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Abstract. The technique developed in refs. [1-5] is applied to the problem of a concentrated line
force acting in the interior of an infinite plate. The plate is of arbitrary thickness, is isotropic,
but is inhomogeneous in that the elastic moduli are any specified functions, not necessarily
continuous, of the through-thickness coordinate. The mechanical properties of the plate are not
necessarily symmetric about the mid-surface. The solution is based on the classical solution for a
concentrated force in a thin elastic plate. This classical solution is extended to give exact closed
form solutions for the displacement and stress in the thick inhomogeneous plate. For a plate
that is not symmetric an in-plane force gives rise to bending as well as stretching deformations.
Higher order force singularities are also considered, as is the problem of a concentrated force on
the boundary of a semi-infinite symmetric plate.
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1. Introduction

In a series of earlier papers, Rogers and Spencer [1], Rogers [2], Spencer [3,4], Mian
and Spencer [5] and Spencer and Selvadurai [6] have developed and applied a pro-
cedure for deriving exact solutions of the equations of linear elasticity for materials
that are isotropic but inhomogeneous in a specified direction. Such inhomogeneous
materials occur frequently both naturally and in man-made structures. For ex-
ample, many geomaterials are layered or have properties that vary with depth;
laminated and sandwich plates and shells are extensively used in aerospace and
automotive structures, and currently there is growing interest in functionally grad-
ed materials which are deliberately constructed to have mechanical and thermal
properties that have continuous spatial variation.

The origins of the method reside in classical solutions by Michell [7] for plane
stress of moderately thick elastic plates, and a reformulation of Michell’s equa-
tions by Kaprielian, Rogers and Spencer [8]. The principal result obtained in [1-5]
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is that any solution of the classical thin plate or classical laminate theory equa-
tions (which describe a two-dimensional theory) can be applied by straightforward
substitutions, to generate an exact solution of the three-dimensional linear elastic-
ity equations for a material with arbitrary inhomogeneity in a specified direction,
which is here taken to be the direction normal to the surface of a thick flat plate.
Thus, if this direction is taken to be the z direction of a system of rectangular
Cartesian coordinates Oxyz, the Lamé elastic moduli (or Young’s modulus and
Poisson’s ratio) can be arbitrary specified functions of z, subject only to the usu-
al strain-energy positive-definiteness requirements. The dependence need not be
continuous, so the important special case of a laminated or sandwich material, in
which the moduli are piecewise constant, is included.

A defect of the method is that, although it constructs exact solutions of the
field equations, the solutions are usually not sufficiently general to allow satisfac-
tion of the standard point-by point boundary conditions at the edge of a plate.
However they normally admit specification of the usual combinations of stress
resultants and moments, or of average or mid-plane displacements, at a bound-
ary edge. Hence the solutions should strictly be regarded as interior solutions in
a plate, and for completeness need to be supplemented by edge boundary lay-
er solutions. This problem does not arise in the case of an infinite plate, with
no boundaries. There are some interesting solutions in two-dimensional elasticity
theory which describe the effects of concentrated forces, force pairs, and higher
order singularities, in plates. These solutions are fundamental, because solutions
due to distributed forces can be constructed by appropriate superpositions of so-
lutions due to concentrated forces. The main purpose of this paper is to derive the
corresponding exact solution for a concentrated force in an inhomogeneous plate.

The general theory is summarized in Section 2. In Section 3 we state the
classical solution for a concentrated force in a homogeneous thin plate. This
solution is applied in Section 4 to develop the solution for displacement and stress
due to a concentrated force in an inhomogeneous thick plate. Unless the plate
is symmetric about the mid-plane with respect to its mechanical properties, an
in-plane force gives rise to bending as well as stretching deformation modes. Some
higher order singularities, such as a centre of compression and a centre of rotation,
are considered in Section 5. In Section 6 we consider the three-dimensional solution
generated by the classical solution for a concentrated force on the surface of a semi-
infinite plate. In this solution a concentrated force is applied at the origin, but
only resultant tractions can be specified to be zero at the remainder of the surface.

2. General theory

We employ a system of rectangular Cartesian coordinates (x, y, z) and cylindrical
polar coordinates (r, θ, z) such that

x = r cos θ, y = r sin θ.
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For the most part the cylindrical polar system will be used. In this system, dis-
placement components are denoted by u, v and w, and the components of the
infinitesimal strain tensor e and the stress tensor σ as

σ =

 σrr σrθ σrz
σrθ σθθ σθz
σrz σθz σzz

 , e =

 err erθ erz
erθ eθθ eθz
erz eθz ezz

 . (2.1)

Then

err =
∂u

∂r
, eθθ =

u

r
+

1
r

∂v

∂θ
, ezz =

∂w

∂z
,

2erθ =
1
r

∂u

∂θ
+
∂v

∂r
− v

r
, 2erz =

∂u

∂z
+
∂w

∂r
, 2eθz =

∂v

∂z
+

1
r

∂w

∂θ
.

(2.2)

For an isotropic elastic solid, the stress-strain relations can be expressed in the
form σrr σrθ σrz

σrθ σθθ σθz
σrz σθz σzz

 = λ(err + eθθ+ ezz)

 1 0 0
0 1 0
0 0 1

+ 2µ

 err erθ erz
erθ eθθ eθz
erz eθz ezz

 , (2.3)

where λ and µ are the Lamé elastic moduli. The equations of equilibrium are

∂σrr
∂r

+
1
r

∂σrθ
∂θ

+
∂σrz
∂z

+
σrr − σθθ

r
= 0,

∂σrθ
∂r

+
1
r

∂σθθ
∂θ

+
∂σθz
∂z

+
2σrθ
r

= 0,

∂σrz
∂r

+
1
r

∂σθz
∂θ

+
∂σzz
∂z

+
σrz
r

= 0. (2.4)

We consider a plate or slab of linearly elastic material, which is not necessar-
ily thin, bounded by the planes z = ±h. The material is isotropic, but may be
inhomogeneous in the z direction, so that, in general, λ and µ are specified func-
tions of z. The dependence of λ and µ on z need not be continuous, so that the
important special case of a laminated or layered material, in which λ and µ are
piecewise constant functions of z, is included. The case in which the dependence
is continuous corresponds to a functionally graded material.

The underlying idea is that exact solutions of the three-dimensional elasticity
equations for the inhomogeneous plate are generated by solutions of the classical
two-dimensional thin elastic plate or classical laminate theory equations. The
development of this theory is given in [5] and earlier papers. The following is a
summary of required results that are described in detail in [5].

Let u(r, θ), v(r, θ) and w(r, θ) be displacements which may be interpreted as
average or mid-surface displacements of a thin plate, and denote

∆ =
∂u

∂r
+
u

r
+

1
r

∂v

∂θ
, Ω =

∂v

∂r
+
v

r
− 1
r

∂u

∂θ
. (2.5)
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Then the classical equations are

∇4w = 0,

κ1
∂∆
∂r
− 1
r

∂Ω
∂θ

+ κ2
∂∇2w

∂r
= 0,

κ1
1
r

∂∆
∂θ

+
∂Ω
∂r

+ κ2
1
r

∂∇2w

∂θ
= 0, (2.6)

where κ1and κ2 are the constants

κ1 =
4
∫ h
−h{µ(λ+ µ)/(λ+ 2µ)}dz

2hµ
, κ2 = −

4
∫ h
−h{µ(λ+ µ)/(λ+ 2µ)}zdz

2hµ
,

(2.7)
and µ is the through-thickness average value of µ, and therefore

2hµ =
∫ h

−h
µdz. (2.8)

It follows from (2.6) that ∆ and Ω are harmonic functions, so that

∇2∆ = 0, ∇2Ω = 0, (2.9)

and ∇2 is the two-dimensional Laplacian in polar coordinates; thus

∇2 =
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2 .

If the plate is symmetric, so that λ(z) = λ(−z) and µ(z) = µ(−z), then κ2 = 0, and
the stretching deformations, represented by u and v, uncouple from the bending
deformations represented by w.

It is shown in [5] that if u, v and w satisfy (2.6) then an exact solution of the
three-dimensional elasticity equations (2.2), (2.3) and (2.4) is

u(r, θ, z) = u(r, θ)− z ∂w(r, θ)
∂r

+ F (z)
∂∆(r, θ)
∂r

+B(z)
∂∇2w(r, θ)

∂r
,

v(r, θ, z) = v(r, θ)− z 1
r

∂w(r, θ)
∂θ

+ F (z)
1
r

∂∆(r, θ)
∂θ

+B(z)
1
r

∂∇2w(r, θ)
∂θ

,

w(r, θ, z) = w(r, θ) +G(z)∆(r, θ) + C(z)∇2w(r, θ). (2.10)

The functions B(z), C(z), G(z) and F (z) are determined by the equations

dG

dz
= − λ

λ+ 2µ
,

dC

dz
= z

λ

λ+ 2µ
,
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d

dz

{
µ

(
dF

dz
+G

)}
= µκ1 −

4µ(λ+ µ)
λ+ 2µ

,

d

dz

{
µ

(
dB

dz
+ C

)}
= µκ2 + z

4µ(λ+ µ)
λ+ 2µ

, (2.11)

and the boundary conditions

dF

dz
+G = 0,

dB

dz
+ C = 0, at z = ±h. (2.12)

In formulating (2.10)-(2.12) it has been assumed that the lateral surfaces z = ±h
of the plate are free from tractions, so that

σrz = 0, σθz = 0, σzz = 0, at z = ±h. (2.13)

The theory developed in [5] is rather more general than this, in that it allows less
restrictive boundary conditions on the lateral surfaces. However (2.10)-(2.12) are
sufficient for the purposes of this paper.

From (2.2) the strain associated with the displacement (2.10) is

err =
∂u

∂r
− z ∂

2w

∂r2 + F
∂2∆
∂r2 +B

∂2∇2w

∂r2 ,

eθθ =
u

r
+

1
r

∂v

∂θ
− z

(
1
r

∂w

∂r
+

1
r2
∂2w

∂θ2

)
+ F

(
1
r

∂∆
∂r

+
1
r2
∂2∆
∂θ2

)
+B

(
1
r

∂∇2w

∂r
+

1
r2
∂2∇2w

∂θ2

)
,

ezz =
dG

dz
∆ +

dC

dz
∇2w,

2erθ =
1
r

∂u

∂θ
+
∂v

∂r
− v

r
− z

(
2
r

∂2w

∂r∂θ
− 2
r2
∂w

∂θ

)
+ F

(
2
r

∂2∆
∂r∂θ

− 2
r2
∂∆
∂θ

)
+B

(
2
r

∂2∇2w

∂r∂θ
− 2
r2
∂∇2w

∂θ

)
,

2erz =
(
dF

dz
+G

)
∂∆
∂r

+
(
dB

dz
+ C

)
∂∇2w

∂r
,

2eθz =
(
dF

dz
+G

)
1
r

∂∆
∂θ

+
(
dB

dz
+ C

)
1
r

∂∇2w

∂θ
, (2.14)

and hence, from (2.6) and (2.9)

err + eθθ + ezz =
(

1 +
dG

dz

)
∆−

(
z − dC

dz

)
∇2w. (2.15)
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It follows from (2.3) and (2.11) that the stress is

σrr =
2λµ
λ+ 2µ

(∆− z∇2w) + 2µ
{
∂u

∂r
− z ∂

2w

∂r2 + F
∂2∆
∂r2 +B

∂2∇2w

∂r2

}
,

σθθ =
2λµ
λ+ 2µ

(∆− z∇2w) + 2µ
{
u

r
+

1
r

∂v

∂θ
− z

(
1
r

∂w

∂r
+

1
r2
∂2w

∂θ2

)}
+ 2µ

{
F

(
1
r

∂∆
∂r

+
1
r2
∂2∆
∂θ2

)
+B

(
1
r

∂∇2w

∂r
+

1
r2
∂2∇2w

∂θ2

)}
,

σrθ = µ

{
1
r

∂u

∂θ
+
∂v

∂r
− v

r
− z

(
2
r

∂2w

∂r∂θ
− 2
r2
∂w

∂θ

)}
+ µ

{
F

(
2
r

∂2∆
∂r∂θ

− 2
r2
∂∆
∂θ

)
+B

(
2
r

∂2∇2w

∂r∂θ
− 2
r2
∂∇2w

∂θ

)}
,

σrz = µ

{(
dF

dz
+G

)
∂∆
∂r

+
(
dB

dz
+ C

)
∂∇2w

∂r

}
,

σθz = µ

{(
dF

dz
+G

)
1
r

∂∆
∂θ

+
(
dB

dz
+ C

)
1
r

∂∇2w

∂θ

}
,

σzz = 0. (2.16)

Also, from (2.11)

G(z) = −
∫ z

0

λ(ζ)
λ(ζ) + 2µ(ζ)

dζ +G0,

C(z) =
∫ z

0

ζλ(ζ)
λ(ζ) + 2µ(ζ)

dζ + C0, (2.17)

and without loss of generality we may take G0 = 0, C0 = 0, because terms such as
G0∆(r, θ) and C0∇2w(r, θ) in (2.10) can be absorbed into w(r, θ). Further, from
(2.7), (2.11) and (2.12)

µ

(
dF

dz
+G

)
= κ1

∫ z

−h
µ(ζ)dζ − 4

∫ z

−h

µ(ζ){λ(ζ) + µ(ζ)}
λ(ζ) + 2µ(ζ)

dζ,

µ

(
dB

dz
+ C

)
= −κ2

∫ z

−h
µ(ζ)dζ + 4

∫ z

−h

ζµ(ζ){λ(ζ) + µ(ζ)}
λ(ζ) + 2µ(ζ)

dζ,
(2.18)

and hence

F (z) =
∫ z

0

∫ ζ

−h

µ(ζ)
µ(ξ)

{
κ1 − 4

{λ(ζ) + µ(ζ)}
λ(ζ) + 2µ(ζ)

}
dξdζ +

∫ z

0

(z − ζ)λ(ζ)
λ(ζ) + 2µ(ζ)

dζ + F0,

B(z) =
∫ z

0

∫ ζ

−h

µ(ζ)
µ(ξ)

{
κ2 + 4

ζ{λ(ζ) + µ(ζ)}
λ(ζ) + 2µ(ζ)

}
dξdζ +

∫ z

0

ζ(z − ζ)λ(ζ)
λ(ζ) + 2µ(ζ)

dζ +B0.
(2.19)
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and we may also, without loss of generality, take F0 = 0, B0 = 0,because terms
involving these constants can be absorbed into u(r, θ) and v(r, θ) in (2.10).

If the plate is symmetric, so that λ and µ are even functions of z, then F and
C are even functions of z, and G and B are odd functions of z.

3. Concentrated force in a homogeneous thin plate

There is a well-known solution for the stress and displacement in an infinite ho-
mogeneous thin elastic plate subject to a concentrated force acting at the origin
in the plane of the plate in, say, the x-direction. The stress solution is given, for
example, by Love [9] and Timoshenko and Goodier [10]. In the present context it is
more convenient to start with the displacement . A little consideration shows that,
in the classical two-dimensional theory, the required displacement is, to within a
rigid body displacement, of the form

u(r, θ) = (α ln r + β) cos θ,
v(r, θ) = (−α ln r + β) sin θ, (3.1)

where α and β are constants to be determined. Correspondingly, from (2.5)

∆ = (α+ 2β)
cos θ
r

, Ω = (−α+ 2β)
sin θ
r
, (3.2)

and it follows that (2.6), with w = 0, are satisfied provided that

α(κ1 − 1) + 2β(κ1 + 1) = 0, (3.3)

or since for homogeneous material κ1 = 4(λ+ µ)/(λ+ 2µ), that

α(3λ+ 2µ) + 2β(5λ+ 6µ) = 0. (3.4)

It then follows from (2.3) that in the case of plane stress, with σzz = 0, the in-plane
stress components are given as

σrr =
2µ

λ+ 2µ
{2α(λ+ µ) + 2βλ} cos θ

r
,

σθθ =
2µ

λ+ 2µ
{αλ+ 4β(λ+ µ} cos θ

r
,

σrθ = 2µ(α+ 2β)
sin θ
r
. (3.5)

After eliminating α by the use of (3.4), these become

σrr = −4µβ(7λ+ 6µ)
3λ+ 2µ

cos θ
r

,
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σθθ =
4µβ(λ+ 2µ)

3λ+ 2µ
cos θ
r

,

σrθ =
4µβ(λ+ 2µ)

3λ+ 2µ
sin θ
r

. (3.6)

The resultant force exerted by a circle of radius r with centre at the origin acts in
the x direction, and its magnitude P is given by

P = −2h
∫ π

−π
(σrr cos θ − σrθ sin θ)rdθ (3.7)

from which, with (3.6), there follows

P =
64πµβ(λ+ µ)h

3λ+ 2µ
(3.8)

and therefore, from (3.4) and (3.8)

α = − P (5λ+ 6µ)
32πµ(λ+ µ)h

, β =
P (3λ+ 2µ)

64πµ(λ+ µ)h
, (3.9)

so that

σrr = −P (7λ+ 6µ)
16π(λ+ µ)

cos θ
hr

,

σθθ =
P (λ+ 2µ)
16π(λ+ µ)

cos θ
hr

,

σrθ =
P (λ+ 2µ)
16π(λ+ µ)

sin θ
hr

. (3.10)

It is also straightforward to show that the resultant force in the y direction on the
semi-circle of radius r with 0 ≤ θ ≤ π is zero, and so the solution corresponds to
a simple line force at the origin of magnitude P.

4. Concentrated force in an inhomogeneous thick plate

The two-dimensional solution developed in Section 3 will now be used to generate
an exact three-dimensional solution for a concentrated force in an inhomogeneous
plate of arbitrary thickness. To allow the possibility that the plate is not symmetric
(in which case there is a coupling between stretching and bending deformation
modes) it is necessary to generalize the two-dimensional solution slightly, so that
in place of (3.1) we take the required solution of (2.6) to be of the form

u(r, θ) = (α ln r + β) cos θ,
v(r, θ) = (−α ln r + β) sin θ,
w(r, θ) = γr ln r cos θ (4.1)
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and it follows that

∆ = (α + 2β)
cos θ
r

, Ω = (−α+ 2β)
sin θ
r
, ∇2w = 2γ

cos θ
r

, (4.2)

and that (2.6) are satisfied provided that

α(κ1 − 1) + 2β(κ1 + 1) + 2γκ2 = 0. (4.3)

Then, from (2.10), the corresponding three-dimensional displacement in the thick
plate is

u(r, θ, z) =
{
α ln r + β − γz(1 + ln r) − F α+ 2β

r2 −B 2γ
r2

}
cos θ,

v(r, θ, z) =
{
−α ln r + β + γz ln r − F α+ 2β

r2 −B 2γ
r2

}
sin θ,

w(r, θ, z) =
{
γr ln r +G

α+ 2β
r

+ C
2γ
r

}
cos θ, (4.4)

and the associated strain components are

err =
{
α

r
− γz

r
+ F

2(α+ 2β)
r3 +B

4γ
r3

}
cos θ,

eθθ =
{

2β
r
− γz

r
− F 2(α+ 2β)

r3 −B 4γ
r3

}
cos θ,

ezz =
{
dG

dz

(α + 2β)
r

+
dC

dz

2γ
r

}
cos θ,

2erθ =
{
− (α+ 2β)

r
+

2γz
r

+ F
4(α+ 2β)

r3 +B
8γ
r3

}
sin θ,

2erz =
{
−
(
dF

dz
+G

)
(α+ 2β)

r2 −
(
dB

dz
+ C

)
2γ
r2

}
cos θ,

2eθrz =
{
−
(
dF

dz
+G

)
(α+ 2β)

r2 −
(
dB

dz
+ C

)
2γ
r2

}
sin θ. (4.5)

Furthermore, from (2.16), the stress is given as

σrr =
{

2µ
λ+ 2µ

{2α(λ+ µ) + 2βλ− γ(3λ+ 2µ)z}
r

+
4µ{F (α+ 2β) + 2Bγ}

r3

}
cos θ,

σθθ =
{

2µ
λ+ 2µ

{2αλ+ 2β(λ+ µ)− γ(3λ+ 2µ)z}
r

− 4µ{F (α+ 2β) + 2Bγ}
r3

}
cos θ,

σrθ = µ

{
{−(α+ 2β) + 2γz}

r
+

4µ{F (α+ 2β) + 2Bγ}
r3

}
sin θ,
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σrz = µ

{
−
(
dF

dz
+G

)
(α+ 2β)

r2 −
(
dB

dz
+ C

)
2γ
r2

}
cos θ,

σθz = µ

{
−
(
dF

dz
+G

)
(α+ 2β)

r2 −
(
dB

dz
+ C

)
2γ
r2

}
sin θ,

σzz = 0. (4.6)

In general, the stress components σrz and σθz are non-zero, and give rise to non-
zero stress resultants

∫ h
−h σrz dz and

∫ h
−h σθz dz. However, these stress resultants

are zero, and so only in-plane resultant forces are present, if γ is chosen such that

(α + 2β)
∫ h

−h
µ

(
dF

dz
+G

)
dz + 2γ

∫ h

−h
µ

(
dB

dz
+ C

)
dz = 0. (4.7)

From (2.7), (2.8) and (2.18)

∫ h

−h
µ

(
dF

dz
+G

)
dz = κ1

∫ h

−h

∫ z

−h
µ(ζ)dζdz − 4

∫ h

−h

∫ z

−h

µ(ζ){λ(ζ) + µ(ζ)}
λ(ζ) + 2µ(ζ)

dζdz

= κ1

∫ h

−h

∫ h

ζ

µ(ζ)dzdζ − 4
∫ h

−h

∫ h

ζ

µ(ζ){λ(ζ) + µ(ζ)}
λ(ζ) + 2µ(ζ)

dzdζ

= κ1

∫ h

−h
(h− ζ)µ(ζ)dζ − 4

∫ h

−h
(h− ζ)µ(ζ){λ(ζ) + µ(ζ)}

λ(ζ) + 2µ(ζ)
dζ

= κ1(2h2µ− 2hµ̂)− 2h2µκ1 − 2hµκ2

= −2h(κ1µ̂+ κ2µ), (4.8)

where

2hµ̂ =
∫ h

−h
zµ(z)dz. (4.9)

Similarly ∫ h

−h
µ

(
dB

dz
+ C

)
dz = −2h(κ2µ̂+ κ3µ), (4.10)

where

κ3 =
4
∫ h
−h{µ(λ+ µ)/(λ+ 2µ)}z2dz

2hµ
. (4.11)

Therefore (4.7) can be written as

(α + 2β)(κ1µ̂+ κ2µ) + 2γ(κ2µ̂+ κ3µ) = 0 (4.12)

If the plate is symmetric, then κ2 = 0 and µ̂ = 0, and therefore in this case γ = 0.
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The resultant force exerted by a cylinder of radius r with its axis coincident
with the z−axis on the material outside the cylinder acts in the x−direction and
has magnitude P, where

P = −
∫ h

−h

∫ π

−π
(σrr cos θ − σrθ sin θ)rdθdz

= −
∫ h

−h

∫ π

−π

{2µ{2α(λ+ µ) + 2βλ− γ(3λ+ 2µ)z}
(λ+ 2µ)r

cos2 θ

− µ{−(α+ 2β) + 2γz}
r

sin2 θ
}
rdθdz

= −π
∫ h

−h

{
µ

λ+ 2µ
{α(5λ+ 6µ) + 2β(3λ+ 2µ)− 8γ(λ+ µ)z}

}
dz.

(4.13)

However, from (2.7) and (2.8)∫ h

−h

µ(5λ+ 6µ)
λ+ 2µ

dz = 2hµ(κ1 + 1),
∫ h

−h

µ(3λ+ 2µ)
λ+ 2µ

dz = 2hµ(κ1 − 1), (4.14)

and therefore, from (2.7), (4.13) and (4.14)

P = −2πhµ{α(κ1 + 1) + 2β(κ1 − 1) + 2γκ2}. (4.15)

Hence, from ((4.3)
P = −4πhµ(α− 2β), (4.16)

which is the same as the result (3.8) for a homogeneous thin plate subject to the
deformation ((3.1), with α and β given by (3.9). Since P is independent of r, (4.16)
remains valid formally as the radius of the cylinder tends to zero, and the solution
can be interpreted as describing the displacement and stress in the plate due to a
line force at r = 0 acting in the x direction. Of course, as in standard plane stress
or plane strain theory for a homogeneous material, the displacement and stress
are singular as r → 0, thus contradicting the underlying small strain assumption
of linear elasticity theory. Therefore, as in the theory for homogeneous materials,
the solution should be regarded as an asymptotic solution as r → ∞. It is of
interest that P does not depend on γ, and so even for a non-symmetric plate P is
not affected by the bending displacement mode that is included in (4.1). Another
surprising feature is that although in the inhomogeneous plate the stress includes
terms of order r−3 as well as terms of order r−1, these higher order singular terms
do not contribute to the resultant force on a cylinder of radius r.

To complete the solution the coefficients α, β and γ need to be expressed in
terms of P and the elastic moduli. From (4.3), (4.12) and (4.15) it follows straight-
forwardly that

α = − P

8πhµ

{
1 +

κ3µ+ κ2µ̂

µ(κ1κ3 − κ2
2)

}
,
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β =
P

16πhµ

{
1− κ3µ+ κ2µ̂

µ(κ1κ3 − κ2
2)

}
,

γ =
P (κ2µ+ κ1µ̂)

8πhµ2((κ1κ3 − κ2
2)
. (4.17)

If the plate is symmetric, then κ2 = 0 and µ̂ = 0, and (4.17) reduce to

α = − P

8πhµ

{
1 +

1
κ1

}
, β =

P

16πhµ

{
1− 1

κ1

}
, γ = 0. (4.18)

If the plate is homogeneous, so that λ and µ are constants, then it is easily shown
that (4.18) reduce further to (3.9).

The stress and displacement due to distributed in-plane forces can be con-
structed by superposition of solutions for concentrated forces.

5. Higher order singularities

Stress and displacement singularities of higher order can be derived by differ-
entiation, just as for homogeneous materials, and as described by, for example,
Timoshenko and Goodier [10, Chap. 4]. For this purpose it is more convenient to
express the displacement and stress in terms of Cartesian coordinates, so in this
section vector and tensor quantities are referred to the coordinate system Oxyz.
In this system the displacement (4.4) is

ux = α ln r − γz(
1
2

+ ln r) +
{
β − 1

2
γz − F (α+ 2β)

r2 −B 2γ
r2

}
x2 − y2

r2 ,

uy = 2
{
β − 1

2
γz − F (α+ 2β)

r2 −B 2γ
r2

}
xy

r2 ,

uz = w =
{
γ ln r +G

α+ 2β
r2 + C

2γ
r2

}
x, (5.1)

and the stress (4.6) is

σxx =
2µ

λ+ 2µ
{2α(λ+ µ) + 2βλ− γ(3λ+ 2µ)z} x

r2 + 8µ(β − 1
2
γz)

xy2

r4

+ 4µ{F (α+ 2β) + 2Bγ}x(x2 − 3y2)
r6 ,

σyy =
2λµ
λ+ 2µ

{α+ 2β)λ− 2γz} x
r2 + 4µ(β − 1

2
γz)

x(x2 − y2)
r4

− 4µ{F (α+ 2β) + 2Bγ}x(x2 − 3y2)
r6 ,
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σxy = 2µ(β − 1
2
γz)

y(y2 − 3x2)
r4 + 4µ{F (α+ 2β) + 2Bγ}y(3y2 − x2)

r6 ,

σxz = µ

{
−
(
dF

dz
+G

)
(α + 2β)−

(
dB

dz
+ C

)
2γ
}
x2 − y2

r4 ,

σyz = µ

{
−
(
dF

dz
+G

)
(α + 2β)−

(
dB

dz
+ C

)
2γ
}

2xy
r4 ,

σzz = 0. (5.2)

Consider for example a pair of equal opposite concentrated forces of magnitude
P situated at x = ±δ, y = 0 and directed in the positive and negative x directions
respectively. Denote the displacement (5.1) by u(x, y, z)and the stress (4.6) by
σ(x, y, z). In the terminology of Love [9, Chap.9] this comprises a ‘force pair with-
out moment’. Then the displacement u1 and stress σ1 due to the pair of forces
are given by superposition as

u1 = u(x+ δ, y, z)− u(x− δ, y, z), σ1 = σ(x+ δ, y, z)− σ(x− δ, y, z). (5.3)

Hence in the limit δ → 0,

u1 = 2δ
∂u
∂x
, σ1 = 2δ

∂σ

∂x
, (5.4)

and it is assumed that P → ∞, δ → 0 in such a way that Q = 2Pδ is finite. It
follows from (5.1) that the components of u1 are

u
(1)
x = (α− γz)

x

r2 + 4(β − 1
2
γz)

xy2

r4 + 2{F (α+ 2β) + 2Bγ}x(x2 − 3y2)
r6 ,

u
(1)
y = −2(β − 1

2
γz)

y(x2 − y2)
r4 − 2{F (α+ 2β) + 2Bγ}y(x2 − 3y2)

r6 ,

u
(1)
z = γ

{
ln r +

x2

r2

}
− {G(α+ 2β) + 2Bγ} (x2 − y2)

r4 , (5.5)

where

α = − Q

8πhµ

{
1 +

κ3µ+ κ2µ̂

µ(κ1κ3 − κ2
2)

}
,

β =
Q

16πhµ

{
1− κ3µ+ κ2µ̂

µ(κ1κ3 − κ2
2)

}
,

γ =
Q(κ2µ+ κ1µ̂)

8πhµ2((κ1κ3 − κ2
2)
. (5.6)

The stress can be obtained by differentiation in a similar way.
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By superposing two such force pairs, with lines of action along the x and y axes
respectively. there results the displacement corresponding to a centre of dilatation,
namely

ux =
{
{(α− γz) + 2(β − 1

2
γz)} − 4{F (α+ 2β) + 2Bγ} 1

r2

}
x

r2 ,

uy =
{
{(α− γz) + 2(β − 1

2
γz)} − 4{F (α+ 2β) + 2Bγ} 1

r2

}
y

r2 ,

uz = γ {ln r + 1} . (5.7)

This result can also be obtained by considering solutions of (2.6) in which u, v,
and w depend only on r.

In a similar way, a ‘force pair with moment’ is formed by two concentrated
forces, of equal magnitude P , with the first acting in the positive x-direction at
(0,δ),and the second in the negative x-direction at (0, -δ). Hence the pair of forces
exerts a moment of magnitude 2δP = Q about the z -axis. In this case the
displacement u2 and the stress σ2 are given by

u2 = 2δ
∂u
∂y
, σ2 = 2δ

∂σ

∂y
. (5.8)

This gives the displacement

u
(2)
x = (α− γz)

y

r2 − 4(β − 1
2
γz)

x2y

r4 + 2{F (α+ 2β) + 2Bγ}y(3x2 − y2)
r6 ,

u
(2)
y = −2(β − 1

2
γz)

x(x2 − y2)
r4 − 2{F (α+ 2β) + 2Bγ}x(x2 − 3y2)

r6 ,

u
(2)
z =

{
γ − 2{G(α+ 2β) + 2Cγ} 1

r2

}
xy

r2 . (5.9)

By superposing two such force pairs oriented along the x and y axes there follows
the solution for a centre of rotation about the z -axis, which is

ux = −(α+ 2β)
y

r2 ,

uy = (α+ 2β)
x

r2 ,

uz = 0. (5.10)

This solution also may be derived by considering solutions of (2.6) in which u, v,
and w depend only on r.

Higher order singularities may be described by higher order derivatives of u
and σ with respect to x and y. For example, the displacement and stress that are
generated by

1
4δ2

∂2u
∂x∂y

and
1

4δ2
∂2σ

∂x∂y
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correspond to a system of four concentrated forces of equal magnitudes P , of which
two act in the positive x-direction at (δ, δ) and (-δ,−δ), and two in the negative
x-direction at (δ,−δ) and (-δ, δ), in the limit P →∞, δ → 0, with Pδ2 remaining
finite.

6. Concentrated force on a half-plane

The displacement (3.1) is not the only one that gives rise to point force solutions in
a thin plate. For simplicity, in this section only symmetric plates are considered,
and attention is restricted to stretching deformation modes, so that w = 0. Then
a relevant solution of (2.5) and (2.6) is

u(r, θ) = (α ln r + β) cos θ + εθ sin θ,
v(r, θ) = (−α ln r + β) sin θ + εθ cos θ, (6.1)

and then

∆ = (α+ 2β + ε)
cos θ
r

, Ω = −(α− 2β + ε)
sin θ
r

(6.2)

and (2.6) are satisfied provided that

(κ1 − 1)(α+ ε) + (κ1 + 1)2β = 0 (6.3)

When ε 6= 0, the displacement (6.1) is not single-valued, and so cannot represent
the displacement in a whole uncut plane. However it can be applied in a half-plane
or wedge, and with appropriate choice of the coefficients, yields the solution for
the application of a point force to a half-space.

For an inhomogeneous (but symmetric) plate, (6.1) gives rise, through (2.10),
to the three-dimensional displacement

u(r, θ, z) = (α ln r + β) cos θ + εθ sin θ − F (z)(α+ 2β + ε)
cos θ
r2 ,

v(r, θ, z) = (−α ln r + β) sin θ + εθ cos θ − F (z)(α+ 2β + ε)
sin θ
r2 ,

w(r, θ, z) = G(z)(α+ 2β + ε)
cos θ
r

, (6.4)

and the stress

σrr =
{(

4µ(λ+ µ)
λ+ 2µ

α+
2λµ
λ+ 2µ

(2β + ε)
)

1
r

+ 4Fµ(α+ 2β + ε)
1
r3

}
cos θ,

σθθ =
{(

2λµ
λ+ 2µ

α+
4µ(λ+ µ)
λ+ 2µ

(2β + ε)
)

1
r
− 4Fµ(α+ 2β + ε)

1
r3

}
cos θ,
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σrθ = µ

{
−(α+ 2β − ε)1

r
+ 4Fµ(α+ 2β + ε)

1
r3

}
sin θ,

σrz = −µ
(
dF

dz
+G

)
(α+ 2β + ε)

r2 cos θ,

σθz = −µ
(
dF

dz
+G

)
(α+ 2β + ε)

r2 sin θ,

σzz = 0. (6.5)

We consider a semi-infinite plate occupying the region x ≥ 0. It is not possible to
satisfy pointwise boundary conditions on the surface x = 0, but it is possible to
impose conditions on stress resultants. Hence we introduce the resultants

(Nrr, Nθθ, Nrθ) =
∫ h

−h
(σrr, σθθ, σrθ)dz (6.6)

It follows from (6.4), with (2.7) and (2.8), that

Nrr = 2hµ
{
{κ1α+ (κ1 − 2)(2β + ε)}1

r
+ 4F (α + 2β + ε)

1
r3

}
cos θ,

Nθθ = 2hµ
{
{(κ1 − 2)α+ κ1(2β + ε)}1

r
− 4F (α + 2β + ε)

1
r3

}
cos θ,

Nrθ = 2hµ
{
−{α+ 2β − ε)}1

r
+ 4F (α+ 2β + ε)

1
r3

}
sin θ, (6.7)

where

F =
1

2hµ

∫ h

−h
F (z)µ(z)dz, (6.8)

and therefore, from (2.19)

F =
1

2hµ

[∫ h

−h

∫ z

0

∫ ζ

−h

µ(z)µ(ζ)
µ(ξ)

{
κ1 − 4

{λ(ζ) + µ(ζ)}
λ(ζ) + 2µ(ζ)

}
dξdζdz

+
1
2

∫ h

−h

(h− z)2
λ(z)

λ(z)− 2µ(z)
dz

]
(6.9)

In a homogeneous material, in plane stress or plane strain, there exists a ‘radial
stress’ solution with σrθ = 0 and σθθ = 0. Such a solution does not exist for an
inhomogeneous material, but there is a solution with Nrθ = 0 and Nθθ = 0. For
this it is required firstly that

(κ1 − 2)α+ κ1(2β + ε) = 0,
α+ 2β − ε = 0 (6.10)
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It is interesting that these are compatible with (6.3). Hence (6.3) and (6.10) are
satisfied if

α = κ1ε, 2β = −(κ1 − 1)ε (6.11)

and with this choice

Nrr = 8hµε
{

(κ1 − 1)
1
r

+ 2F
1
r3

}
cos θ,

Nθθ = −16hεµF
1
r3 cos θ,

Nrθ = 16hεµF
1
r3 sin θ. (6.12)

To eliminate the remainder of Nθθ and Nrθ it is necessary to superpose an addi-
tional solution of (2.6). The required solution is

u(r, θ) =
2εF cos θ

r2 , v(r, θ) =
2εF sin θ

r2 , (6.13)

which give ∆ = 0 and Ω = 0, so that (2.6) are trivially satisfied. Therefore,
corresponding to (6.13),

u(r, θ, z) =
2εF cos θ

r2 , v(r, θ, z) =
2εF sin θ

r2 ,

the associated non-zero stress components are

σrr = −8µεF cos θ
r3 , σθθ =

8µεF cos θ
r3 , σrθ = −8µεF cos θ

r3 ,

and the stress resultants are

Nrr = −16hµεF cos θ
r3 , Nθθ =

16hµεF cos θ
r3 , Nrθ = −16hµεF cos θ

r3 . (6.14)

Then superimposing (6.12) and (6.14) gives the radial solution for the stress re-
sultants

Nrr = 8hµε(κ1 − 1)
1
r

cos θ, Nθθ = 0, Nrθ = 0.

The corresponding resultant concentrated force acting in the x direction on the
surface of the semi-infinite plate is

P =
∫ π/2

−π/2
Nrr cos θ dθ = 4πhµε(κ1 − 1) (6.15)

which determines ε if P is specified. The case of a tangential concentrated force on
the surface of a semi-infinite plate can be solved in a similar manner, and hence,
by superposition, the solution for any concentrated load can be obtained. From
this, again by superposition, there follows the solution for any distributed surface
force. However, in these solutions it is only possible to specify resultant forces on
the surface. To satisfy pointwise boundary conditions additional boundary layer
solutions must be applied.
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