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A note on the Burgers–Rott vortex with a free surface

John Miles

Summary. Rott’s solution of the ‘bathtub vortex’ problem, which neglects the depression of
the free surface, is extended by allowing for a mildly sloping free surface of a shallow, rotating
fluid.
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1. Introduction

We consider here the depression of the free surface of a shallow, rotating fluid,
following Rott [1], who applied Burgers’s [2] description of the viscous core of a
line vortex to the ‘bathtub vortex’ problem on the assumption of a level upper
surface. The depressed-free-surface problem has since been solved by Lundgren
[3], who allowed for any depression up to the limit of a swallowed vortex, but his
formulation is rather elaborate and requires numerical integration of the resulting
differential equations. It therefore seems worthwhile to consider an analytical
extension of Rott’s solution on the assumption of a mild depression (up to about
half the outer depth).

2. Formulation

We posit a swirling flow of radial velocity u(r) and azimuthal velocity v(r) bounded
below by the horizontal surface z = 0 and above by the free surface z = h(r) in
cylindrical polar coordinates r and z. We replace Rott’s modified stagnation-point
flow, in which u/r is constant, by a shallow-water flow in which the pressure is
given by the hydrostatic approximation

p(r, z) = ρg[h(r) − z] (1)

and the vertical velocity w0(r) is prescribed at z = 0. Continuity requires the
radial outflow across a cylinder of radius r and depth h (0 < z < h) to be equal
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to the inflow across the base of that cylinder at z = 0:

2πrhu(r) = 2π
∫ r

0
w0(r)rdr ≡ −Q(r), (2)

where (by definition) Q > 0 for positive drainage. The radial and azimuthal
components of the Navier–Stokes equations yield
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(ρ and ν are the density and kinematic viscosity of the fluid), which correspond to
Rott’s equations (7) and (5), respectively. But, whereas the radial viscous stress
vanishes identically for u = −ar in Rott’s formulation, it is frankly neglected (as
proves to be consistent with the present development) in (3a).

We now assume that w0 = −U is constant, so that Q = πUr2 and (2) reduces
to

u = −1
2
Uh−1r. (4)

Substituting (4) into (3b) and introducing

x ≡ 1
4

(U/νH)r2, h(x) ≡ h(r)/H, C(x) ≡ rv(r)/C∞, (5a-c)

and
ε ≡ 1

8
C2
∞U/gH

2ν, (6)

where H is the outer depth and 2πC∞ is the outer circulation (Rott’s Γ∞), we
obtain

h′(x) ≡ dh/dx = εx−2C2, hC′′ + C′ = 0, (7a,b)

which are equivalent to Lundgren’s (2.3a,b). The boundary conditions are

C = 0 (x = 0); C ∼ 1, h ∼ 1 (x ↑ ∞). (8a-c)

3. Solution for ε� 1

The solution of (7) and (8) for sufficiently small ε may be obtained by expanding
h and C in powers of ε, starting from the solution [1, 2] for a level upper boundary:

h→ 1, C → 1− e−x (ε ↓ 0). (9a,b)

The next approximations are

h = 1 + εh1(x) +O(ε2), C = 1− e−x + εC1(x) +O(ε2), (10a,b)
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where

−h1 =
∫ ∞
x

y−2(1− e−y)2dy = x−1(1− e−x)2 + 2E1(x) − 2E1(2x), (11)

E1(x) =
∫ ∞
x

y−1e−y dy (12)

is an exponential integral, and

C1 = e−x
[∫ ∞

0
e−yh1(y)dy −

∫ x

0
h1(y)dy

]
−
∫ ∞
x

e−yh1(y)dy. (13)

Letting x = 0 in (10a) and (11), we obtain the central depression

h0 = 1− ε ln 4 +O(ε2), (14)

which agrees with Lundgren’s [3] numerical results (within the accuracy with which
his Fig. 2 can be read) for ε(≡ K/8) < 1/4. Lundgren finds that h0 is a mono-
tonically decreasing function of ε that vanishes (the drain vortex is swallowed) for
ε = 0.336; however the present expansion of the solution in powers of ε presum-
ably fails in this limit in consequence of the singularity of (7b) at h = 0. In any
event, higher-order terms in this expansion are complicated and, in view of the
availability of Lundgren’s solution, do not appear to be worth pursuing.

We remark that the neglect of the exponentially decaying terms in (10) yields
the asymptotic approximations

h ∼ 1− εx−1 = 1− 1
2

(C2
∞/gH)r−2, v ∼ C∞r−1, (15a,b)

which correspond to the outer flow for a Rankine vortex.
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