newly derived governing equations then
furnish a more accurate formulation than classical formulation based on the quasi-
static approximation, and it enables us to study the transient problem of piezo-
electric media by using established mathematical methods.

Two types of Lamb’s problem under mixed line sources are solved. The ana-
lytical results obtained here provide useful information to explain how transient
waves propagating on the surface of a piezoelectric medium, such as the structures
of electroacoustic head wave and purely electric head wave, and the disturbance
effect of electroacoustic surface wave, etc.

The wave solutions obtained have a quantitative accuracy at acoustic range,
whereas the wave solutions at optical range are only qualitative in nature, because
of the overall “quasi-hyperbolic” approximation as well as the “equal-light-speed”
approximation at the acoustic end. Nevertheless, it has become apparent that
the “quasi-static” approximation does discard some crucial information for both
electric wave as well as acoustic wave ! It is then suggested that discretion should
be taken when using “quasi-static” approximation in transient problems of piezo-
electric media.

The significance of this approach is multitude, because a large class of wave
propagation problems in piezoelectric materials can be solved by following virtually
the same procedure proposed here, such as the scattering and diffraction problems,
inverse problems, as well as dynamic crack propagation problems in piezoelectric
media.
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Appendix A: Product Decomposition of BG(ζ)

This appendix outlines the derivation of the product decomposition of the Bleustein-Gulyaev
function BG(ζ) := a(ζ)− k2

ee(ζ). This factorization provides the essential ingredient in solving
the related Wiener-Hopf equations .

The expression of interest is

BG(ζ) := a(ζ)− k2
ee(ζ) = (1− k4

e)
(sbge − ζ)(sbge + ζ)

a(ζ) + k2
ee(ζ)

(1)

Factorize

a(ζ) + k2
ee(ζ) = (1 + k2

e)
√
s2bge − ζ2K(ζ) (2)

where

K(ζ) :=
a(ζ) + k2

ee(ζ)

(1 + k2
e)
√
s2
bge
− ζ2

. (3)

where K(ζ)→ 1 as |ζ| → ∞.
We then seek the product decomposition K(ζ) = K+(ζ)K−(ζ). It is usually convenient to

express the product decomposition in an additive form, namely,

logK(ζ) = logK+(ζ) + logK−(ζ) =
1

2πi

∮
C

logK(z)
z − ζ

dz (4)

where C is the integration contour shown in Figure (11) and both logK+(ζ) and logK−(ζ) are
sectionally analytic functions.

Define
Θ(ζ) := arg

[
K(ζ)

]
By using the Cauchy principal value, it can be readily shown that along the contour C+ in

Figure (11)

Θ(ζ) =

{
± π

2
; − sbge < Re(ζ) < −ss , Im(ζ) = ±0 (a)

± arctan{Ξ(ζ)} .− ss < Re(ζ) < −s` , Im(ζ) = ±0 (b)
(5)

where

Ξ(ζ) :=

{
k2
e

√
(ζ − s`)(ζ + s`)√

(ss − ζ)(ss + ζ)

}
(6)

By Cauchy’s integral theorem, it is not difficult to find that

K+(ζ) =

√
ss + ζ

sbge + ζ
exp

{
− 1
π

∫ ss

s`

arctan
[
Ξ(η)

] dη

η + ζ

}
(7)

K−(ζ) =

√
ss − ζ
sbge − ζ

exp

{
− 1
π

∫ ss

s`

arctan
[
Ξ(η)

] dη

η − ζ

}
(8)
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Figure 11.
Integration contours used for product decomposition of function K(ζ).

In accordance,

a(ζ) + k2
ee(ζ) = (1 + k2

e)
√
s2s − ζ2D+(ζ)D−(ζ) (9)

where

D±(ζ) := exp

{
− 1
π

∫ ss

s`

arctan
[k2

e

√
(η − s`)(η + s`)√

(ss − η)(ss + η)

]
dη

η ± ζ

}
(10)

Then the product decomposition for Bleustein-Gulyaev function BG(ζ) is obtained as

BG(ζ) = (1− k2
e)

(sbge − ζ)(sbge + ζ)√
(ss − ζ)(ss + ζ)

S+(ζ)S−(ζ) (11)

where S± := 1/D±(ζ).

Remark A.1. 1. From Figure 11, one can see that there are three branch points along each
integration contour; this differs from the decomposition of the Rayleigh wave function used in
the in-plane mode diffraction problem in an elastic medium (Fredricks [1961]) for which there
are only two branch points along each integration contour.

2. The type of decomposition (9) is traditionally accomplished in a direct fashion (e.g.
Brock & Achenbach [1973])

a(ζ) + k2
ee(ζ) = (1 + k2

e)a(ζ)
a(ζ) + k2

ee(ζ)
(1 + k2

e)a(ζ)
= (1 + k2

e)a(ζ)D+(ζ)D−(ζ) (12)

Nonetheless, the elaboration here offers a detailed technical account.
3. There is a sign error in Li & Mataga [1996ab], in which

S±(ζ) := exp

{
− 1
π

∫ ss

s`

arctan
[k2

e

√
(η − s`)(η + s`)√

(ss − η)(ss + η)

]
dη

η ± ζ

}
�


