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Behavior of entropy across shock waves in dusty gases
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Abstract. The behavior of entropy across shock waves in dusty gases is calculated by using the
Navier–Stokes equations for the gas phase and the particle phase. The resulting system of six
nonlinear ordinary differential equations is reduced to a system of four autonomous nonlinear
differential equations which are solved exactly. This solution is obtained formally by assuming
that both the velocity and temperature of particles in the gasdynamic region are constant.
A careful study of the equation that governs the entropy shows that the entropy profile has
a maximum value within the shock region. It is also shown that the entropy is increasing
continuously across the shock wave with increasing both the Mach number and the particle
concentration.
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1. Introduction

There are many engineering applications for flows of a medium that consists of
a suspension of powdered materials or liquid droplets in a gas. Most of these
flows involve changes of the gas velocity and temperature. Gas-particle interaction
through viscous drag and heat transfer produces corresponding changes in the
particles. These processes are relatively slow, so that for fast changes in the gas
phase, considerable deviations from equilibrium may occur. Thus, one has to deal
with typical relaxation processes.

The structure of shock waves in dusty gases has been investigated by many
authors [1]–[8]. It has been assumed in these papers, that the transport coefficient
of viscosity and heat conductivity were negligible, so that the gas-dynamic shock
wave appeared as a discontinuity. This assumption is not valid for weak shock
waves, because the thickness L of a shock wave in a pure gas becomes very large
when the Mach number M0 of the gas approaches unity [9].

The transport coefficients of viscosity and heat conductivity have been taken
into consideration by Hamad [10] in order to determine theoretically the structure
of fully dispersed waves in dusty gases. The influence of the above mentioned
coefficients is discussed in previous papers Hamad [11]–[13].

But in the present paper the behavior of entropy across shock waves is discussed
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by simplifying the previous work which is difficult. In a previous paper [10], the
structure of shock waves in dusty gases was discussed for any Prandtl number. Four
nonlinear autonomous differential equations were obtained and two singularities
appeared in the phase space arising from the boundary conditions ahead and
behind the shock wave. This feature made it very difficult to deal with, and it was
impossible to study the variation of entropy within the shock region. To overcome
these difficulties, here in the present paper, it is assumed that the velocity and
temperature of the existing particles are constant (in the gasdynamic region) and
take the Prandtl number to be 3/4. This not only reduced the number of equations
to two but also changed the existing singularities in such a way, that made it
possible to discuss the entropy variation.

The equilibrium properties of a dusty gas can be reduced formally to the equi-
librium properties of a simple gas by introducing certain parameters of the mixture,
for example the Mach number of the mixture:

M̄ = M0
1− φ√
1− µ

√
1 + (µ/(1− µ))(c/cv)
1 + (µ/(1− µ))(c/cp)

, (1)

where µ is the mass fraction of the particles, c the specific heat of the particle
material, cv and cp the specific heats of the gas at constant volume and pressure
respectively. The volume fraction of the particles φ will be neglected in the present
paper. The Mach number of the gas M0 is based on the gas velocity and on the
speed of sound far upstream.

For a simple gas a shock wave can occur only if one has for the Mach number
of the gas M0 > 1. The Mach number of the mixture M̄ becomes unity for:

M̄ = Mmin =
√

1− µ
√

1 + (µ/(1− µ))(c/cv)
1 + (µ/(1− µ))(c/cp)

. (2)

For Mach numbers in the range from M̄ = Mmin to M̄ = 1 the Rankine–Hugoniot
conditions predict a new equilibrium state which can be realized by fully dispersed
waves. The changes of the thermodynamic state of the gas are caused by four
relaxation processes: by the molecular processes of momentum and energy transfer
(viscosity and heat conductivity) and by the macroscopic processes of friction and
heat transfer between gas and suspended particles. The characteristic time for the
molecular processes is the mean time between molecular collisions:

τ = l/c̄, (3)

where l is the mean free path of the gas and c̄ = (8κT/πm)1/2 is a mean molecular
velocity. The characteristic time for the relaxation of the macroscopic velocity is:

τv =
mP

3πσP η
(4)
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and the characterisitc time for the relaxation of the temperature of the gas is:

τT =
mP cp
2πσPλ

, (5)

where mP is the mass of a particle, η the viscosity, λ the heat conductivity, σP the
diameter of the spherical particles, ρP the mass density of the particle material, ρD
the mass density of the gas, κ the ratio of the specific heats. It has been assumed
that the viscosity and the heat conductivity of the gas may be described by the
gaskinetic model of rigid spheres. Equations (4) and (5) show that τv ∼ τT . In
order to obtain an approximate solution for the structure of shock waves in dusty
gases a model is used by considering that the relaxation times τv and τT are much
longer than the relaxation time τ , i.e. the shock for the dust particles takes a
much longer time than for the gas. This means that, we can assume that both the
velocity and temperature of particles in the gasdynamic region are constant.

2. Basic equations

The structure of shock waves in dusty gases is described by the conservation equa-
tions for one-dimensional steady flow. These six equations have to be solved for
the boundary conditions. uP = uD = u0, TP = TD = T0, for x → −∞ and
uP = uD = u1, TP = TD = T1 for x → +∞, where the subscripts “P” and
“D” refer to the particles and the gas respectively. The quantity u represents the
velocity and the quantity T the temperature. Denoting the density (i.e. the mass
of the gas or the particles per unit volume of the system) by ζ, the integrated
continuity equations for gas and particles become

ζDuD = m1 = m (6)

and
ζPuP = m2 = βm, (7)

where the integration constant m and the abbreviation β = µ/(1− µ) have been
introduced.

The integration force FPx and the heat QP exchanged between particles and
gas are eliminated by adding the momentum and energy equations. The resulting
two equations can be integrated once immediately, by introducing the integrated
continuity equations (6) and (7), one obtains:

ζDu
2
D + ζPu

2
P + pxx = P, (8)

(eD + u2
D/2) + β(eP + u2

P /2) + pxxuD/m+ qx/m = E, (9)

where P and E are integration constants. Here e is the internal energy, qx the heat
flux in the gas, and pxx one component of the stress tensor. For further treatment,
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explicit expressions for the equations of state, the stress tensor and the heat flux
are introduced by:

eD = cνTD, eP = cTP , (10)

pxx = p− 4
3
η
duD
dx

, qx = −λdTD
dx

, (11)

pp = ρMRMT or p = ζDRTD (ϕ� 1). (12)

Using these expressions equations (8) and (9) can be put in the form:

4η
3m

duD
dx

= uD + βuP +
RTD
uD

− P

m
, (13)

λ

m

dTD
dx

= (cvTD + u2
D/2) + β(cTP + u2

P /2) + uD(P/m− uD − βuP )−E. (14)

The integration constants P and E can be expressed in terms of the variable of
state ahead of the shock wave as:

P

m
= (1 + β)u0 +

RT0
u0

= (1 + β +
1

κM2
0

)u0 (15)

and

E =
[

1 + βc/cp

(κ− 1)M2
0

+ (1 + β)/2
]
u2

0. (16)

Two equations have been lost by adding the momentum and energy equations.
Following Marble [6] these equations are replaced by the relaxation equations:

τν
duP
dx

= −uP − uD
uP

, (17)

τT
dTP
dx

= −TP − TD
uP

. (18)

The four equations (13), (14), (17), (18) are put into the dimensionless form:

η̄
dωD
dx

= ωD +
θD
ωD

+ βωP − 1, (19)

λ̄
dθD
dx

= θD − δ[(1− ωD)2 + α] + βδ(ω2
P − 2ωPωD) + βcθP /cv, (20)

τ̄ν
dωP
dx

= −ωP − ωD
ωP

, (21)

τ̄T
dθP
dx

= −θP − θD
ωP

, (22)

where

ωD =
muD
P

, θD =
m2RTD
P 2 , (23)
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ωP =
muP
P

, θP =
m2RTP
P 2 , (24)

α+ 1 =
2Em2

P 2 , δ =
R

2cv
=
κ− 1

2
, (25)

η̄ = 4η/3m, λ̄ = λ/(cvm), (26)

τ̄v = τνP/m, τ̄T = τTP/m. (27)

For the special case of a simple gas, i.e. for β = 0, these equations are of course
identical with Gilbarg and Paolucci’s [14] equations for the shock wave in a simple
gas. The above system of four differential equations (19)–(22) is difficult to solve
numerically because of the nonlinarities and the two singularities of the direction
field in phase space. These singularities correspond to the equilibrium conditions
ahead of and behind the shock wave. In a previous paper, this system was solved
analytically in phase space by expanding the variables of state in power series [11].

In order to simplify this solution a model is obtained by setting ωP = const =
ω0 and θP = const = θ0, then the equations (19) and (20) become:

η̄ωD
dωD
dx

= ω2
D + θD + (βω0 − 1)ωD, (28)

λ̄
dθD
dx

= θD − δω2
D + 2δ(1− βω0)ωD − F. (29)

Here the following abbreviations have been used:

κ = cp/cv, δ = (κ− 1)/2, (30)

F = δ(1 + α)− βδω2
0 − β

c

cv
θ0. (31)

3. Equilibrium

Far in front of the wave and far behind the wave all gradients of the variables of
state become zero. Under this condition the equilibrium state can be calculated
from equations (28) and (29):

ω0,1 =
κ

κ+ 1
(A± ε), (32)

θ0,1 =
κ

(κ+ 1)2 [A2 − κε2 ∓ (κ− 1)Aε], (33)

where

A =
1 + κM2

0
1 + κ(1 + β)M2

0
, (34)
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ε =
M2

0 − 1
1 + κ(1 + β)M2

0
, (35)

the parameter ε is a measure for the strength of the change in the variables of
state. One has:

M2
0 =

1
κ(1 + β)

1 + ε
1

κ(1+β) − ε
. (36)

For very strong shock waves with M0 →∞, one has:

ε→ 1
κ(1 + β)

. (37)

The limit ε → 0 for very weak shock waves is obtained for the Mach number
M0 = 1.

4. The shock profile

Multiplying the differential equation (28) by 2, dividing differential equation (29)
by δ, and dropping the index D, then adding, we get one differential equation in
the following form:

η̄
d

dx
(ω2 +

λ̄

δη̄
θ) = ω2 +

κ

δ
θ − F/δ. (38)

Suppose that λ̄/η̄ = κ (see Appendix) and let y = ω2 + κθ/δ, then equation (38)
takes the form:

η̄
dy

dx
= y − F/δ. (39)

By integration, it yields:

y = F/δ then θ =
δ

κ
(
F

δ
− ω2). (40)

Eliminating the temperature θ from the differential equation (28) by using (40),
one obtains:

η̄ω
dω

dx
=
δ + 1
κ

ω2 − (1− βω0)ω +
F

κ
. (41)

Equation (41) can be integrated and the solution ω(x) can take the following form:

(ω0 − ω)l/(ω − ω1)m = enx, (42)

where
l = ω0/(ω0 − ω1) m = ω1/(ω0 − ω1) n = (1 + δ)/κη̄. (43)

The solution (42) which represents a shock profile of the gas velocity must join the
two singularities P0 and P1.

Setting β = 0 in equation (41) and equations (43), one obtains from (42)
Becker’s solution for the shock wave in a simple gas [9].
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5. Entropy structure in a shock wave

The second law of thermodynamic yields:

dSM = cv,M
dT

T
− p

T

dρM

ρ2
M

, (44)

where SM is the entropy of the mixture, ρM is the mixture density and cv,M is the
specific heat at constant volume of a gas-particle mixture, therefore it is related
to that of the gas by:

cv,M = (1− µ)cv + µc (45)

where cv is the specific heat of the gas at constant volume, c is the specific heat
of the particles, and µ is the mass-fraction of the particles. Using equation (12),
we get:

p

T
= ρMRM , (46)

where RM is the effective gas constant of the mixture, Rudinger [3] which is given
by:

RM = (1− µ)R. (47)

Substituting from (45), (46) and (47) in (44), one obtains:

dSM = (1− µ)
[
(cp + βc)

dT

T
−Rdp

p

]
. (48)

By integration, we get

SM
cp

= ln
T

T0
− κ− 1
κ(1 + β)

ln
p

p0
, (49)

where c = cp and β = µ/(1− µ).
By using equations (23) and (24), we can put equation (49) in a dimensionless

form as follows:

S̄M = ln
θ

θ0
− κ− 1
κ(1 + β)

ln(
θω0
θ0ω

) =
1 + κβ

κ(1 + β)
ln

θ

θ0
− κ− 1
κ(1 + β)

ln(
ω0
ω

). (50)

Eliminating the temperature θ between equation (40) and equation (50), we get:

S̄M =
1

κ(1 + β)

[
(1 + κβ) ln

{
δM2

0
ω2

0

(F
δ
− ω2

)}
− (κ− 1) ln

ω0
ω

]
, (51)

where S̄M = SM/cp, κθ0 = ω2
0/M

2
0 (see Appendix).
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Figure 1.
Entropy S̄ as a function of dimensionless velocity ω for β = 0.1 and −− M0 = 2 — M0 = 2.5.

Figure 2.
Entropy S̄ as a function of dimensionless velocity ω for β = 0.1 and −− M0 = 1.2 — M0 = 1.5.
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6. Conclusion

The variation of the entropy S̄M with the dimensionless velocity ω within the
shock region as given by equation (51) is shown in figures 1–3. Figures 1 and 2
illustrate the variation of entropy S̄M for β = 0.1 and the different values of the
Mach number M0 = 1.2, M0 = 1.5, M0 = 2 and M0 = 2.5. It can be seen that the
entropy S̄M increases as the dimensionless velocity ω decreases within the shock,
till it reaches a maximum value and then it decreases to its boundary value behind
the shock wave. It is also clear that the entropy increases with M0.

Figure 3.
Entropy S̄ as a function of dimensionless velocity ω for M0 = 1.5 and — β = 0.1, −�−�−�−
β = 0.3, – – – β = 0.5 and - - - - β = 0.7.

Figure 3 illustrates the variation of S̄M as a function of the dimensionless
velocity of ω for M0 = 1.5 and the different values of β = 0.1, β = 0.3, β = 0.5
and β = 0.7. Here again the entropy S̄M increases to a maximum value and
then decreases to its boundary value behind the shock wave as ω decreases within
the shock region. But for β = 0.7 we can observe that the entropy reaches its
maximum value behind the shock wave, i.e. when the velocity reaches a minimum
value ω1. The entropy also increases with increasing β.

Figure 4 illustrates the behavior of entropy S̄ as a function of dimensionless
velocity ω for M0 = 1.5 and β = 0, i.e. in the case of pure gas with both viscosity
and heat conductivity.
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Figure 4.
Entropy S̄ as a function of dimensionless velocity ω for β = 0 and M0 = 1.5.

Appendix

1. From equations (23), one obtains:

ω0 =
mu0
P

and θ0 =
m2RT0
P 2 ,

θ0 =
m2u0
P 2 · RT0

u2
0

= ω2
0
kRT0

ku2
0
,

= ω0 ·
1

kM2
0

where M2
0 =

u2
0
a2

0
, a2

0 = kRT0,

kθ0 =
ω0

M2
0
.

2. For the assumption λ̄
η̄ = κ, using equation (26), one has:

κ =
λ̄

η̄
=

λ

cvm
· 3m

4η
=

3
4
· λ
cvη

=
3
4
κ
λ

cpη
=

3
4
· κ

Pr

then Pr = 3
4 , where Pr indicates the Prandtl number.
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