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Abstract. We study the behavior of positive solutions of the system

ut = div(a(u)∇u) + f(u, v) vt = div(b(v)∇v) + g(u, v)

in Ω a bounded domain with the boundary conditions ∂u
∂η

= r(u, v), ∂v
∂η

= s(u, v) on ∂Ω and the
initial data (u0, v0). We find conditions on the functions a, b, f, g, r, s that guarantee the global
existence (or finite time blow-up) of positive solutions for every (u0, v0).
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I. Introduction

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω . In this paper we
consider positive solutions of the following system :{

ut = div(a(u)∇u) + f(u, v) in Ω× (0, T )
vt = div(b(v)∇v) + g(u, v)

(1.1)

where f(·, ·) and g(·, ·) are positive C2 functions nondecreasing in each variable
and a(·), b(·) are positive (a ≥ c > 0, b ≥ c > 0) , nondecreasing and C2.

With boundary conditions{
∂u
∂η = r(u, v) on ∂Ω× (0, T )
∂v
∂η = s(u, v)

(1.2)

where r(·, ·), s(·, ·) are positive , nondecreasing in each variable and C2 .
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And initial data {
u(x, 0) = u0(x) in Ω
v(x, 0) = v0(x)

(1.3)

u0, v0 are C2(Ω), positive, real functions.
Problem (1.1)-(1.3) have been formulated from physical models arising in vari-

ous fields of the applied sciences. For example it can be viewed as a heat conduction
problem with nonlinear diffusivity, source and a nonlinear radiation law coupling
on the boundary of the material body.

Local in time existence and uniqueness of positive classical solutions was proved
by Amann ([1]) , who gives a necessary and sufficient condition for global existence,
mainly the boundedness of (u, v) in L∞-norm in domains of the form Ω× [0, T ).

We are interested in global existence of the solutions of (1.1)-(1.3). Observe
that if the solution is nonglobal then, by the result of ([1]), there exist T < +∞
such that

lim sup
t↗T

(‖u‖L∞(Ω) + ‖v‖L∞(Ω)) = +∞

In this case we say that the solution has finite time blow-up.
Blow-up for nonlinear equations has deserved a great deal of interest. In par-

ticular for this kind of problems the blow-up phenomena is well known in the case
of a single equation.

In [7] Levine and Payne prove that a positive solution of
ut = ∆u Ω× (0, T )
∂u
∂η = f(u) ∂Ω× (0, T )

u(x, 0) = u0(x) Ω

(1.4)

blows-up for every positive u0(x) if f(u) = u1+δh(u), with δ > 0 and h nondecreas-
ing. In [13] Walter proves that, for f convex, (1.4) has global solutions for every
u0 positive if and only if

∫+∞ 1
ff ′ = +∞ . Lopez Gomez, Marquez and Wolanski

[8] prove some blow-up vs. global existence results and localize the blow-up set
of radial solutions of (1.4) on the boundary of a ball B ⊂ Rn. In [10] Rial and
Rossi proves a blow-up result for f such that

∫+∞ 1
f < +∞ (without the convexity

hypotheses) and in the case that f is convex they localize the blow-up set on the
boundary of a general Ω if ∆u0 > 0. If f(u) = up (p > 1) in [2] the blow-up set is
also proved to be localized on the boundary and the asymptotic behavior near a
blow-up point is obtained (see also [6] for the asymptotic behavior).

For results about blow-up vs. global existence of solutions of parabolic systems
we refer among others to [3] , [4] , [5] , [11] and [12].

To our knowledge , no general study was available for (1.1) prior to this work .
The main Theorem presented here shows, as was seen before (see [11] and [12]),

that the blow-up of solutions of (1.1)-(1.3) is related to the behavior of positive
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solutions of the ordinary system
ϕ′(σ) = r(ϕ(σ), ψ(σ))
ψ′(σ) = s(ϕ(σ), ψ(σ))
ϕ(0) = ϕ0

ψ(0) = ψ0

(1.5)

In fact we prove :

Theorem 1. a) If every positive solution of (1.5) blows-up then every positive
solution of (1.1)-(1.3) blows-up.
b)Suppose that (1.5) has global positive solutions.

Also suppose that F (σ)
ϕ′(σ) , G(σ)

ψ′(σ) are monotone increasing or decreasing simulta-
neously, where the functions F and G are given by

{b(ψ(σ))ψ′(σ) + (b(ψ(σ))ψ′(σ))′ + g(ϕ(σ), ψ(σ))} = G(σ)

{a(ϕ(σ))ϕ′(σ) + (a(ϕ(σ))ϕ′(σ))′ + f(ϕ(σ), ψ(σ))} = F (σ)

Then it holds,
b1) If ∫ +∞ 1

min
{
F (σ)
ϕ′(σ) ,

G(σ)
ψ′(σ)

} dσ < +∞

then every positive solution of (1.1)-(1.3) blows-up.

b2) If ∫ +∞ 1

max
{
F (σ)
ϕ′(σ) ,

G(σ)
ψ′(σ)

} dσ = +∞

then every positive solution of (1.1)-(1.3) is global.

Note 1. The monotonicity required in b) can be replaced by
b’1) If F and G are increasing and for some k > 0∫ +∞ 1

min
{

F (σ)
ϕ′(σ+k) ,

G(σ)
ψ′(σ+k)

} dσ < +∞

then the conclusion of b1) holds.
b’2) If F and G are increasing and for every d > 0∫ +∞ 1

max
{
F (σ+d)
ϕ′(σ) ,

G(σ+d)
ψ′(σ)

} dσ = +∞
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then the conclusion of b2) holds.

The proof of this Note 1 follows easily by using arguments similar to the ones
in the proof of Theorem 1 and is left to the reader.

This Theorem applies in several examples, giving conditions for global existence
(or finite time blow-up) that are easy to check.

In [11] one of the authors examines the existence of global positive solutions of{
(ui)t = ∆ui
∂ui
∂η =

∏N
j=1(uj)pij

(1.6)

and obtains blow-up vs. global existence results in terms of the matrix P = (pij).

The natural extension of (1.6) presented here as a particular case of (1.1)-(1.3)
is the problem of global existence of positive solutions of the following system:{

ut = div((u)(n−1)∇u) + uq11vq12 in Ω× (0, T )

vt = div((v)(m−1)∇v) + uq21vq22
(1.7)

{
∂u
∂η = up11vp12 on ∂Ω× (0, T )
∂v
∂η = up21vp22

(1.8)

{
u(x, 0) = u0(x) in Ω
v(x, 0) = v0(x)

(1.9)

where pij and qij are nonnegative and n,m ≥ 1. We are interested in the coupled
case, so we also suppose that the matrix P = (pij) is strictly cooperative (i.e.
p21 6= 0 and p12 6= 0).

To use Theorem 1 we need a result that tells us about the behavior of the
positive solutions of the system of ordinary differential equations (1.5)

z′1 = (z1)p11(z2)p12

z′2 = (z1)p21(z2)p22

z1(0) = z1,0 > 0 z2(0) = z2,0 > 0
(1.10)

with all the pij ≥ 0 and p12 > 0, p21 > 0. More precisely we prove:

Theorem 2. Let {zi(s)} be a positive solution of (1.10)
1) If pii > 1 for some 1 ≤ i ≤ 2 then every positive solution of (1.10) blows-up.
2) Assume that all the pii ≤ 1, and that P − Id is nonsingular. Let (α1, α2) be

the solution of

(P − Id)
(
α1
α2

)
=
(
−1
−1

)
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(observe that α1 and α2 have the same sign).
2.1) If (αi) < 0 then every positive solution of (1.10) blows-up.
2.2) If (αi) > 0 then (1.10) has a global solution of the form

zi(s) = ci(s+ s0)αi

3) Assume that all the pii ≤ 1, and that P − Id is singular and strictly coop-
erative (this is p21 6= 0 and p12 6= 0). Then there exists a vector (β1, β2), βi > 0,
wich is a solution of

(P − Id)
(
β1
β2

)
=
(

0
0

)
and (1.10) has global solutions of the form

zi(s) = cie
βis

Then we can obtain as an easy corollary of Theorem 1 the following result:

Theorem 3. a)If the positive solutions of (1.10) blows-up (parts 1) and 2.1) of
Theorem 2) then also every positive solution of (1.7)-(1.9) blows-up.

b)Suppose that we are under the hypothesis of part 2.2 of Theorem 2 (the solutions
of (1.10) are global). Let

M1 = max{α1(n− 1), (α1(q11 − 1) + α2q12) + 1}

M2 = max{α2(m− 1), (α1q21 + α2(q22 − 1)) + 1}
b1) If M1 > 1 and M2 > 1 then every solution of (1.7)-(1.9) blows-up.
b2) If M1 ≤ 1 and M2 ≤ 1 then every solution of (1.7)-(1.9) is global.

c)Suppose that the hypothesis of part 3) of Theorem 2 is true. Let

K1 = max{β1(n− 1), (β1(q11 − 1) + β2q12)}

K2 = max{β2(m− 1), (β1q21 + β2(q22 − 1))}
c1) If K1 > 0 and K2 > 0 then every solution of (1.7)-(1.9) blows-up.
c2) If K1 ≤ 0 and K2 ≤ 0 then every solution of (1.7)-(1.9) is global.

We may apply Theorem 3 to the following problem: suppose that the pij are
fixed and such that case b) or case c) holds, m = n = 1 and the qij depends on a
parameter r (qij = qij(r) are increasing nonnegative functions). Then there holds

Theorem 4. Consider the problem (1.7)-(1.9) with the pij such that case b) or
case c) of Theorem 3 holds, m = n = 1, qij(r) increasing with r. There exists a
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critical value r0 ∈ [0,+∞] such that if r < r0 the solutions are global and if r > r0
every solution has a finite blow-up time.

Now we apply Theorem 3 to obtain upper and lower bounds for r0. If we are
in case b) we define

Γ1(r) = α1(q11(r) − 1) + α2q12(r)

Γ2(r) = α1q21(r) + α2(q22(r) − 1)

and in case c)
Γ1(r) = β1(q11(r) − 1) + β2q12(r)

Γ2(r) = β1q21(r) + β2(q22(r) − 1)

Γi are increasing fuctions of r and if we define

r = sup{r/Γ1(r) ≤ 0,Γ2(r) ≤ 0}

r = inf{r/Γ1(r) > 0,Γ2(r) > 0}

then r ≤ r0 ≤ r.
Examples : (we suppose that the pij are in case b))
1) If q11 = q22 = r , q21 = q12 = 0, then the critical value r0 is 1.
2)If q11 = q22 = q21 = q12 = r, then α1

α1+α2
≤ r0 ≤ α2

α1+α2

If r = s, a = b and f = g in the system (1.1)-(1.3) we can reduce the problem
to a single equation. We obtain the following Theorem for a scalar equation as a
consequence of Theorem 1.

Theorem 5. Let f > 0, a ≥ c > 0 and r > 0 be C2 and nondecreasing. Let u be
a positive solution of the problem{

ut = div(a(u)∇u) + f(u)
∂u
∂η = r(u)

Let ϕ be a positive solution of ϕ′(σ) = r(ϕ(σ)). Now Theorem 1 says that

a) If
∫+∞ 1

r < +∞ , ϕ blows-up, and then the solution u also blows-up.

b) Suppose that
∫+∞ 1

r = +∞ , then ϕ is global, and that

a(s){1 + r′(s)}+ a′(s)r(s) +
f(s)
r(s)

= F (s)

is monotone increasing or decreasing. Then the existence of global solutions de-
pends on the convergence of the integral
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∫ +∞ 1
F (s)

ds

As a Corollary we obtain

Corollary. If a(s) = sm−1 , f(s) = sq and r(s) = sp (m ≥ 1, p, q ≥ 0) in
Theorem 5 we obtain

a) If p > 1 then the solution u blow-up.

b) Suppose that p < 1, let M = max{ (m−1)
(1−p) ,

(q−1)
(1−p) + 1}

b1) If M > 1 then every positive solution u has finite time blow-up.

b2) If M ≤ 1 then every positive solution u is global.

c) Suppose that p = 1, let K = max{(m− 1), (q − 1)}

c1) If K > 0 then every positive solution u has finite time blow-up.

c2) If K ≤ 0 then every positive solution u is global.

In the rest of the paper we prove Theorem 1 (with some examples), Theorem
2 and obtain, as a corollary, Theorem 3. Finally we prove Theorem 4.

II. Proof of the Theorems

Def 1. Let ε > 0. If (u, v) is a classical solution of{
ut ≥ div(a(u)∇u)) + f(u, v) + ε

vt ≥ div(b(v)∇v)) + g(u, v) + ε
(2.1)

{
∂u
∂η ≥ r(u, v)
∂v
∂η ≥ s(u, v)

(2.2)

{
u(x, 0) = u0(x)
v(x, 0) = v0(x)

(2.3)

we call it an ε− supersolution of (1.1)-(1.3).

Def 2. Let ε > 0. If (u, v) is a classical solution of{
ut ≤ div(a(u)∇u)) + f(u, v)− ε
vt ≤ div(b(v)∇v)) + g(u, v)− ε

(2.4)
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∂η ≤ r(u, v)
∂v
∂η ≤ s(u, v)

(2.5)

{
u(x, 0) = u0(x)
v(x, 0) = v0(x)

(2.6)

we call it an ε− subsolution of (1.1)-(1.3).
The followings comparison Lemmas justify the preceding definitions

Lemma 2.1. If an ε−supersolution (u, v) verifies

u0(x) > u0(x) v0(x) > v0(x) (2.7)

then
u(x, t) > u(x, t) v(x, t) > v(x, t)

(as long as they are both defined).

Proof. Suppose that there exist a time τ such that u(x, τ) ≤ u(x, τ) for certain
x ∈ Ω.

Let t0 be the minimum of the following set

{t/u(x(t), t) ≤ u(x(t), t) or v(x(t), t) ≤ v(x(t), t) for some x(t) ∈ Ω}

We observe that t0 > 0 because of (2.7) and the continuity of u, v, u and v up to
t = 0.

Without loss of generality we may assume that at (x(t0), t0), u(x(t0), t0) =
u(x(t0), t0), and therefore

(u− u)(x(t0), t0) = min
0<t<t0

(u− u)(t)

Now we observe that x(t0) can not belong to ∂Ω because of the strong maximun
principle and the fact that,

∂(u− u)
∂η

(x(t0), t0) ≥ (r(u, v)− r(u, v))(x(t0), t0) ≥ 0

((u− u) is not constant).
And if x(t0) ∈ Ω then substracting (1.1) from (2.1)

(u−u)t(x(t0), t0) ≥ (div(a(u)∇u)− div(a(u)∇u) + f(u, v)− f(u, v) + ε)(x(t0), t0)

≥ (a(u)∆u− a(u)∆u+ a′(u) | ∇u |2 −a′(u) | ∇u |2 +ε)(x(t0), t0)

But ∇u(x(t0), t0) = ∇u(x(t0), t0) and ∆u(x(t0), t0) ≥ ∆u(x(t0), t0) so that
(u− u)t(x(t0), t0) ≥ ε, which is a contradiction.
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So that t0 can not exist and the conclusion follows. �

Lemma 2.2. If (u, v) is an ε−subsolution and

u0(x) < u0(x) v0(x) < v0(x) (2.8)

then
u(x, t) < u(x, t) v(x, t) < v(x, t)

(as long as they are defined).

Proof. It follows by the same arguments used in Lemma 2.1. �

Proof of Theorem 1.

The basic idea is to construct an ε−subsolution (or ε−supersolution) of (1.1)-
(1.3) that blows-up in finite time (or exists globally) and then use the previous
Lemmas 2.1 and 2.2.

We propose as the desired ε−subsolution (ε−supersolution){
w(x, t) = ϕ(α(x) + β(t))
z(x, t) = ψ(α(x) + β(t))

(2.9)

where the pair (ϕ,ψ) is a solution of the ODE system (1.6). Then we compute{
wt(x, t) = ϕ′(σ)β′(t)
zt(x, t) = ψ′(σ)β′(t)

(2.10){
∂w
∂η (x, t) = ϕ′(σ)∂α∂η (x)
∂z
∂η (x, t) = ψ′(σ)∂α∂η (x)

(2.11)

{
div(a(w)∇w) = a′(ϕ(σ))(ϕ′(σ))2 | ∇α(x) |2

+a(ϕ(σ))
{
ϕ′(σ)∆α(x) + ϕ′′(σ) | ∇α(x) |2

} (2.12){
div(b(z)∇z) = b′(ψ(σ))(ψ′(σ))2 | ∇α(x) |2

+b(ψ(σ))
{
ψ′(σ)∆α(x) + ψ′′(σ) | ∇α(x) |2

} (2.13)

where σ = α(x) + β(t).

We begin by a), so we assume that (ϕ,ψ) blows-up at a finite time T . We have
to choose α(·) , β(·) and ε in order to make (w, z) an ε−subsolution of (1.1)-(1.3)
that verifies (2.8).

We take β(t) = κt and α(x) = δ‖x− x0‖2 (x0 /∈ Ω). By (2.11) and recalling
that (ϕ,ψ) is a solution of (1.6), is easy to see that, choosing δ small enough, (2.5)
holds. Now, taking (ϕ0, ψ0) and δ small we ensure (2.8).
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In order to verify (2.4), we notice that by using (2.10), (2.12) and (2.13) it is
sufficient to choose ε and κ such that

κ+
ε

ϕ′(0)
≤ 2cδn

κ+
ε

ψ′(0)
≤ 2cδn

where c is such that a ≥ c > 0, b ≥ c > 0 and n is the dimension of the space.
So we have an ε−subsolution that blows-up because of our hypothesis on (ϕ,ψ)

and the fact that we can choose κ > 0. This complete the proof of a).

b1) Again we want to choose α(·) , β(·) and ε in order to obtain a subsolution
(w, z). As before we take α(x) = δ‖x− x0‖2 and we can choose δ, ϕ0, ψ0 small
enough to verify (2.5) and (2.8). In order to satisfy (2.4) it is sufficient that β
verifies (recall (2.12)-(2.13))

β′(t) ≤
C
{
a′(ϕ(σ))(ϕ′(σ)2 + a(ϕ(σ))ϕ′(σ) + a(ϕ(σ))ϕ′′(σ) + f(ϕ(σ), ψ(σ))

}
− ε

ϕ′(σ)

and also

β′(t) ≤
C
{
b′(ψ(σ))(ψ′(σ)2 + b(ψ(σ))ψ′(σ) + b(ψ(σ))ψ′′(σ) + g(ϕ(σ), ψ(σ))

}
− ε

ψ′(σ)

We observe that the hypothesis b1) and the monotonicity assumption imply
that F

ϕ′ and G
ψ′ must be increasing and then we can take β(t) a positive increasing

function such that

β′(t) = min
{
CF (β(t))
ϕ′(β(t))

− ε1,
CG(β(t))
ψ′(β(t))

− ε2

}
where ε1 = ε

ϕ′(0) and ε2 = ε
ψ′(0) . If b1) holds then β(t) blows-up and hence, as

the functions ϕ and ψ are increasing and tends to infinity we obtain the result.

b2) Now we look for global ε−supersolutions. We choose α(x) a C2 function
such that ∂α

∂η ≥ 1 at ∂Ω (for instance a smooth extension of the distance to ∂Ω).
We can assume that α(x) > 0 in Ω (just add a constant). With this α (2.2) holds.
To satisfy (2.7) it sufices to take ϕ0 and ψ0 big enough. It rests to choose β(t) as
a solution of

β′(t) = Lmax
{
F (β(t + k))
ϕ′(β(t+ k))

+ ε1,
G(β(t+ k)
ψ′(β(t + k))

+ ε2

}
where k = 0 or k = max(α) depending on the monotonicity of F

ϕ′ and G
ψ′ , L =

max{| ∇α |2,∆α, 1}, ε1, ε2 as before. We observe that β(t) is global because of
our hypothesis. �
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Examples. 1- If r(u, v) = s(u, v) = 1 then ϕ(σ) = ψ(σ) = σ. Then if a , b are
convex and b′(σ) + b(σ) + g(σ, σ) ≥ a′(σ) + a(σ) + f(σ, σ) for every σ ≥ σ0 we
obtain that

b1). If
∫+∞ 1

a′(σ)+a(σ)+f(σ,σ)d σ < +∞ then (u, v) blows-up.

b2). If
∫+∞ 1

b′(σ)+b(σ)+g(σ,σ) d σ = +∞ then (u, v) is global.

2- If r(u, v) = u, s(u, v) = v then we may take ϕ(σ) = ψ(σ) = eσ. And if
we choose a = b = 1 then if g(s,s)

s and f(s,s)
s are increasing, f(s, s) ≥ g(s, s) for

every s big enough, the existence of global solutions of (1.1)-(1.3) is guaranted
by
∫+∞ 1

f(s,s) ds = +∞ and if
∫+∞ 1

g(s,s) ds < +∞ every solution of (1.1)-(1.3)
blows-up.

If instead of a = b = 1 we take a(s) = b(s) = s then every solution of (1.1)-(1.3)
blows-up.

Proof of Theorem 2.

We make just a sketch of the proof.
Part 1) is trivial because if p11 > 1 we observe that z2 is increasing and so z1

is a solution of z′1 ≥ c(z1)p11 wich has blow-up if p11 > 1.
Parts 2.2) and 3) are straightforward computations.
The last part 2.1) follows by a comparison argument with zi(s) = ci(S0 − s)αi

as a subsolution (note that this subsolution blows-up at time S0). �

Proof of Theorem 3.

First we observe that, in spite of the fact that the powers involved may not
be C2, the existence result of Amann ([1]) applies here because the initial data
u0, v0 are strictly positive. In fact we can take a C2 modification of the power
functions involved that coincide with them below min{u0,v0}

2 , and observe that
the solution (u, v) remains greater than min{u0,v0}

2 because of an easy corollary of
the minimum principle (we can use a constant as subsolution).

The part a) is an inmediate consequence of part a) of Theorem 1.

To prove b) let us define

θ1(σ) = σ(α1(n−1)) + σ(α1(q11−1)+α2q12+1)

θ2(σ) = σ(α2(m−1)) + σ(α1q21+α2(q22−1)+1)

then there exist C, c > 0 and σ0 such that, for every σ > σ0

cθ1(σ) ≤ F (σ)
ϕ′(σ)

≤ Cθ1(σ)
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cθ2(σ) ≤ G(σ)
ψ′(σ)

≤ Cθ2(σ)

And the result follows just by recalling that the convergence of the integrals
involved in b) of Theorem 1 are just equivalent to the hypothesis on the exponent
of θi.

It only remains item c). The proof is the same as in the previous part but we
have to take

θ1(σ) = e(β1(n−1)σ) + e(β1(q11−1)+β2q12)σ

θ2(σ) = e(β2(m−1)σ) + e(β1(q21)+β2(q22−1))σ

and there holds

cθ1(σ) ≤ F (σ)
ϕ′(σ)

≤ Cθ1(σ)

cθ2(σ) ≤ G(σ)
ψ′(σ)

≤ Cθ2(σ)

for some constants C, c. Then we have to proceed just as before. �

Proof of Theorem 4.

In this part of the paper we suppose that the pij are fixed such that b) or c) of
Theorem 3 holds, m = n = 1 and the qij = qij(r) are positive and nondecreasing.

First we prove an auxiliary lemma.

Lemma 2.3. Given r, if for some initial datum (u0, v0) the problem (1.7)-(1.9)
has blow-up (or global existence) then the same is valid for every positive initial
datum.

Proof. We can apply a comparison argument to show that if (w0, z0) is such that
w0 > u0 and z0 > v0 the same inequalities hold as long as both solutions exist (see
the proof of Lemma 2.1). So (w, z) has blow-up if (u, v) has. If (w0, z0) are not
greater than (u0, v0) then we observe that inf w and inf z are strictly increasing
and tends to infinity with t because w is a solution of

wt ≥ ∆w + c1

∂w

∂η
≥ c2

for some positive constants c1, c2, and then w ≥ c1t. Then there exists a time τ
such that w(τ) > u0 and z(τ) > v0 and we can use the comparison principle again
to conclude that (w, z) has finite time blow-up. �
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Now we prove Theorem 4. We take r1 < r2 , r2 such that every solution with
r2 is global. We want to show that a solution with r1 is global.

We choose u0 > 1 and v0 > 1 and take (u, v), (w, z) the solution to problem
(1.7)-(1.9) with r1,r2 and initial data (u0, v0), (u0 + δ, v0 + δ) respectively. It is
enough to prove that u < w and v < z because then (u, v) must be global and
hence every solution with r1 has to be global by an application of Lemma 2.3.

To see this fact we suppose that it is false and take the first time, t0, such that
there exists x0 ∈ Ω with (w − u)(x0, t0) = δ/2 or (z − v)(x0, t0) = δ/2. We can
assume that this holds for (w − u). Then x0 /∈ ∂Ω because at that point (x0, t0)

∂(w − u)
∂η

= wp11zp12 − up11vp12 > 0

and if x0 ∈ Ω ,

(w − u)t = ∆(w − u) + wq11(r2)zq12(r2) − uq11(r1)vq12(r1) > 0

a contradiction (we are using the monotonicity of qij(r)).

We have proved that if the solutions with r2 are global the same holds for every
r < r2.

With the same argument we can conclude that if for some r1 the solutions have
blow-up the same occurs for every r > r1. From this we deduce the existence of
the r0 which is claimed in Theorem 4. �
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