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Abstract. In this paper, we study the following two-species chemotaxis system with generalized volume-filling effect and
general kinetic functions

⎧
⎪⎨

⎪⎩

ut = ∇ · (D1(u)∇u) − ∇ · (χ1(u)∇w) + f1(u) − μ1a1uv, (x, t) ∈ Ω × (0, ∞),

vt = ∇ · (D2(v)∇v) − ∇ · (χ2(v)∇w) + f2(v) − μ2a2uv, (x, t) ∈ Ω × (0, ∞),

τwt = Δw − w + g1(u) + g2(v), (x, t) ∈ Ω × (0, ∞),

under homogeneous Neumann boundary conditions in a smoothly bounded domain Ω ⊂ R
n (n ≥ 1), where a1, a2, μ1, μ2

are positive constants. When the functions Di, Si, fi, gi (i = 1, 2) belong to C2 fulfilling some suitable hypotheses, we study
the global existence and boundedness of classical solutions for the above system and find that under the case of τ = 1 or
τ = 0, either the higher-order nonlinear diffusion or strong logistic damping can prevent blow-up of classical solutions for the
problem. In addition, when the functions are replaced to Lotka–Volterra competitive kinetic functional response term and
linear signal generations, by constructing some appropriate Lyapunov functionals, we show that the solution convergences
to the constant steady state in L∞(Ω) in the case of a1, a2 ∈ (0, 1) or a1 ≥ 1 > a2 > 0 under some more concise conditions
than [2], which improved the existing conditions to some extent.
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1. Introduction and main results

Chemotaxis is one of the most important components in the process of reproduction and migration, which
describes the partial movement of biological species or cells to the gradient of chemotactic substances.
The classic chemotactic model was proposed by Keller and Segel [10] as the following

{
ut = ∇ · (D(u)∇u − S(u)∇v) + f(u), x ∈ Ω, t > 0,

vt = Δv − v + g(u), x ∈ Ω, t > 0,
(1.1)

where Ω ⊂ R
n. In the system (1.1), u(x, t) and v(x, t) represent the density of the population and the

concentration of the chemical substance at space x and time t, respectively. D(u) and S(u) are the
density-dependent diffusion function and the density-dependent sensitivity function, respectively. The
function f(u) is the logistic source and g(u) is the production or consumption of chemical substances.
When f(u) = g(u) = 0, the asymptotic property of S(u)

D(u) � u
2
n is the critical condition for blow-up

and global boundedness (see [27,40]). Further studies even have provided further information in which
the respective blow-up phenomenon either can occur within finite time (see [4–6]), or only arises in
the sense of an infinite-time grow-up (see [4,6,41]). Moreover, some rigorous results of (1.1) are shown
that the sub-logistic source f(u) can prevent the blow-up of solutions (see [39,42]). In addition, more
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fruitful results have been obtained for the classical chemotaxis model (1.1) and its variants forms, we
refer [3,8,11,22,28,37] for further reading.

One of the well-known variants form of (1.1) is the two-species and one-stimuli type, that is, two species
respond to the same chemical signaling substance produced by themselves. To describe the movement of
two species, the following chemotaxis system

⎧
⎨

⎩

ut = ∇ · (D1(u)∇u − S1(u)∇w) + f1(u, v), x ∈ Ω, t > 0,
vt = ∇ · (D2(v)∇v − S2(v)∇w) + f2(u, v), x ∈ Ω, t > 0,
τwt = Δw − w + g(u, v), x ∈ Ω, t > 0,

(1.2)

was proposed by Tello and Winkler in [29], where τ ∈ {0, 1}. In the system (1.2), u(x, t) and v(x, t)
represent the density of different species respectively, and w(x, t) denotes the concentrations of chemical
substances. The functions fi(i = 1, 2) contain the logistic source and interaction between species, and
g(u, v) is the production or consumption of chemical substances. So far, most of the conclusions are
focused on the Lotka–Volterra case that f1(u, v) = μ1u(1 − u − a1v), f2(u, v) = μ2v(1 − v − a2u) and
g(u, v) = u + v. Specifically, when the linear case Di(s) = 1 and Si(s) = s for i = 1, 2, in the case
of τ = 0, Tello and Winkler obtained the global existence and asymptotic behavior of solutions when
a1, a2 ∈ [0, 1) (see [29]). When a1 > 1 > a2 ≥ 0, Stinner et al. proved that the semi-trivial steady
state is asymptotically stable (see [25]). In case τ = 1, Bai and Winkler derived the global existence of
classical solutions when n ≤ 2 and asymptotical behavior when the damping terms are suitably strong
(i.e., μ1 and μ2 are large enough) in [2]; the bounded and asymptotic results are optimized in [16].
Moreover, in the quasilinear case, when fi = 0, it has been proved in [31] that if Di(s) and Si(s) satisfy
K0i(s+1)li−1 ≤ Di(s) ≤ K1i(s+1)Li−1 and Si(s)

Di(s)
≤ Ki(s+1)αi , (i = 1, 2), then the solutions are globally

bounded under the conditions that 0 < αi < 2
n ; and the finite-time blow-up of solution was also obtained.

When the functions Di, Si, fi(i = 1, 2) and g satisfy some conditions, Pan and Wang proved that this
system possesses a global bounded smooth solution under some specific conditions with or without the
logistic functions fi(s) and further obtain the asymptotic stability for the solutions of system (1.2) (see
[21]). More related interesting results can be found in [17,18,20,46]. Furthermore, for results of the system
with two-species and two signaling substances, we can refer to [32,43,44].

Recently, inspired by the work [42], Li found several explicit conditions involving the kinetic functions
f, g, the parameters χ, λ and the initial mass ‖u0‖L1(Ω) to ensure the global-in-time existence and uniform
boundedness for a chemotaxis model with indirect signal production and general kinetic function (see
[12]). Subsequently, Shan and Zheng applied this idea to a chemotactic model describing the immune
system, and obtained some global boundedness results (see [24,47]).

Motivated by the above works, this paper is concerned with the following two-species chemotaxis
system with generalized volume-filling effect and general kinetic functions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = ∇ · (D1(u)∇u) − ∇ · (χ1(u)∇w) + f1(u) − μ1a1uv, (x, t) ∈ Ω × (0,∞),
vt = ∇ · (D2(v)∇v) − ∇ · (χ2(v)∇w) + f2(v) − μ2a2uv, (x, t) ∈ Ω × (0,∞),
τwt = Δw − w + g1(u) + g2(v), (x, t) ∈ Ω × (0,∞),
∂u

∂ν
=

∂v

∂ν
=

∂w

∂ν
= 0, (x, t) ∈ ∂Ω × (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), τw(x, 0) = w0(x), x ∈ Ω,

(1.3)

where τ ∈ {0, 1}, Ω ⊂ R
n (n ≥ 1) is a smoothly bounded domain and u, v, w have the same meanings as

in (1.2). The parameters μi, ai > 0(i = 1, 2) and nonnegative initial data satisfies

u0 ∈ C0(Ω̄), v0 ∈ C0(Ω̄), τw0 ∈ C1(Ω̄). (1.4)
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Firstly, we consider the global boundedness of solutions for (1.3) under the following hypotheses with
i = 1, 2,

(S1) Di(s) ≥ (s + 1)−αi with αi ∈ R;

(S2) χi(s) ≤ Cχi
s(s + 1)βi−1 with Cχi

≥ 0, βi ∈ R;

(S3) fi(0) ≥ 0, χi(0) = gi(0) = 0 and gi(s), χi(s) > 0 for all s > 0;

(S4) gi(s) ≤ sγi with γi > 0;

(S5) Di, χi, fi, gi belong to C2.

Based on (S1) − (S5), our main results of global existence and boundedness are stated as follows.

Theorem 1.1. Let τ = 1, Ω ⊂ R
n(n ≥ 1) be a bounded domain with smooth boundary. Assume (S1)−(S5)

hold. For i = 1, 2, if one of the following conditions hold:

(i) fi ≡ 0 and αi < min
{

2
n

, 1 +
2
n

− γi − βi

}

;

(ii) ∃ι�i = ι�i (β1, β2, γ1, γ2, Cχ1 , Cχ2) > 0 such that lim
s→∞ inf

{

− fi(s)
smax{1,βi+γi}

}

=: ιi ∈ (ι�i ,∞] ,

then system (1.3) possesses a classical solution (u, v, w), which is uniformly bounded in time.

Remark 1.1. Our results extend the results in [7,9,13,26,47] from one species to two species. Specifically,
when system (1.3) meets linear diffusion and chemosensitivity (i.e., αi = 0 and βi = 1 for i = 1, 2),
the condition (i) of Theorem 1.1 indicates that suitable sublinear signal production (γi < 2

n with n ≥ 2
and i = 1, 2) can ensure the uniform boundedness, which is similar to the results for simpler (single-
species) Keller-Segel system (see Theorem 1.1 in [13]). When system (1.3) meets linear diffusion and
signal production (i.e., αi = 0 and γi = 1 for i = 1, 2), the condition (i) indicates that suitable sublinear
chemoattractant (βi < 2

n with n ≥ 2 and i = 1, 2) can ensure the uniform boundedness (see Theorem 4.1
in [9]). Furthermore, when fi(s) = Si −μis

ki with Si, μi, ki > 0 for i = 1, 2, the condition (ii) of Theorem
1.1 indicates that if βi + γi < ki or βi + γi = ki with μi large enough for i = 1, 2, then problem (1.3)
possesses a unique global classical solution that is bounded in Ω × (0,∞) (see Theorem 1.2 in [26] or
Theorem 1.1 in [7]). Moreover, when system (1.3) meets linear chemosensitivity and signal production,
the condition (ii) implies that the superquadratic degradation mechanisms or quadratic degradation
mechanisms with sufficiently large damping coefficients of species can ensure the uniform boundedness of
the solution, while the subquadratic case is still a problem that needs to be developed.

In addition, we get rid of the constraint of γ1 = γ2 ≤ 1 relative to [21], which relies on the Sobolev
regularity estimate (Lemma 3.1) and condition αi < 2

n for i = 1, 2.

Theorem 1.2. Let τ = 0, Ω ⊂ R
n(n ≥ 1) be a bounded domain with smooth boundary, γ = max {γ1, γ2}.

Assume (S1) − (S5) hold. For i = 1, 2, if one of the following conditions hold:

(i) fi ≡ 0 and αi < 1 +
2
n

− γ − βi;

(ii) ∃ι̃i = ι̃i(β1, β2, γ1, γ2, Cχ1 , Cχ2) > 0 such that lim
s→∞ inf

{

− fi(s)
sβi+γ

}

=: ιi ∈ (ι̃i,∞] ,

then system (1.3) possesses a classical solution (u, v, w), which is uniformly bounded in time.

Remark 1.2. Compared with Theorem 1.1, the conditions of Theorem 1.2 have been relatively simplified,
thanks to the elliptic properties of the third equation in (1.3). Moreover, Our results extend the results
from one species to two species. Specifically, when system (1.3) meets linear diffusion and chemosensitivity,
the condition (i) of Theorem 1.2 indicates that suitable sublinear signal production (γ < 2

n with n ≥ 2 and
i = 1, 2) can ensure the uniform boundedness, which is similar to the results for single-species Keller-Segel
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system (see Proposition 1.3 in [36] and Theorem 1.1 in [33]). When fi(s) = Si − μis
ki with Si, μi, ki > 0

for i = 1, 2, the condition (ii) of Theorem 1.2 indicates that when βi + γi < ki or βi + γi = ki with μi

large enough for i = 1, 2, problem (1.3) possesses a uniformly bounded solution (see [35,45]). In addition,
our results highlight the independence of βi and αi for i = 1, 2 respectively, compared with [23].

After the globally bounded solutions obtained, we next consider the large time behavior of solutions to
the system (1.3). First, we taking into account the effects of Lotka–Volterra competitive kinetic functional
response term and linear signal generations, i.e., fi, gi (i = 1, 2) satisfy

(S6) fi(s) = μis(1 − s) and gi(s) = s for all s > 0.

Then, it is easy to obtain that the system (1.3) has four possible constant steady states (u�, v�, w�):
{

P1 or P2 or P3 or P∗, if a1, a2 < 1 or a1, a2 > 1,

P1 or P2 or P3, other cases,

where P1 is the extinction state, P2 and P3 are two semi trivial steady states, and P∗ is the coexistence
steady states with

{
P1 := (0, 0, 0), P2 := (1, 0, 1), P3 := (0, 1, 1)
P� = (u�, v�, w�) :=

(
1−a1

1−a1a2
, 1−a2

1−a1a2
, 2−a1−a2

1−a1a2

)
.

In view of the existing works [2,14–16], the weakly competitive case (a1, a2 ∈ [0, 1)) and the strongly-
weakly competitive case (a1 ≥ 1 > a2 ≥ 0) have been concerned. Moreover, the case of strong competition
(a1, a2 ≥ 1) have been partly given in [20]. Along with the previous work, we further consider weakly
competitive and the strongly-weakly competitive cases, and give a more concise result to ensure the
asymptotic stability of the solutions in the case of τ = 1 or τ = 0.

Moreover, it follows from Theorems 1.1 and 1.2 that we can find positive constants k1 and k2 satisfying

k1 = max
0≤u≤‖u‖L∞(Ω)

(u + 1)2β1+α1−2, k2 = max
0≤v≤‖v‖L∞(Ω)

(v + 1)2β2+α2−2. (1.5)

Then, we can get the following results about large time behavior of solutions for (1.3).

Theorem 1.3. (Strongly-weakly competitive case) Let τ = {0, 1} and the assumption (S6) hold. Assume
that a1 ≥ 1 > a2 > 0. If

μ2 >
C2

χ2

8
k2, (1.6)

then the unique global bounded solution (u, v, w) of (1.3) obtained by Theorem 1.1 or 1.2 satisfies

‖u(·, t)‖L∞(Ω) + ‖v(·, t) − 1‖L∞(Ω) + ‖w(·, t) − 1‖L∞(Ω) → 0 as t → ∞.

Theorem 1.4. (Weakly competitive case) Let τ = {0, 1} and the assumption (S6) hold. Assume that
0 < a1, a2 < 1. If

μ2 >
C2

χ1
u�μ2(2 − a2)

8a1μ1
k1 +

C2
χ2

v�

8
k2, (1.7)

then the unique global bounded solution (u, v, w) of (1.3) obtained by Theorem 1.1 or 1.2 satisfies

‖u(·, t) − u�‖L∞(Ω) + ‖v(·, t) − v�‖L∞(Ω) + ‖w(·, t) − w�‖L∞(Ω) → 0 as t → ∞.

Remark 1.3. Our results in Theorems 1.3 and 1.4 are more concise than the existing results in [2,14–16],
and the condition of Theorem 1.3 is free from the influence of parameters a1 and a2. Specifically, when
a1 ≥ 1 > a2 > 0, the conditions in [2] are

μ2 >
C2

χ2
v� (a′

1 + a2 − 2a′
1a2)

16a2 (1 − a′
1a2)

. (1.8)
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for some a′
1 ∈ (1, a1] such that a′

1a2 < 1. It is not hard to get, (a′
1+a2−2a′

1a2)
2a2(1−a′

1a2)
> 1 when a2 > 1

2 for all
a′
1 > 1. Therefore, Our results in Theorem 1.3 partly improved the existing work in [2]. For the condition

(1.7) in Theorem 1.4, it can be rewritten to μ2 >
C2

χ2
v�

8d�
k2, where d� := 1 − C2

χ1
u�(2−a2)

8a1μ1
k1 > 0 when

μ1 >
C2

χ1
u�(2−a2)

8a1
k1, which implies that if μ1 is sufficiently large, then the condition of μ2 can be relaxed

accordingly.

The rest of the article is organized as follows. In Sect. 2, we give some preliminary lemmas and the local
existence of solution for system (1.3). In Sects. 3 and 4, we study the global existence and boundedness of
solutions for system (1.3), and prove Theorems 1.1 and 1.2. In Sect. 5, we study the asymptotic behavior
of global solutions for system (1.3), and prove Theorems 1.3 and 1.4. In the following content, we let
u(·, t) = u(x, t) and shall use Ki, Ci(i = 1, 2, . . .) to denote a generic positive constant which may vary in
the context. Without confusion, the integration sign dx and dxdt will be omitted.

2. Local existence and preliminaries

The following local existence for solutions of the system (1.3) can be obtained by adapting established
techniques. The details can be found in [1,2,9,25,46] and can therefore be omitted here.

Lemma 2.1. Let τ ∈ {0, 1} and Ω ⊂ R
n(n ≥ 1) be a smoothly bounded domain. Assume that the functions

Di, χi, fi and gi (i = 1, 2) satisfy (S3) and (S5), as well as the nonnegative initial data satisfies (1.4.
Then there exist Tmax ∈ (0,∞] and uniquely determined nonnegative functions

{
u, v ∈ C0

(
Ω̄ × [0, Tmax)

) ∩ C2,1
(
Ω̄ × (0, Tmax)

)
,

w ∈ C0
(
Ω̄ × [0, Tmax)

) ∩ C2,1
(
Ω̄ × (0, Tmax)

) ∩ L∞
loc

(
[0, Tmax) ;W 1,q(Ω)

)

such that (u, v, w) solves problem (1.3)classically in Ω × (0, Tmax), where q > n and Tmax is the maximal
existence time. Moreover, if Tmax < ∞, then

sup
{||u(·, t)||L∞(Ω) + ||v(·, t)||L∞(Ω) + ||w(·, t)||W 1,∞(Ω)

}→ ∞, as t ↗ Tmax. (2.1)

Lemma 2.2. (see [19]) Let Ω ⊂ R
n, n ≥ 1 be a bounded domain with smooth boundary, and let p � 1,

q ∈ (0, p). Then there exists a constant CGN > 0 such that

||u||Lp(Ω) ≤ CGN (||∇u||δL2(Ω)||u||1−δ
Lq(Ω) + ||u||Lq(Ω)),

where δ =
n
q − n

p

1− n
2 + n

q
∈ (0, 1).

Lemma 2.3. Let the conditions in Lemma 2.1 hold and fi = 0(i = 1, 2), then there exists K1 > 0 such
that the solution components u, v of (1.3) satisfy

||u(·, t)||L1(Ω) + ||v(·, t)||L1(Ω) ≤ K1 for all t ∈ (0, Tmax) . (2.2)

Proof. Integrating the first two equations in (1.3) with respect to x ∈ Ω, we end up with

d
dt

∫

Ω

u + a1μ1

∫

Ω

uv = 0 =
d
dt

∫

Ω

v + a2μ2

∫

Ω

uv,

due to fi = 0(i = 1, 2). Then, we have

‖u(·, t)‖L1(Ω) ≤ ‖u0‖L1(Ω) and ‖v(·, t)‖L1(Ω) ≤ ‖v0‖L1(Ω) (2.3)

for all t ∈ (0, Tmax). �
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3. Global boundedness for τ = 1

In this section, with the aid of damping term and diffusion respectively, we study the global boundedness
of system (1.3) when n ≥ 1 and τ = 1. The ideas come from [11,21,47]. Firstly, we need the following
estimate.

Lemma 3.1. (see Lemma 2.3 in [34]) Let Ω ⊂ R
n(n ≥ 1) be a smoothly bounded domain, and let 0 ≤

t0 < Tmax ≤ ∞ and p ∈ (n,+∞). Assume that z0 ∈ W 2,p(Ω) with ∂νz0 = 0 on ∂Ω and h1, h2 ∈
Lp ([0, Tmax);Lp(Ω)). Then the problem

⎧
⎪⎨

⎪⎩

zt = Δz − z + h1 + h2, (x, t) ∈ Ω × (0, Tmax),
∂z

∂ν
= 0, (x, t) ∈ ∂Ω × (0, Tmax),

z(·, 0) = z0, x ∈ Ω,

exists a unique solution z ∈ W 1,p ([0, Tmax);Lp(Ω))
⋂

Lp
(
[0, Tmax);W 2,p(Ω)

)
and there exists CS(p) > 0

such that

t∫

t0

epτ

∫

Ω

|Δz(·, τ)|pdτ ≤ CS(p)

t∫

t0

epτ

∫

Ω

(|h1(·, s)|p + |h2(·, s)|p) dτ + CS(p)ept0 ||Δz(·, t0)||pLp(Ω)

for any t ∈ (t0, Tmax).

Next, we establish a priori estimates about u, v, which are of great help to get the main result.

Lemma 3.2. Let the conditions in Lemma 2.1 hold and τ = 1. For any pi > p�
i := max {1, αi, 1 − βi} and

εi > 0 with i = 1, 2, the solution components u, v of (1.3) satisfy

1
p1

d
dt

∫

Ω

(u + 1)p1 +
4 (p1 − 1)
(p1 − α1)

2

∫

Ω

∣
∣
∣∇ (u + 1)

p1−α1
2

∣
∣
∣
2

≤ ε1

∫

Ω

(u + 1)p1+β1+γ1−1 + M1 (ε1)
∫

Ω

|Δw|p̃1 +
∫

Ω

(u + 1)p1−1f1(u),
(3.1)

and

1
p2

d
dt

∫

Ω

(v + 1)p2 +
4 (p2 − 1)
(p2 − α2)

2

∫

Ω

∣
∣
∣∇ (v + 1)

p2−α2
2

∣
∣
∣
2

≤ ε2

∫

Ω

(v + 1)p2+β2+γ2−1 + M2 (ε2)
∫

Ω

|Δw|p̃2 +
∫

Ω

(v + 1)p2−1f2(v),
(3.2)

where p̃i = pi+βi+γi−1
γi

and

Mi (εi) =
γi

pi + βi + γi − 1

(

ε1 · pi + βi + γi − 1
pi + βi − 1

) 1−pi−βi
γi

(
Cχi

(pi − 1)
pi + βi − 1

) pi+βi+γi−1
γi

, (3.3)

for i = 1, 2.
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Proof. Testing the first equation in (1.3) by (u + 1)p1−1 for p1 > 1, we have

1
p1

d
dt

∫

Ω

(u + 1)p1

= −(p1 − 1)
∫

Ω

(u + 1)p1−2D1(u)|∇u|2 + (p1 − 1)
∫

Ω

(u + 1)p1−2χ1(u)∇u · ∇w

+
∫

Ω

(u + 1)p1−1f1(u).

(3.4)

Due to (S1), (S2), p1 > α1 and p1 > 1 − β1, we get

−(p1 − 1)
∫

Ω

(u + 1)p1−2D1(u)|∇u|2 ≤ −(p1 − 1)
∫

Ω

(u + 1)p−α1−2|∇u|2

≤ 4 (p1 − 1)
(p1 − α1)

2

∫

Ω

∣
∣
∣∇ (u + 1)

p1−α1
2

∣
∣
∣
2

,

(3.5)

and

(p1 − 1)
∫

Ω

(u + 1)p1−2χ1(u)∇u · ∇w = −(p1 − 1)
∫

Ω

⎛

⎝

u∫

0

Γ(s)ds

⎞

⎠Δw

≤ (p1 − 1)
∫

Ω

∣
∣
∣
∣
∣
∣

u∫

0

Γ(s)ds

∣
∣
∣
∣
∣
∣
|Δw|

≤ Cχ1(p1 − 1)
p1 + β1 − 1

∫

Ω

(u + 1)p1+β1−1|Δw|,

(3.6)

where

Γ(s) = (s + 1)p1−2χ1(s) ≤ Cχ1(s + 1)p1+β1−2.

For the right term of (3.6), since γ1 > 0 and p1 > 1 − β1, using the fact γ1
p1+β1+γ1−1 ∈ (0, 1) and Young’s

inequality that for any ε1 > 0, we obtain

Cχ1(p1 − 1)
p1 + β1 − 1

∫

Ω

(u + 1)p1+β1−1|Δw| ≤ ε1

∫

Ω

(u + 1)p1+β1+γ1−1 + M1 (ε1)
∫

Ω

|Δw|p̃1 (3.7)

where p̃1 = p1+β1+γ1−1
γ1

and M1 (ε1) is defined in (3.3). Then, collecting (3.4), (3.5) and (3.7) that we
prove (3.1). Similarly, (3.2) can be obtained by using the same framework. �

Then, based on the above lemmas, we establish the uniform boundedness of ‖u‖Lp1 (Ω), ‖v‖Lp2 (Ω)

under some appropriate parameter conditions.

Lemma 3.3. Let (u, v, w) be a solution ensured in Lemma 2.1 and the assumptions in Theorem 1.1 hold.
Then there exists a positive constant K2 such that for all p1, p2 > 1

‖u(·, t)‖Lp1 (Ω) + ‖v(·, t)‖Lp2 (Ω) ≤ K2 for all t ∈ (0, Tmax). (3.8)
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Proof. Applying Lemma 3.1 to the third equation in (1.3) and combining (S4), for i = 1, 2, there exists
CS(pi) > 0 such that

t∫

t0

ep̃iτ

∫

Ω

|Δw(·, τ)|p̃idτ

≤ CS(pi)

t∫

t0

ep̃iτ

∫

Ω

(uγ1 + vγ2)p̃i dτ + CS(pi)ep̃it0 ‖Δw (·, t0)‖p̃i

Lp̃i (Ω)

≤ CS(pi)2p̃i

t∫

t0

ep̃iτ

∫

Ω

{
(u(·, τ) + 1)p̃iγ1 + (v(·, τ) + 1)p̃iγ2

}
dτ

+ CS(pi)ep̃it0 ‖Δw (·, t0)‖p̃i

Lp̃i (Ω)
.

(3.9)

Let p̃1 = p̃2. Next, we divide our proof into the following two parts.

Part 1 We shall deal with the hypothesis (i) in Theorem 1.1 by using the aid of the diffusion when
fi = 0(i = 1, 2).

For i = 1, 2, ψi ∈ W 1,2(Ω) ∩ L
2

pi−αi (Ω) and the same pi in Lemma 3.2, combining Lemmas 2.2, 2.3
and Young’s inequality, there exist positive constants Ci

1, C
i
2, C

i
3 such that,

p̃i

pi

∫

Ω

(ψi + 1)pi =
p̃i

pi

∥
∥
∥(ψi + 1)

pi−αi
2

∥
∥
∥

2pi
pi−αi

L
2pi

pi−αi (Ω)

≤ Ci
1

∥
∥
∥∇(ψi + 1)

pi−αi
2

∥
∥
∥

2pi
pi−αi

δi
1

L2(Ω)

∥
∥
∥(ψi + 1)

pi−αi
2

∥
∥
∥

2pi
pi−αi

(1−δi
1)

L
2

pi−αi (Ω)

+ Ci
1

∥
∥
∥(ψi + 1)

pi−αi
2

∥
∥
∥

2pi
pi−αi

L
2

pi−αi (Ω)

≤ Ci
2

∥
∥
∥∇(ψi + 1)

pi−αi
2

∥
∥
∥

2pi
pi−αi

δi
1

L2(Ω)
+ Ci

2

≤ 2 (pi − 1)
(pi − αi)

2

∫

Ω

∣
∣
∣∇ (ψi + 1)

pi−αi
2

∣
∣
∣
2

+ Ci
3,

(3.10)

where δi
1 :=

n(pi−αi)
2

(
1− 1

pi

)

1− n
2 +

n(pi−αi)
2

∈ (0, 1) and 2pi

pi−αi
δi
1 ∈ (0, 2) due to pi > 1 and αi < 2

n with n ≥ 1.

Moreover, let

M1
3 = ε1 + M1(ε1)CS(p1)2p̃1 + M2(ε2)CS(p2)2p̃2 ,

M2
3 = ε2 + M1(ε1)CS(p1)2p̃1 + M2(ε2)CS(p2)2p̃2 ,

(3.11)
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and pi > max
{
2 − βi − γi, αi + n−2

n , nαi

2 + n−2
2 (βi + γi − 1)

}
with i = 1, 2, combining Lemmas 2.2, 2.3

and Young’s inequality again, for i = 1, 2, there exist positive constants Ci
4, C

i
5, C

i
6 such that

M i
3

∫

Ω

(ψi + 1)pi+βi+γi−1

= M i
3

∥
∥
∥(ψi + 1)

pi−αi
2

∥
∥
∥

2(pi+βi+γi−1)
pi−αi

L
2(pi+βi+γi−1)

pi−αi (Ω)

≤ Ci
4

∥
∥
∥∇(ψi + 1)

pi−αi
2

∥
∥
∥

2(pi+βi+γi−1)
pi−αi

δi
2

L2(Ω)

∥
∥
∥(ψi + 1)

pi−αi
2

∥
∥
∥

2(pi+βi+γi−1)
pi−αi

(1−δi
2)

L
2

pi−αi (Ω)

+ Ci
4

∥
∥
∥(ψi + 1)

pi−αi
2

∥
∥
∥

2(pi+βi+γi−1)
pi−αi

L
2

pi−αi (Ω)

≤ Ci
5

∥
∥
∥∇(ψi + 1)

pi−αi
2

∥
∥
∥

2(pi+βi+γi−1)
pi−αi

δi
2

L2(Ω)
+ Ci

5

≤ 2 (pi − 1)
(pi − αi)

2

∫

Ω

∣
∣
∣∇ (ψi + 1)

pi−αi
2

∣
∣
∣
2

+ Ci
6,

(3.12)

where δi
2 :=

n(pi−αi)
2

(
1− 1

pi+βi+γi−1

)

1− n
2 +

n(pi−αi)
2

∈ (0, 1) and 2(pi+βi+γi−1)
pi−αi

δi
2 ∈ (0, 2) due to αi + βi + γi < 1 + 2

n with

n ≥ 1.
Together (3.10), (3.12) with (3.1) and (3.2), we have

1
p1

d
dt

∫

Ω

(u + 1)p1 +
p̃1

p1

∫

Ω

(u + 1)p1 + M1
3

∫

Ω

(u + 1)p1+β1+γ1−1

≤ ε1

∫

Ω

(u + 1)p1+β1+γ1−1 + M1 (ε1)
∫

Ω

|Δw|p̃1 ,

(3.13)

and

1
p2

d
dt

∫

Ω

(v + 1)p2 +
p̃2

p2

∫

Ω

(v + 1)p2 + M2
3

∫

Ω

(v + 1)p2+β2+γ2−1

≤ ε2

∫

Ω

(v + 1)p2+β2+γ2−1 + M2 (ε2)
∫

Ω

|Δw|p̃2 ,

(3.14)

due to fi = 0(i = 1, 2). Integrating (3.13) and (3.14) from t0 to t yields

1
p1

∫

Ω

(u + 1)p1(·, t) +
(
M1

3 − ε1
)
e−p̃1t

t∫

t0

ep̃1τ

∫

Ω

(u(·, τ) + 1)p1+β1+γ1−1

≤ M1(ε1)e−p̃1t

t∫

t0

ep̃1τ

∫

Ω

|Δw(·, τ)|p̃1 +
1
p1

ep̃1(t0−t)

∫

Ω

(u (·, t0) + 1)p1

(3.15)
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and

1
p2

∫

Ω

(v + 1)p2(·, t) +
(
M2

3 − ε2
)
e−p̃2t

t∫

t0

ep̃2τ

∫

Ω

(v(·, τ) + 1)p2+β2+γ2−1

≤ M2(ε1)e−p̃2t

t∫

t0

ep̃2τ

∫

Ω

|Δw(·, τ)|p̃2 +
1
p2

ep̃2(t0−t)

∫

Ω

(v (·, t0) + 1)p2 .

(3.16)

Together (3.15) and (3.16) with (3.9), we obtain that for all t ∈ (0, Tmax),

1
p1

∫

Ω

(u + 1)p1(·, t) +
1
p2

∫

Ω

(v + 1)p2(·, t) ≤ C7 (3.17)

for some constant C7 > 0 due to p̃1 = p̃2.
Part 2 We deal with the hypothesis (ii) in Theorem 1.1 by using the effect of damping terms. Firstly,

it follows from M1 (ε1) and M2 (ε2) in (3.3) and simple calculations that M1
3 (ε1) and M2

3 (ε2) defined in
(3.11) attain the minimum value

min
ε1>0

M1
3 (ε1) =

2Cχ1(p1 − 1)CS(p1)
1

p̃1

p1 + β1 − 1
+

2γ2Cχ2(p2 − 1)CS(p2)
1

p̃2

(p2 + β2 + γ2 − 1)(p2 + β2 − 1)
:= M1

4 (3.18)

and

min
ε2>0

M2
3 (ε2) =

2Cχ2(p2 − 1)CS(p2)
1

p̃2

p2 + β2 − 1
+

2γ1Cχ1(p1 − 1)CS(p1)
1

p̃1

(p1 + β1 + γ1 − 1)(p1 + β1 − 1)
:= M2

4 (3.19)

respectively, when

εi =
2Cχi

(pi − 1)CS(pi)
1

p̃i

pi + βi + γi − 1
(3.20)

for i = 1, 2.
Adding p̃1

p1

∫

Ω

(u + 1)p1 and p̃2
p2

∫

Ω

(v + 1)p2 to both sides of (3.1) and (3.2), respectively, we have

1
p1

d
dt

∫

Ω

(u + 1)p1 +
p̃1

p1

∫

Ω

(u + 1)p1

≤ p̃1

p1

∫

Ω

(u + 1)p1 + ε1

∫

Ω

(u + 1)p1+β1+γ1−1 + M1 (ε1)
∫

Ω

|Δw|p̃1

+
∫

Ω

(u + 1)p1−1f1(u),

(3.21)

and
1
p2

d
dt

∫

Ω

(v + 1)p2 +
p̃2

p2

∫

Ω

(v + 1)p2

≤ p̃2

p2

∫

Ω

(v + 1)p2 + ε2

∫

Ω

(v + 1)p2+β2+γ2−1 + M2 (ε2)
∫

Ω

|Δw|p̃2

+
∫

Ω

(v + 1)p2−1f2(v).

(3.22)
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Integrating (3.21), (3.22) from t0 to t and using (3.9) yields

1
p1

∫

Ω

(u + 1)p1(·, t) +
1
p2

∫

Ω

(v + 1)p2(·, t)

≤ p̃1

p1
e−p̃1t

t∫

t0

ep̃1τ

∫

Ω

(u(·, τ) + 1)p1 + M1
3 (ε1)e−p̃1t

t∫

t0

ep̃1τ

∫

Ω

(u(·, τ) + 1)p1+β1+γ1−1

+ e−p̃1t

t∫

t0

ep̃1τ

∫

Ω

(u + 1)p1−1f1(u)(·, τ) +
1
p1

ep̃1(t0−t)

∫

Ω

(u (·, t0) + 1)p1

+
p̃2

p2
e−p̃2t

t∫

t0

ep̃2τ

∫

Ω

(v(·, τ) + 1)p2 + M2
3 (ε2)e−p̃2t

t∫

t0

ep̃2τ

∫

Ω

(v(·, τ) + 1)p2+β2+γ2−1

+ e−p̃2t

t∫

t0

ep̃2τ

∫

Ω

(v + 1)p2−1f2(v)(·, τ) +
1
p2

ep̃2(t0−t)

∫

Ω

(v (·, t0) + 1)p2

(3.23)

due to p̃1 = p̃2. With the εi in (3.20) for i = 1, 2, we obtain

1
p1

∫

Ω

(u + 1)p1(·, t) +
1
p2

∫

Ω

(v + 1)p2(·, t)

≤ e−p̃1t

t∫

t0

ep̃1τ

∫

Ω

F1(u)(·, τ) + e−p̃2t

t∫

t0

ep̃2τ

∫

Ω

F2(v)(·, τ) + C8

(3.24)

where C8 = 1
p1

ep̃1(t0−t)
∫

Ω

(u (·, t0) + 1)p1 + 1
p2

ep̃2(t0−t)
∫

Ω

(v (·, t0) + 1)p2 and

Fi(s) :=
p̃i

pi
(s + 1)pi + M i

4(s + 1)pi+βi+γi−1 + (s + 1)pi−1fi(s) (3.25)

for i = 1, 2. Let

ι�1 =

⎧
⎪⎨

⎪⎩

p̃1
p1

, when β1 + γ1 < 1;
p̃1
p1

+ M1
4 , when β1 + γ1 = 1;

M1
4 , when β1 + γ1 > 1,

(3.26)

and

ι�2 =

⎧
⎪⎨

⎪⎩

p̃2
p2

, when β2 + γ2 < 1;
p̃2
p2

+ M2
4 , when β2 + γ2 = 1;

M2
4 , when β2 + γ2 > 1,

(3.27)

then we can divide the three cases (a) β1 + γ1 < 1, (b) β1 + γ1 = 1 and (c) β1 + γ1 > 1 to deal with F1,
and F2 is treated in a similar way. Here we only give the proof of case (a).

If β1 + γ1 < 1, it follows from lims→∞ inf
{

− f1(s)
s

}
=: ι1 ∈ (ι�1,∞] for ι�1 = p̃1

p1
that

lim
s→∞ inf

1
(s + 1)p1

F1(s) =
p̃1

p1
+ M1

4 lim
s→∞ inf(s + 1)β1+γ1−1 − ι1

=
p̃1

p1
− ι1 < 0,

(3.28)
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so that

∃s̄1 > 0, s.t. F1(s) < 0 for all s > s̄1.

Therefore, we further have
∫

Ω

F1(u)(·, τ) =
∫

u≤s̄1

F1(u)(·, τ) +
∫

u>s̄1

F1(u)(·, τ) ≤ sup
0<s≤s̄1

F1(s)|Ω| < ∞. (3.29)

In this similar way, we can also get
∫

Ω

F1(u)(·, τ) < ∞ when case (b), (c) (3.30)

and
∫

Ω

F2(v)(·, τ) < ∞ when case (a), (b), (c) (3.31)

under the condition lims→∞ inf
{

− fi(s)

smax{1,βi+γi}
}

=: ιi ∈ (ι�i ,∞] by the definition of ι�i in (3.26) and (3.27)
with i = 1, 2. Combining (3.24) with (3.30) and (3.31), we obtain the existence of positive constant C9

such that
1
p1

∫

Ω

(u + 1)p1(·, t) +
1
p2

∫

Ω

(v + 1)p2(·, t) ≤ C9 (3.32)

for all t ∈ (0, Tmax). The proof of Lemma 3.3 is complete. �

By Lemma 3.3, we can complete the proof of Theorem 1.1.

Proof of Theorem 1.1. By using the well-known Lp − Lq estimate in [38] and selecting the appropriate
values for p1, p2 in Lemma 3.3, we can obtain the boundedness of ‖w(·, t)‖W 1,∞ . Then, it follows form
Moser iteration technique (Appendix A of [27]) that there exists a constant K3 > 0 independent of t such
that

‖u(·, t)‖L∞ + ‖v(·, t)‖L∞ + ‖w(·, t)‖W 1,∞ ≤ K3,

which together with the extension criterion in Lemma 2.1 proves Theorem 1.1.

4. Global boundedness for τ = 0

In this section, we shall prove the global boundedness of solutions for (1.3) in any space dimension when
τ = 0. Firstly, we give the coupled estimate of

∫

Ω

up1 and
∫

Ω

vp2 for some suitably large pi > 1(i = 1, 2).

Lemma 4.1. Let τ = 0 and (u, v, w) be a solution ensured in Lemma 2.1. Then the solution (u, v, w)
satisfies

1
p1

d
dt

∫

Ω

(u + 1)p1 +
4(p1 − 1)
(p1 − α1)2

∫

Ω

∣
∣
∣∇(u + 1)

p1−α1
2

∣
∣
∣
2

≤ Cχ1(p1 − 1)
(p1 + β1 − 1)

∫

Ω

(u + 1)p1+β1+γ1−1 +
Cχ1(p1 − 1)

p1 + β1 + γ2 − 1

∫

Ω

(u + 1)p1+β1+γ2−1

+
Cχ1γ2(p1 − 1)

(p1 + β1 + γ2 − 1)(p1 + β1 − 1)

∫

Ω

(v + 1)p1+β1+γ2−1 −
∫

Ω

f1(u)(u + 1)p1−1

(4.1)
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and

1
p2

d
dt

∫

Ω

(v + 1)p2 +
4(p2 − 1)
(p2 − α2)2

∫

Ω

∣
∣
∣∇(v + 1)

p2−α2
2

∣
∣
∣
2

≤ Cχ2(p2 − 1)
(p2 + β2 − 1)

∫

Ω

(v + 1)p2+β2+γ2−1 +
Cχ2(p2 − 1)

p2 + β2 + γ1 − 1

∫

Ω

(v + 1)p2+β2+γ1−1

+
Cχ2γ1(p2 − 1)

(p2 + β2 + γ1 − 1)(p2 + β2 − 1)

∫

Ω

(u + 1)p2+β2+γ1−1 −
∫

Ω

f2(v)(v + 1)p2−1

(4.2)

for all t ∈ (0, Tmax), where

pi > max{1, 1 − βi, αi} with i = 1, 2. (4.3)

Proof. Testing the first equation in (1.3) by (u + 1)p1−1, since (S1) and p1 > α1, we have

1
p1

d
dt

∫

Ω

(u + 1)p1

=
∫

Ω

(u + 1)p1−1∇ · (D1(u)∇u) −
∫

Ω

(u + 1)p1−1∇ · (χ1(u)∇w) −
∫

Ω

f1(u)(u + 1)p1−1

≤ −4(p1 − 1)
(p1 − α1)2

∫

Ω

∣
∣
∣∇(u + 1)

p1−α1
2

∣
∣
∣
2

+ (p1 − 1)
∫

Ω

(u + 1)p1−2χ1(u)∇u · ∇w

−
∫

Ω

f1(u)(u + 1)p1−1.

(4.4)

Due to (S2), (S4) and p1 > 1 − β1, using Young’s inequality, we obtain

(p1 − 1)
∫

Ω

(u + 1)p1−2χ1(u)∇u · ∇w

= (p1 − 1)
∫

Ω

∇�(u) · ∇w

= −(p1 − 1)
∫

Ω

�(u) · Δw

≤ (p1 − 1)
∫

Ω

�(u)(uγ1 + vγ2 − w)

≤ Cχ1(p1 − 1)
(p1 + β1 − 1)

∫

Ω

(u + 1)p1+β1−1 (uγ1 + vγ2)

≤ Cχ1(p1 − 1)
(p1 + β1 − 1)

⎧
⎨

⎩

∫

Ω

(u + 1)p1+β1+γ1−1 +
p1 + β1 − 1

p1 + β1 + γ2 − 1

∫

Ω

(u + 1)p1+β1+γ2−1

+
γ2

p1 + β1 + γ2 − 1

∫

Ω

(v + 1)p1+β1+γ2−1

⎫
⎬

⎭

(4.5)
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where

�(u) =

u∫

0

(s + 1)p1−2χ1(s)ds ≤
u∫

0

(s + 1)p1+β1−2ds.

Then, collecting (4.4) and (4.5) that we prove (4.1). Similarly, (4.2) can be obtained by using the same
framework. �

Then, based on the above lemmas, we establish the uniform boundedness of ‖u‖Lp1 (Ω), ‖v‖Lp2 (Ω)

under some appropriate parameter conditions.

Lemma 4.2. Let (u, v, w) be a solution ensured in Lemma 2.1 and the assumptions in Theorem 1.2 hold.
Then, for all p1, p2 > 1, there exists a positive constant K4 such that

‖u(·, t)‖Lp1 (Ω) + ‖v(·, t)‖Lp2 (Ω) ≤ K4 for all t ∈ (0, Tmax). (4.6)

Proof. Let p1 + β1 + γ2 = p2 + β2 + γ1 in Lemma 4.1. Similar to Lemma 3.3, we divide our proof into the
following two parts.

Part 1 We shall deal with the hypothesis (i) in Theorem 1.2 by using the aid of the diffusion
when fi = 0(i = 1, 2). Combining (4.1)–(4.2) and apply Young’s inequality, there exist some constant
C10, C11 > 0 such that

d
dt

⎧
⎨

⎩

1
p1

∫

Ω

(u + 1)p1 +
1
p2

∫

Ω

(v + 1)p2

⎫
⎬

⎭

+
4(p1 − 1)
(p1 − α1)2

∫

Ω

∣
∣
∣∇(u + 1)

p1−α1
2

∣
∣
∣
2

+
4(p2 − 1)
(p2 − α2)2

∫

Ω

∣
∣
∣∇(v + 1)

p2−α2
2

∣
∣
∣
2

≤ C10

∫

Ω

(u + 1)p1+β1+γ−1 + C11

∫

Ω

(v + 1)p2+β2+γ−1

(4.7)

due to γ = max {γ1, γ2}, p1 + β1 + γ2 = p2 + β2 + γ1 and fi = 0(i = 1, 2). Since αi < 1 + 2
n − γ − βi for

i = 1, 2, using the similar techniques as in (3.12) we obtain

(C10 + 1)
∫

Ω

(u + 1)p1+β1+γ1−1

≤ 4 (p1 − 1)
(p1 − α1)

2

∫

Ω

∣
∣
∣∇ (u + 1)

p1−α1
2

∣
∣
∣
2

+ C̃10

and

(C11 + 1)
∫

Ω

(v + 1)p2+β2+γ2−1

≤ 4 (p2 − 1)
(p2 − α2)

2

∫

Ω

∣
∣
∣∇ (v + 1)

p2−α2
2

∣
∣
∣
2

+ C̃11,
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where C̃10, C̃11 are some positive constants. Together them with (4.7) that we have

d
dt

⎧
⎨

⎩

1
p1

∫

Ω

(u + 1)p1 +
1
p2

∫

Ω

(v + 1)p2

⎫
⎬

⎭

+
∫

Ω

(u + 1)p1+β1+γ−1 +
∫

Ω

(v + 1)p2+β2+γ−1

≤ C12,

(4.8)

where C12 is a positive constant. This along with the ODE comparison argument, we obtain the existence
of positive constant C13 such that

1
p1

∫

Ω

(u + 1)p1(·, t) +
1
p2

∫

Ω

(v + 1)p2(·, t) ≤ C13 (4.9)

for all t ∈ (0, Tmax).
Part 2 We deal with the hypothesis (ii) in Theorem 1.2 by using the effect of damping terms.
Together (4.1) with (4.2) and adding

∫

Ω

(u + 1)
p1
2 +

∫

Ω

(v + 1)
p2
2 to the both sides, since p1, p2 > 1 and

p1 + β1 + γ2 = p2 + β2 + γ1, we have

d
dt

⎧
⎨

⎩

1
p1

∫

Ω

(u + 1)p1 +
1
p2

∫

Ω

(v + 1)p2

⎫
⎬

⎭
+
∫

Ω

(u + 1)
p1
2 +

∫

Ω

(v + 1)
p2
2

≤
∫

Ω

�1(u) +
∫

Ω

�2(v),

(4.10)

where

�1(u) =
(

Cχ1(p1 − 1)
p1 + β1 + γ2 − 1

+
Cχ2γ1(p2 − 1)

(p2 + β2 + γ1 − 1)(p2 + β2 − 1)

)

(u + 1)p1+β1+γ2−1

+
Cχ1(p1 − 1)
(p1 + β1 − 1)

(u + 1)p1+β1+γ1−1 + (u + 1)
p1
2 − f1(u)(u + 1)p1−1

(4.11)

and

�2(v) =
(

Cχ2(p2 − 1)
p2 + β2 + γ1 − 1

+
Cχ1γ2(p1 − 1)

(p1 + β1 + γ2 − 1)(p1 + β1 − 1)

)

(v + 1)p2+β2+γ1−1

+
Cχ2(p2 − 1)
(p2 + β2 − 1)

(v + 1)p2+β2+γ2−1 + (v + 1)
p2
2 − f2(v)(v + 1)p2−1.

(4.12)

Let pi > 2(βi + γ − 2) (i = 1, 2) and

ι̃1 =

⎧
⎪⎪⎨

⎪⎪⎩

Cχ1 (p1−1)

p1+β1+γ2−1 + Cχ2γ1(p2−1)

(p2+β2+γ1−1)(p2+β2−1) , when γ1 < γ2;
Cχ1 (p1−1)

p1+β1+γ2−1 + Cχ2γ1(p2−1)

(p2+β2+γ1−1)(p2+β2−1) + Cχ1 (p1−1)

(p1+β1−1) , when γ1 = γ2;
Cχ1 (p1−1)

(p1+β1−1) , when γ1 > γ2,

(4.13)

and

ι̃2 =

⎧
⎪⎪⎨

⎪⎪⎩

Cχ2 (p2−1)

p2+β2+γ1−1 + Cχ1γ2(p1−1)

(p1+β1+γ2−1)(p1+β1−1) , when γ1 > γ2;
Cχ2 (p2−1)

p2+β2+γ1−1 + Cχ1γ2(p1−1)

(p1+β1+γ2−1)(p1+β1−1) + Cχ2 (p2−1)

(p2+β2−1) , when γ1 = γ2;
Cχ2 (p2−1)

(p2+β2−1) , when γ1 < γ2,

(4.14)
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then we can divide the three cases (a) γ1 < γ2, (b) γ1 = γ2 and (c) γ1 > γ2 to deal with �1, and �2 is
treated in a similar way. Here we only give the proof of case (a).

If γ1 < γ2, then γ = γ2, it follows from lims→∞ inf
{

− f1(s)
sβ1+γ

}
=: ι1 ∈ (ι̃1,∞] for ι̃1 = Cχ1 (p1−1)

p1+β1+γ2−1 +
Cχ2γ1(p2−1)

(p2+β2+γ1−1)(p2+β2−1) that

lim
s→∞ inf

1
(s + 1)p1+β1+γ−1

�1(s) =
Cχ1(p1 − 1)

p1 + β1 + γ2 − 1
+

Cχ2γ1(p2 − 1)
(p2 + β2 + γ1 − 1)(p2 + β2 − 1)

+
Cχ1(p1 − 1)
(p1 + β1 − 1)

lim
s→∞ inf(s + 1)γ1−γ2 − ι1

< 0,

(4.15)

so that

∃s̄2 > 0, s.t. �1(s) < 0 for all s > s̄2.

Therefore, we further have
∫

Ω

�1(u)(·, τ) =
∫

u≤s̄2

�1(u)(·, τ) +
∫

u>s̄2

�1(u)(·, τ) ≤ sup
0<s≤s̄2

�1(s)|Ω| < ∞. (4.16)

In this similar way, we can also get
∫

Ω

�1(u)(·, τ) < ∞ when case (b), (c) (4.17)

and
∫

Ω

�2(v)(·, τ) < ∞ when case (a), (b), (c) (4.18)

under the condition lims→∞ inf
{

− fi(s)

sβi+γ

}
=: ιi ∈ (ι̃i,∞] by the definition of ι̃i in (4.13) and (4.14) with

i = 1, 2. Combining this with (4.10), we obtain the existence of positive constant C14 such that

d
dt

⎧
⎨

⎩

1
p1

∫

Ω

(u + 1)p1 +
1
p2

∫

Ω

(v + 1)p2

⎫
⎬

⎭
+
∫

Ω

(u + 1)
p1
2 +

∫

Ω

(v + 1)
p2
2 ≤ C14 (4.19)

for all t ∈ (0, Tmax). This along with the Lemma 5.1 in Chapter III of [30], we obtain the existence of
positive constant C15 such that

1
p1

∫

Ω

(u + 1)p1(·, t) +
1
p2

∫

Ω

(v + 1)p2(·, t) ≤ C15 (4.20)

for all t ∈ (0, Tmax). The proof of Lemma 4.2 is complete. �

Remark 4.1. When βi ≥ 0 with i = 1, 2, for any pi > 0, it is interesting that (4.13) and (4.14) can be
simplified to

ι̃1 =

⎧
⎪⎨

⎪⎩

Cχ1 , when γ1 < γ2;
2Cχ1 , when γ1 = γ2;
Cχ1 , when γ1 > γ2,

and ι̃2 =

⎧
⎪⎨

⎪⎩

Cχ2 , when γ1 > γ2;
2Cχ2 , when γ1 = γ2;
Cχ2 , when γ1 < γ2,

(4.21)
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due to p1 + β1 + γ2 = p2 + β2 + γ1, and the condition (ii) in Theorem 1.2 can be changed into
lims→∞ inf

{
− fi(s)

sβi+γ

}
=: ιi ∈ [ι̃i,∞]. In the other hand, when βi < 0, since the continuity and

lim
p1,p2→∞

{
Cχ1(p1 − 1)

p1 + β1 + γ2 − 1
+

Cχ2γ1(p2 − 1)
(p2 + β2 + γ1 − 1)(p2 + β2 − 1)

}

= Cχ1 ,

lim
p1→∞

{
Cχ1(p1 − 1)
(p1 + β1 − 1)

}

= Cχ1 ,

lim
p1,p2→∞

{
Cχ2(p2 − 1)

p2 + β2 + γ1 − 1
+

Cχ1γ2(p1 − 1)
(p1 + β1 + γ2 − 1)(p1 + β1 − 1)

}

= Cχ2 ,

and

lim
p2→∞

{
Cχ2(p2 − 1)
(p2 + β2 − 1)

}

= Cχ2 ,

(4.13) and (4.14) can also be simplified to (4.21) such that the condition (ii) in Theorem 1.2 is reasonable
for sufficiently large p1, p2.

By Lemma 4.2, we can complete the proof of Theorem 1.2.

Proof of Theorem 1.2. applying the elliptic estimate to the third equation in (1.3) and combining Sobolev
embedding theorem, we obtain

‖w(·, t)‖W 1,∞(Ω) ≤ C16‖w(·, t)‖W 2,p(Ω) ≤ C17‖u(·, t) + v(·, t)‖Lp(Ω) ≤ C18 (4.22)

for some positive constants C16, C17, C18. Then, using Moser iteration technique (Appendix A of [27]),
there exists a constant K5 > 0 independent of t such that

‖u(·, t)‖L∞ + ‖v(·, t)‖L∞ + ‖w(·, t)‖W 1,∞ ≤ K5,

which together with the extension criterion in Lemma 2.1 proves Theorem 1.2.

5. Asymptotic behavior

In this section, we show the asymptotic behavior of solutions by constructing the proper Lyapunov
functionals under some assumptions to prove Theorems 1.3 and 1.4, separately. To achieve our goals and
apart from constructing the energy functionals, we first give the following key lemma

Lemma 5.1. (see [2]) Let (u, v, w) be a nonnegative global bounded classical solution of (1.3) with initial
data (u0, v0, w0) satisfying (1.4). Then there exist θ ∈ (0, 1) and K6 > 0 such that

‖u‖
C2+θ,1+ θ

2 (Ω̄×[t,t+1])
+ ‖v‖

C2+θ,1+ θ
2 (Ω̄×[t,t+1])

+ ‖w‖
C2+θ,1+ θ

2 (Ω̄×[t,t+1])
≤ K6 for all t ≥ 1.

In addition, Let f(t) : (1,∞) → R be a nonnegative and uniformly continuous function that satisfies
∞∫

1

f(t)dt < ∞. Then, f(t) → 0 as t → ∞.

5.1. Proof of Theorem 1.3

Lemma 5.2. Let τ = 1 and (u, v, w) is global bounded solution of (1.3). Suppose that ρ1, ρ2 > 0 are
arbitrary, then the function

E1(t) :=
∫

Ω

u + ρ1

∫

Ω

(v − 1 − ln v) +
ρ2

2

∫

Ω

(w − 1)2
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satisfies

d
dt

E1(t)

≤ − (μ1 − ρ1μ2)
∫

Ω

u2 − (μ1a1 + ρ1μ2a2 − 2ρ1μ2)
∫

Ω

uv − (2ρ1μ2 − μ1 − ρ1μ2a2)
∫

Ω

u

−
(

2ρ1μ2 − k2ρ1C
2
χ2

4

)∫

Ω

|∇w|2 − ρ1μ2

∫

Ω

(u + v − w)2 − ρ1μ2

∫

Ω

(w − 1)2

(5.1)

for all t > 0 when ρ2 = 2ρ1μ2, where k2 is defined in (1.5).

Proof. Let A(t), B(t) and D(t) be defined as

A1(t) :=
∫

Ω

u, B1(t) :=
∫

Ω

(v − 1 − ln v) and G1(t) :=
1
2

∫

Ω

(w − 1)2.

From the first equation in (1.3) and (S6), by a straightforward calculation that

d
dt

A1(t) = −μ1

∫

Ω

u2 + μ1

∫

Ω

u (1 − a1v) (5.2)

and

d
dt

G1(t) = −
∫

Ω

|∇w|2 +
∫

Ω

(w − 1) (u + v − w) . (5.3)

Together with (S1), (S2) and (S6), we obtain

d
dt

B1(t) = −
∫

Ω

D2(v)
|∇v|2

v2
+
∫

Ω

S2(v)
v2

∇v · ∇w + μ2

∫

Ω

(v − 1) (1 − v − a2u)

≤ C2
χ2

4
k2

∫

Ω

|∇w|2 + μ2

∫

Ω

(v − 1) (1 − v − a2u)
(5.4)

by using Young’s inequality and the definition of k2 in (1.5). For arbitrary ρ1, ρ2 > 0, a direct linear
combination (5.2)+ρ2× (5.3)+ρ1× (5.4), the consequence thus obtained then reads

d
dt

E1(t) ≤ −
(
μ1 − ρ2

2

)∫

Ω

u2 − (μ1a1 + ρ1μ2a2 − ρ2)
∫

Ω

uv −
(

ρ2 − k2ρ1C
2
χ2

4

)∫

Ω

|∇w|2

−
∫

Ω

(ρ2

2
u2 + ρ1μ2v

2 +
ρ2

2
w2 − ρ2uw − ρ2vw + ρ2uv

)
−
∫

Ω

(
ρ2

2
w2 − ρ2w + p1μ2)

− (2ρ1μ2 − ρ2)
∫

Ω

v − (ρ2 − μ1 − ρ1μ2a2)
∫

Ω

u.

Then, let ρ2 = 2ρ1μ2, it immediately complete the proof of this lemma. �

Next we will use the energy functional constructed in Lemma 5.2 to obtain the large time behavior of
solutions to (1.3) when a1 ≥ 1 > a2 > 0.
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Lemma 5.3. Suppose that the conditions in Theorem 1.3 hold and τ = 1, then there exist some ρ1, σ1 > 0
such that the functions

E1(t) :=
∫

Ω

u + ρ1

∫

Ω

(v − 1 − ln v) + ρ1μ2

∫

Ω

(w − 1)2

and

F1(t) :=
∫

Ω

u2 +
∫

Ω

(v + u − w)2 +
∫

Ω

(w − 1)2

fulfill

E′
1(t) ≤ −σ1F1(t) for all t > 0. (5.5)

Proof. Since a1 ≥ 1 and a2 < 1, we have
μ1

μ2(2 − a2)
≤ μ1a1

μ2(2 − a2)
and

μ1

μ2(2 − a2)
<

μ1

μ2
, (5.6)

which ensures the existence of ρ1 satisfying

ρ1 <
μ1

μ2
and ρ1 ∈

[
μ1

μ2(2 − a2)
,

μ1a1

μ2(2 − a2)

]

(5.7)

such that μ1 − ρ1μ2 > 0 and min {μ1a1 + ρ1μ2a2 − 2ρ1μ2, 2ρ1μ2 − μ1 − ρ1μ2a2} ≥ 0. Therefore, by
choosing suitable ρ1 and combining (1.6), we have

d
dt

E1(t) ≤ − (μ1 − ρ1μ2)
∫

Ω

u2 − ρ1μ2

∫

Ω

(u + v − w)2 − ρ1μ2

∫

Ω

(w − 1)2. (5.8)

�
Lemma 5.4. Suppose that the conditions in Theorem 1.3 hold and τ = 0, τ = 1, then there exist some
ρ1, σ2 > 0 such that the function

E2(t) :=
∫

Ω

u + ρ1

∫

Ω

(v − 1 − ln v)

fulfills

E′
2(t) ≤ −σ2F1(t) for all t > 0, (5.9)

where F1(t) is same in Lemma 5.3.

Proof. Testing the third equation in (1.3) by w − 1, we deduce that

0 = −
∫

Ω

|∇w|2 +
∫

Ω

(w − 1) (u + v − w) , (5.10)

then by a direct linear combination (5.2)+2ρ1μ2×(5.10) +ρ1× (5.4) and choosing the ρ1 satisfying (5.6),
we can complete the proof of Lemma 5.4 through the same steps as in Lemma 5.3. �
Proof of Theorem 1.3. Because of s − 1 − ln s ≥ 0 for all s > 0, E1(t), E2(t) are nonnegative. Integrating
(5.5) or (5.9) over (0, t) and letting t → ∞, we obtain

∞∫

0

∫

Ω

u2 +

∞∫

0

∫

Ω

(v + u − w)2 +

∞∫

0

∫

Ω

(w − 1)2 ≤ K7

with some K7 > 0. Therefore, combining this with Lemma 5.1 then yields

‖u(·, t)‖L2(Ω) + ‖v(·, t) + u(·, t) − w(·, t)‖L2(Ω) + ‖w(·, t) − 1‖L2(Ω) → 0 as t → ∞,
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this implies

‖u(·, t)‖L2(Ω) + ‖v(·, t) − 1‖L2(Ω) + ‖w(·, t) − 1‖L2(Ω) → 0 as t → ∞.

Invoking the Gagliardo-Nirenberg inequality to find K8 > 0 fulfilling

‖ϕ‖L∞(Ω) ≤ K8‖ϕ‖n/(n+2)
W 1,∞(Ω)‖ϕ‖2/(n+2)

L2(Ω) for all ϕ ∈ W 1,∞(Ω).

Applying the above Gagliardo-Nirenberg inequality to u, v, w for t > 0, and using Lemma 5.1, we conclude
that

‖u(·, t)‖L∞(Ω) + ‖v(·, t) − 1‖L∞(Ω) + ‖w(·, t) − 1‖L∞(Ω) → 0 as t → ∞.

Hence the proof of Theorem 1.3 is completed.

5.2. Proof of Theorem 1.4

Lemma 5.5. Let τ = 1 and (u, v, w) is global bounded solution of (1.3). Suppose that ς1, ς2 > 0 are
arbitrary, then the function

E3(t) :=
∫

Ω

(u − u� − u� ln
u

u�
) + ς1

∫

Ω

(v − v� − v� ln
v

v�
) +

ς2
2

∫

Ω

(w − w�)2

satisfies

d
dt

E3(t) ≤ − (μ1 − ς1μ2)
∫

Ω

(u − u�)2 − (μ1a1 + ς1μ2a2 − 2ς1μ2)
∫

Ω

(u − u�)(v − v�)

−
(

2ς1μ2 − k1u�C
2
χ1

4
− ς1

k2v�C
2
χ2

4

)∫

Ω

|∇w|2 − ς1μ2

∫

Ω

(u + v − w)2

− ς1μ2

∫

Ω

(w − w�)2

(5.11)

for all t > 0 when ς2 = 2ς1μ2, where k1, k2 are defined in (1.5).

Proof. Let A2(t), B2(t) and G2(t) be defined as

A2(t) :=
∫

Ω

(u − u� − u� ln
u

u�
), B2(t) :=

∫

Ω

(v − v� − v� ln
v

v�
) and G2(t) :=

1
2

∫

Ω

(w − w�)2.

Together with (S1), (S2) and (S6), by using Young’s inequality and the definitions of k1, k2 in (1.5) that
we obtain

d
dt

A2(t) = −u�

∫

Ω

D1(u)
|∇u|2

u2
+
∫

Ω

u�S1(u)
u2

∇u · ∇w + μ1

∫

Ω

(u − u�) (1 − u − a1v)

≤ C2
χ1

4
k1u�

∫

Ω

|∇w|2 − μ1

∫

Ω

(u − u�)
2 − a1μ1

∫

Ω

(u − u�) (v − v�)
(5.12)

and

d
dt

B2(t) ≤ C2
χ2

4
k2v�

∫

Ω

|∇w|2 − μ2

∫

Ω

(v − v�)
2 − a2μ2

∫

Ω

(v − v�) (u − u�) (5.13)
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as well as
d
dt

G2(t) = −
∫

Ω

|∇w|2 +
∫

Ω

(w − w�) (u + v − w)

= −
∫

Ω

|∇w|2 −
∫

Ω

(w − w�)
2 +

∫

Ω

(w − w�) (u − u�) +
∫

Ω

(w − w�) (v − v�) .

(5.14)

For some ς1, ς2 > 0, a direct linear combination (5.12)+ς1× (5.13)+ς2×(5.14) and let ς2 = 2ς1μ2, it
immediately obtain (5.11) due to u� + v� − w� = 0. �

Next we will use the energy functional constructed in Lemma 5.5 to obtain the large time behavior of
solutions to (1.3) for a1, a2 < 1.

Lemma 5.6. Suppose that the conditions in Theorem 1.4 hold and τ = 1, let ς1 := a1μ1
μ2(2−a2)

, then there
exists σ3 > 0 such that the functions

E3(t) :=
∫

Ω

(u − u� − u� ln
u

u�
) + ς1

∫

Ω

(v − v� − v� ln
v

v�
) + ς1μ2

∫

Ω

(w − w�)2

and

F2(t) :=
∫

Ω

(u − u�)2 +
∫

Ω

(v + u − w)2 +
∫

Ω

(w − w�)2

fulfill

E′
3(t) ≤ −σ3F2(t) for all t > 0. (5.15)

Proof. Since a1, a2 < 1, we have

ς1 =
a1μ1

μ2(2 − a2)
<

μ1

μ2
, (5.16)

which ensures that μ1 − ς1μ2 > 0 and μ1a1 + ς1μ2a2 − 2ς1μ2 = 0. Therefore, by choosing this ς1 and
combining (1.7), we have

d
dt

E3(t) ≤ − (μ1 − ς1μ2)
∫

Ω

(u − u�)2 − ς1μ2

∫

Ω

(u + v − w)2 − ς1μ2

∫

Ω

(w − w�)2. (5.17)

�

Lemma 5.7. Suppose that the condition in Theorem 1.4 hold and τ = 0, let ς1 := a1μ1
μ2(2−a2)

, then there
exists σ4 > 0 such that the function

E4(t) :=
∫

Ω

(u − u� − u� ln
u

u�
) + ς1

∫

Ω

(v − v� − v� ln
v

v�
)

fulfills

E′
4(t) ≤ −σ4F2(t) for all t > 0, (5.18)

where F2(t) is same in Lemma 5.6.

Proof. Testing the third equation in (1.3) by w − w�, we deduce that

0 = −
∫

Ω

|∇w|2 +
∫

Ω

(w − w�) (u + v − w) , (5.19)

then by a direct linear combination (5.12)+ς1× (5.13) +2ς1μ2×(5.19), we can complete the proof of
Lemma 5.7 through the same steps as in Lemma 5.6. �
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We are now in the position to prove our main result.

Proof of Theorem 1.4. Firstly, we show the nonnegativity of E3(t), E4(t). Let y(s) := s−u∗ ln s for s > 0.
By applying Taylor’s formula, there exists σ ∈ (0, 1) such that

y(u) − y (u∗) = y′ (u∗) · (u − u∗) +
1
2
y′′ [σu + (1 − σ)u∗] · (u − u∗)

2

=
u∗

2 [σu + (1 − σ)u∗]
2 (u − u∗)

2 ≥ 0

for x ∈ Ω and t > 0, which implies that A2(t) =
∫

Ω

(y(u) − y (u∗)) ≥ 0. Similarly, we can obtain B2(t) ≥ 0

for all t ≥ 0. Thus, E3(t) and E4(t) are nonnegative. Integrating (5.15) or (5.18) over (0, t) and letting
t → ∞, we obtain

∞∫

0

∫

Ω

(u − u�)2 +

∞∫

0

∫

Ω

(v + u − w)2 +

∞∫

0

∫

Ω

(w − w�)2 ≤ K8

with some K8 > 0. combining this with Lemma 5.1 then yields

‖u(·, t) − u�‖L2(Ω) + ‖v(·, t) + u(·, t) − w(·, t)‖L2(Ω) + ‖w(·, t) − w�‖L2(Ω) → 0 as t → ∞,

this implies

‖u(·, t) − u�‖L2(Ω) + ‖v(·, t) − v�‖L2(Ω) + ‖w(·, t) − w�‖L2(Ω) → 0 as t → ∞.

Applying the above Gagliardo-Nirenberg inequality to u, v, w for t > 0, and using Lemma 5.1, we conclude
that

‖u(·, t)‖L∞(Ω) + ‖v(·, t) − 1‖L∞(Ω) + ‖w(·, t) − 1‖L∞(Ω) → 0 as t → ∞.

Hence the proof of Theorem 1.4 is completed.
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