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Abstract. In this paper, we consider an initial and boundary value problem to the three-dimensional (3D) nonhomogeneous
nematic liquid crystal flows with density-dependent viscosity and vacuum. Combining delicate energy method with the
structure of the system under consideration, the global well-posedness of strong solutions is established, provided that
‖ρ0‖L1 + ‖∇d0‖L2 is suitably small. In particular, the initial velocity can be arbitrarily large. Moreover, the exponential
decay rates of the strong solution are also obtained.
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1. Introduction and main result

Let Ω ⊂ R
3 be a bounded smooth domain. The motion of the nonhomogeneous nematic liquid crystal flows

is governed by the following simplified version of the Ericksen–Leslie equations with density-dependent
viscosity in Ω × (0, T ]:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ + div(ρu) = 0,

∂t(ρu) + div(ρu ⊗ u) − div(2μ(ρ)D(u)) + ∇P = −div(∇d � ∇d),

dt + u · ∇d = Δd + |∇d|2d,

divu = 0, |d| = 1,

(1.1)

where ρ,u,d and P are the density of the fluid, velocity, macroscopic average of the nematic liquid crystal
orientation and pressure, respectively. The deformation tensor D(u) is given by

D(u) =
1
2

[∇u + (∇u)T
]
.

The viscosity coefficient μ = μ(ρ) is a general function of density, which is assumed to satisfy

μ ∈ C1[0,∞), and μ ≥ μ > 0 on [0,∞) (1.2)

for some positive constant μ. The notation ∇d � ∇d denotes the 3 × 3 matrix whose ij component is
given by ∂id · ∂jd, i, j = 1, 2, 3.

We seek for the solutions to the system (1.1) with the following initial and boundary conditions:

(ρ, ρu,d)|t=0 = (ρ0, ρ0u0,d0)(x), x ∈ Ω, (1.3)
(u,d) = (0,d0), x ∈ ∂Ω, t > 0. (1.4)
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Here d0 : Ω → S2 is a given vector satisfying ∇d0 = 0 on the boundary ∂Ω (see more details of this fact
in [9]).

The above system (1.1) describes the macroscopic evolution for the nematic liquid crystals. It is a
simplified version of the Ericksen–Leslie model [4,11], but it still retains most important mathematical
structures as well as most of the essential difficulties of the original Ericksen–Leslie model. For more
details on the hydrodynamic continuum theory of liquid crystals, we refer the readers to the monographs
[1,6]. Mathematically, system (1.1) is a coupling between the nonhomogeneous incompressible Navier–
Stokes equations and the transported heat flows of harmonic map, and thus, its mathematical analysis is
full of challenges.

When d is a constant vector satisfying |d| = 1, system (1.1) reduces to the nonhomogeneous incom-
pressible Navier–Stokes equations with density-dependent viscosity. As pointed out in many papers, the
strong interaction between density and velocity will bring some difficulties in the mathematical anal-
ysis due to the density-dependent viscosity. When the initial vacuum is taken into account, Lions [17]
established the global existence of weak solutions to the nonhomogeneous incompressible Navier–Stokes
equations. Later, Cho and Kim [2] constructed a unique local strong solution by imposing the following
compatibility condition on the initial data:

− div(2μ(ρ0))D(u0)) + ∇P0 =
√

ρ0g (1.5)

for some (P0, g) ∈ H1 × L2. Recently, Huang and Wang [10], and independently by Zhang [29], obtained
the global existence and uniqueness of strong solution of Navier–Stokes equations provided that ‖∇u0‖L2

is suitably small.
Let us come back to the system (1.1). Compared with the nonhomogeneous incompressible Navier–

Stokes equations, due to the strong coupling and interaction between the fluid motion and the macroscopic
orientation vector, the mathematical analysis on the system (1.1) will become more subtle. When the
viscosity μ is a positive constant, there is a huge literature on the studies of the well-posedness of solutions
to (1.1). For the initial density away from vacuum, Wen and Ding [26] established the global existence
and uniqueness of strong solution to the 2D problem with small initial energy ‖√ρ0u0‖2

L2 + ‖∇d0‖2
L2 . J.

Li [12] obtained the same result of the 2D problem for large initial data under a geometric condition the
initial direction field d0 = (d01, d02, d03):

d03 ≥ ε0, for some positive ε0. (1.6)

Meanwhile, X. Li and Wang [16] obtained the global strong solution for small initial data, and they also
established the weak–strong uniqueness. On the other hand, if the initial density allows to vanish, Wen
and Ding [26] established the local well-posedness of strong solution under the assumption that the initial
data satisfy a similar compatibility condition as (1.5). Ding et. al [3] and J. Li [13] extended this local
strong solution in 3D to global in time for some small initial data. Yu and Zhang [28] established the global
well-posedness of strong solution in 3D for small initial energy with Nuemann boundary condition for the
macroscopic orientation field. Recently, assuming that the initial orientation field satisfies a geometric
condition (1.6), Liu and Zhang [19] and Liu et. al [18] established the global well-posedness of strong
solution to the 2D Cauchy problem with large initial data for positive and zero far field density at space
infinity, respectively. Meanwhile, Li et. al [14] obtained the same result under small initial data for the 2D
Cauchy problem with zero far field density if the initial density decays not too slow at infinity. When the
viscosity is a function of density, the analysis becomes more difficult due to the strong coupling of viscosity
and velocity field. Gao et. al [7] established the local well-posedness of strong solution in a bounded domain
under a compatibility condition on the initial data. In addition, they also obtained the Serrin-type blow-
up criterion. Subsequently, Liu [20,21] proved the global existence and uniqueness of strong solution in
2D/3D for some small initial data (see also Liu and Zhong [22]). Very recently, Ye and Zhu [27] established
the global well-posedness of strong solution under the initial norm ‖u0‖Ḣα + ‖∇d0‖Ḣα(1/2 < α ≤ 1)
being suitably small.
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The purpose of this paper is to establish the global strong solutions to the 3D incompressible nematic
liquid crystal flows with density-dependent viscosity, provided that ‖ρ0‖L1 + ‖∇d0‖L2 is suitably small
allowing large oscillation of the velocity.

Before stating our main result, we first explain the notations and conventions used throughout this
paper. For p ∈ [1,∞] and integer k ∈ N+, we use Lp = Lp(Ω) and W k,p = W k,p(Ω) to denote the standard
Lebesgue and Sobolev spaces, respectively. When p = 2, we use Hk = W k,2(Ω). The space H1

0,σ stands
for the closure in H1 of the space C∞

0,σ � {φ ∈ C∞
0 |divφ = 0}. And for two 3 × 3 matrices A = (Aij) and

B = (Bij), we denote by

A : B =
3∑

i,j=1

AijBij .

Now we state our main result for the problem (1.1)-(1.4) as follows.

Theorem 1.1. For ρ̄ > 0 and q ∈ (3,∞), assume that the initial data (ρ0,u0,d0) satisfies
{

0 ≤ ρ0 ≤ ρ, ρ0 ∈ H1,∇μ(ρ0) ∈ Lq,

u0 ∈ H1
0,σ,d0 ∈ H2, ‖∇d0‖L2 ≤ ‖ρ0‖

1
3
L1 .

(1.7)

Then, there exists a small positive constant ε0 depending only on Ω, μ � sup
[0,ρ̄]

μ(ρ), μ, q, ρ̄, ‖∇μ(ρ0)‖Lq ,

‖∇u0‖L2 and ‖∇2d0‖L2 , such that if

‖ρ0‖L1 + ‖∇d0‖L2 ≤ ε0, (1.8)

the problem (1.1)-(1.4) admits a unique global strong solution (ρ,u,d, P ) satisfying, for any 3 < r <
min{6, q} and τ > 0,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρ ∈ L∞(0,∞;H1) ∩ C([0,∞);H1), ρt ∈ C([0,∞);L
3
2 ),

u ∈ L∞(0,∞;H1) ∩ L∞(τ,∞;H2) ∩ L2(τ,∞;W 2,r),

d ∈ L∞(0,∞;H2) ∩ L∞(τ,∞;H3) ∩ L2(τ,∞;H4),

∇u,∇2d ∈ C([τ,∞);L2), ρu,∇d ∈ C([0,∞);L2),

t
√

ρut, t∇dt ∈ L∞(0,∞;L2), t∇ut, t∇2dt ∈ L2(0,∞;L2).

(1.9)

Moreover, it holds that

sup
[0,T ]

‖∇μ(ρ)‖Lq ≤ 2‖∇μ(ρ0)‖Lq , (1.10)

and there exists some positive constant C depending only on Ω, μ, μ, q, ρ̄, ‖∇μ(ρ0)‖Lq , ‖∇u0‖L2 and
‖∇2d0‖L2 , such that, for t ≥ 1,

‖u(·, t)‖2
H2 + ‖∇d(·, t)‖2

H2 + ‖√
ρut(·, t)‖2

L2 + ‖∇dt(·, t)‖2
L2 ≤ Ce−σt. (1.11)

Here, σ � min{ μ

ρ̄l2 , 1
l2 } with l being the diameter of Ω.

Remark 1.1. Since Ω is a bounded smooth domain, we deduce from Hölder’s inequality that

‖ρ0‖L1 + ‖∇d0‖L2 ≤ C(Ω)(‖ρ0‖L∞ + ‖∇d0‖L3).

Thus, our Theorem 1.1 improves Liu’s result [20]. Moreover, by modifying the proof of this paper slightly,
similar result holds true for the case of 2D bounded domains. Hence, we also generalize Liu’s result [21].
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We mainly use the continuation argument to give a proof of Theorem 1.1. Since the local strong
solution was obtained by Lemma 2.1, the key issue is to establish global a priori estimates on strong
solutions to (1.1)-(1.4) in suitable higher-order norms. Due to the strong interaction between viscosity
and velocity, the method used for the constant viscosity case cannot be applied here directly. Moreover,
compared with the previous work on nonhomogeneous Navier–Stokes equations with density-dependent
viscosity [28,31], the proof of Theorem 1.1 is much more involved due to the strong coupling between the
velocity and the macroscopic orientation vector. Hence, some new ideas are needed to overcome these
difficulties.

Firstly, motivated by the work of [8], we find that ‖√ρu‖2
L2 and ‖∇d‖2

L2 decay at the rate of eσt for
some σ depending only on ρ̄, μ and Ω with the help of Poincaré’s inequality and Sobolev’s inequality (see
(3.8)). Next, we attempt to obtain the uniform in time-weighted estimates of ‖∇u‖2

L2 and ‖∇2d‖2
L2 . To

overcome the difficulties caused by the density-dependent viscosity and strongly coupling between the
velocity and macroscopic orientation vector, we assume the condition (3.2) holds. Moreover, regularity
properties of the Stokes system and elliptic equations play important roles. Then we obtain the desired
bounds of ‖∇u‖2

L2 and ‖∇2d‖2
L2(see Lemma 3.3). These bounds are crucial in deriving time-weighted

estimates of L∞(0, T ;L2)-norms of
√

ρut and ∇dt. The next step is to show the quantity ‖∇μ(ρ)‖Lq is in
fact less than 2‖∇μ(ρ0)‖Lq . To this end, it needs to deal with ‖∇u‖L1(0,T ;L∞). Based on the time-weighted
estimates (Lemmas 3.1-3.4), we find that the uniform bound (with respect to time) on the L1(0, T ;L∞)-
norm of ∇u is bounded by the initial mass and L2-norm of ∇d0. This completes the proof of (3.3)
provided that the assumption (1.8) stated in Theorem 1.1 holds. Finally, the higher-order estimates on
solutions are obtained (see Lemmas 3.6-3.7).

The remaining parts of this paper are arranged as follows. In Section 2, we shall give some auxiliary
lemmas which are useful in later analysis. In Section 3, we establish some necessary a priori estimates to
extend the local strong solution. Finally, we give the proof of the main result Theorem 1.1 in Section 4.

2. Preliminaries

In this section, we shall recall some known facts and elementary inequalities that will be used extensively
later.

We start with the local existence and uniqueness of strong solutions whose proof can be performed in
a similar way as [15,24].

Lemma 2.1. Assume that (ρ0,u0,d0) satisfies (1.7). Then, there exist a small time T0 > 0 and a unique
strong solution (ρ,u,d, P ) to the problem (1.1)-(1.4) in Ω × (0, T0].

Next, the following Gagliardo–Nirenberg inequality (see [23, Theorem 10.1, p.27]) will be useful in the
next section.

Lemma 2.2. For p ∈ [2, 6], q ∈ (1,+∞), and r ∈ (3,+∞), there exists some generic constant C which
may depend only on p, q and r, such that for f ∈ H1

0 , g ∈ Lq ∩ D1,r, the following inequalities hold.

‖f‖Lp ≤ C‖f‖
6−p
2p

L2 ‖∇f‖
3p−6
2p

L2 , (2.1)

and

‖g‖L∞ ≤ C‖g‖Lq + C‖∇g‖Lr . (2.2)

Finally, the following regularity results for the Stokes system will be used frequently in deriving the
higher-order estimates. Refer to [10, Lemma 2.1] for the proof.
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Lemma 2.3. For constants q > 3, μ, μ̄ > 0, in addition to (1.2), the function μ satisfies

∇μ(ρ) ∈ Lq, μ ≤ μ(ρ) ≤ μ̄.

Assume that (u, P ) ∈ H1
0,σ × L2 is the unique weak solution to the following problem

⎧
⎪⎨

⎪⎩

− div(μ(ρ)(∇u + (∇u)T )) + ∇P = F, x ∈ Ω,

divu = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω.

(2.3)

Then, there exists a positive constant C depending only on Ω, μ and μ̄ such that the following regularity
results hold true:

• If F ∈ L2, then (u, P ) ∈ H2 × H1 and

‖u‖H2 + ‖P/μ(ρ)‖H1 ≤ C‖F‖L2

(
1 + ‖∇μ(ρ)‖

q
q−3
Lq

)
. (2.4)

• If F ∈ Lr for some r ∈ (2, q), then (u, P ) ∈ W 2,r × W 1,r and

‖u‖W 2,r + ‖P/μ(ρ)‖W 1,r ≤ C‖F‖Lr

(

1 + ‖∇μ(ρ)‖
q(5r−6)
2r(q−3)

Lq

)

. (2.5)

3. A priori estimates

In this section, we will establish some necessary a priori bounds for strong solution (ρ,u,d) of the problem
(1.1)-(1.4) to extend the local strong solution guaranteed by Lemma 2.1. Thus, let T > 0 be a fixed time
and (ρ,u,d) be the strong solution to (1.1)-(1.4) on Ω × (0, T ] with initial data (ρ0,u0,d0) satisfying
(1.7). Before proceeding further, we rewrite another equivalent form of the system (1.1) as follows.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρt + u · ∇ρ = 0,

ρut + ρu · ∇u − div(2μ(ρ)D(u)) + ∇P = −div(∇d � ∇d),

dt + u · ∇d = Δd + |∇d|2d,

divu = 0, |d| = 1.

(3.1)

In what follows, we denote by
∫

·dx =
∫

Ω

·dx.

We give the following key a priori estimates on (ρ,u,d, P ).

Proposition 3.1. There exists some positive constant ε0 depending only on Ω, μ, μ, q, ρ̄, ‖∇μ(ρ0)‖Lq ,

‖∇u0‖L2 and ‖∇2d0‖L2 such that if (ρ,u,d) is a strong solution to (1.1)-(1.4) on Ω × (0, T ] satisfy-
ing

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sup
[0,T ]

‖∇d‖3
L3 ≤ 2m

1
6
0 , sup

[0,T ]

‖∇μ(ρ)‖Lq ≤ 4‖∇μ(ρ0)‖Lq ,

T∫

0

(‖∇u‖4
L2 + ‖∇2d‖4

L2)dt ≤ 2m
1
3
0 ,

(3.2)
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then the following estimates hold
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sup
[0,T ]

‖∇d‖3
L3 ≤ m

1
6
0 , sup

[0,T ]

‖∇μ(ρ)‖Lq ≤ 2‖∇μ(ρ0)‖Lq ,

T∫

0

(‖∇u‖4
L2 + ‖∇2d‖4

L2)dt ≤ m
1
3
0 ,

(3.3)

provided that

m0 ≤ ε0. (3.4)

Here, m0 � ‖ρ0‖L1 denotes the initial total mass.

The proof of Proposition 3.1 consists of a series of lemmas. In the following, we will use the convention
that C denotes some generic positive constant which may depend on Ω, μ, μ, q, ρ̄ and initial data.

First of all, due to the transport equation (3.1)1, we have the following estimate on the L∞(0, T ;L∞)-
norm of the density, whose proof can be found in [17, Theorem 2.1].

Lemma 3.1. It holds that for any t ∈ [0, T ],

‖ρ(t)‖L∞ ≤ ‖ρ0‖L∞ . (3.5)

Next, we give the following standard energy estimate of the system (3.1), which reads as follows.

Lemma 3.2. Under the condition (3.2), it holds that

sup
[0,T ]

(‖√
ρu‖2

L2 + ‖∇d‖2
L2) +

T∫

0

(
μ‖∇u‖2

L2 + ‖Δd‖2
L2

)
dt ≤ Cm

2
3
0 , (3.6)

provided that

m0 ≤
(

1
2C1

)9

, (3.7)

where C1 is defined as in (3.12) depending only on Ω. Moreover, for σ � min
{

μ

ρ̄l2 , 1
l2

}
with l being the

diameter of Ω, one has that

sup
[0,T ]

[eσt(‖√
ρu‖2

L2 + ‖∇d‖2
L2)] +

T∫

0

eσt
(
μ‖∇u‖2

L2 + ‖Δd‖2
L2

)
dt ≤ Cm

2
3
0 . (3.8)

Proof. Multiplying (3.1)2 by u and integrating over Ω, we deduce from integration by parts that

1
2

d

dt
‖√

ρu‖2
L2 +

∫

2μ(ρ)D(u) : ∇udx = −
∫

u · ∇d · Δddx. (3.9)

Multiplying (3.1)3 by −(Δd + |∇d|2d) and integrating over Ω yield

1
2

d

dt
‖∇d‖2

L2 +
∫

|Δd + |∇d|2d|2dx =
∫

u · ∇d · Δddx. (3.10)

Combining (3.10) and (3.9), we obtain that

1
2

d

dt

(‖√
ρu‖2

L2 + ‖∇d‖2
L2

)
+ 2

∫

μ(ρ)D(u) : ∇udx + ‖Δd + |∇d|2d‖2
L2 = 0. (3.11)
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Noting that

2
∫

μ(ρ)D(u) : ∇udx =
∫

μ(ρ)(∂iuj + ∂jui)∂iujdx

=
1
2

∫

μ(ρ)(∂iuj + ∂jui)2dx

= 2
∫

μ(ρ)|D(u)|2dx,

2
∫

|D(u)|2dx =
1
2

∫

(∂iuj + ∂jui)(∂iuj + ∂jui)dx

=
∫

|∇u|2dx +
∫

∂iuj∂juidx =
∫

|∇u|2dx,

and

‖Δd + |∇d|2d‖2
L2 =

∫
(|Δd|2 + |∇d|4 − 2|∇d|2Δd · d

)
dx

=
∫

(|Δd|2 + |∇d|4 − 2|∇d|4) dx

= ‖Δd‖2
L2 − ‖∇d‖4

L4 ,

we thus deduce from (3.11), (1.2), (3.2) and the Gagliardo–Nirenberg inequality that
1
2

d

dt
(‖√

ρu‖2
L2 + ‖∇d‖2

L2) + μ‖∇u‖2
L2 + ‖Δd‖2

L2

≤‖∇d‖4
L4 ≤ C‖∇d‖2

L3‖Δd‖2
L2 ≤ C1m

1
9
0 ‖Δd‖2

L2

(3.12)

for some constant C1 depending only on Ω. Thus, we obtain that
d

dt
(‖√

ρu‖2
L2 + ‖∇d‖2

L2) + μ‖∇u‖2
L2 + ‖Δd‖2

L2 ≤ 0, (3.13)

provided that

m0 ≤
(

1
2C1

)9

. (3.14)

Integrating (3.13) over [0, T ] implies

sup
[0,T ]

(‖√
ρu‖2

L2 + ‖∇d‖2
L2

)
+

T∫

0

(
μ‖∇u‖2

L2 + ‖Δd‖2
L2

)
dt

≤‖√ρ0u0‖2
L2 + ‖∇d0‖2

L2

≤‖√ρ0‖2
L3‖u0‖2

L6 + ‖∇d0‖2
L2

≤‖ρ0‖
2
3
L1‖ρ0‖

1
3
L∞‖∇u0‖2

L2 + ‖ρ0‖
2
3
L1

≤C‖ρ0‖
2
3
L1

(3.15)

due to the Gagliardo–Nirenberg inequality and (1.7).
It follows from Poincaré’s inequality (see [25, (A.3), p.266] that

‖√
ρu‖2

L2 ≤ ρ‖u‖2
L2 ≤ ρl2‖∇u‖2

L2 , ‖∇d‖2
L2 ≤ l2‖Δd‖2

L2 , (3.16)

where l is the diameter of Ω. Hence, we get
1

ρ̄l2
‖√

ρu‖2
L2 ≤ ‖∇u‖2

L2 ,
1
l2

‖∇d‖2
L2 ≤ ‖Δd‖2

L2 . (3.17)
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Consequently, letting σ � min
{

μ

2ρl2 , 1
2 l2

}
, then we derive from (3.13) and (3.17) that

d

dt
(‖√

ρu‖2
L2 + ‖∇d‖2

L2) +
μ

2
‖∇u‖2

L2 +
1
2
‖Δd‖2

L2 + σ(‖√ρu‖L2 + ‖∇d‖2
L2) ≤ 0. (3.18)

Multiplying (3.18) by eσt, one has

d

dt
[eσt(‖√

ρu‖2
L2 + ‖∇d‖2

L2)] +
eσt

2
(μ‖∇u‖2

L2 + ‖Δd‖2
L2) ≤ 0. (3.19)

Thus, integrating (3.19) with respect to t gives (3.8), which combined with (3.15) completes the proof of
Lemma 3.2. �

Next, we will derive important (time-weighted) estimates on the spatial gradients of the strong solution
(u,∇d).

Lemma 3.3. Under the conditions (3.2) and (3.7), if

m0 ≤
(

1
8C2

)9

, (3.20)

where C2 is defined as in (3.35) depending only on Ω and μ, then

sup
[0,T ]

(‖∇u‖2
L2 + ‖Δd‖2

L2) +

T∫

0

(‖√
ρut‖2

L2 + ‖∇dt‖2
L2)dt ≤ C. (3.21)

Furthermore, for i = {1, 2} and σ as in Lemma 3.2, one has that

sup
[0,T ]

[ti(‖∇u‖2
L2 + ‖Δd‖2

L2)] +

T∫

0

ti(‖√
ρut‖2

L2 + ‖∇dt‖2
L2)dt ≤ Cm

2
3
0 , (3.22)

sup
[0,T ]

[eσt(‖∇u‖2
L2 + ‖Δd‖2

L2)] +

T∫

0

eσt(‖√
ρut‖2

L2 + ‖∇dt‖2
L2)dt ≤ C. (3.23)

Proof. 1. Since μ(ρ) is a continuously differentiable function, we deduce from (3.1)1 that

μ(ρ)t + u · ∇μ(ρ) = 0. (3.24)

Multiplying (3.1)2 by ut, and integrating by parts over Ω, we have

2
∫

μ(ρ)D(u) : ∇utdx +
∫

ρ|ut|2dx =

−
∫

ρu · ∇u · utdx −
∫

div(∇d � ∇d) · utdx.

(3.25)

First, we obtain from (3.24) that

2
∫

μ(ρ)D(u) : ∇utdx =
d

dt

∫

μ(ρ)|D(u)|2dx −
∫

μ(ρ)t|D(u)|2dx

=
d

dt

∫

μ(ρ)|D(u)|2dx +
∫

u · ∇μ(ρ)|D(u)|2dx.

(3.26)
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Then, inserting (3.26) into (3.25), it follows from integration by parts that

d

dt

∫

μ(ρ)|D(u)|2dx +
∫

ρ|ut|2dx

= −
∫

ρu · ∇u · utdx −
∫

u · ∇μ(ρ)|D(u)|2dx −
∫

div(∇d � ∇d) · utdx

=
∫

(∇d � ∇d) : ∇utdx −
∫

ρu · ∇u · utdx −
∫

u · ∇μ(ρ)|D(u)|2dx

=
d

dt

∫

(∇d � ∇d) : ∇udx −
∫

(∇d � ∇d)t : ∇udx −
∫

ρu · ∇u · utdx

−
∫

u · ∇μ(ρ)|D(u)|2dx

� d

dt

∫

(∇d � ∇d) : ∇udx + I1 + I2 + I3.

(3.27)

Now, we are ready to estimate terms I1-I3. By Hölder’s inequality and the Gagliardo–Nirenberg inequality,
we get

I1 ≤C‖∇d‖L6‖∇dt‖L2‖∇u‖L3

≤C‖∇dt‖L2‖∇2d‖L2‖∇u‖ 1
2
L2‖∇u‖ 1

2
H1

≤1
4
‖∇dt‖2

L2 + C‖∇2d‖2
L2‖∇u‖L2‖∇u‖H1 .

(3.28)

By Hölder’s inequality, the Gagliardo–Nirenberg inequality and (3.5), we obtain

I2 =
∣
∣
∣
∣−

∫

ρu · ∇u · utdx

∣
∣
∣
∣

≤‖√ρ‖L∞‖√
ρut‖L2‖u‖L6‖∇u‖L3

≤C‖√ρut‖L2‖∇u‖L2‖∇u‖ 1
2
L2‖∇u‖ 1

2
H1

≤1
2
‖√

ρut‖2
L2 + C‖∇u‖3

L2‖∇u‖H1 .

(3.29)

By Sobolev’s inequality and (3.2), we have

I3 =
∣
∣
∣
∣

∫

u · ∇μ(ρ)|D(u)|2dx

∣
∣
∣
∣

≤C‖u‖
L

2q
q−2

‖∇μ(ρ)‖Lq‖∇u‖2
L4

≤C‖∇u‖L2‖∇u‖ 1
2
L2‖∇u‖ 3

2
L6

≤C‖∇u‖ 3
2
L2‖∇u‖ 3

2
H1 .

(3.30)

Substituting (3.28)-(3.30) into (3.27) leads to

d

dt

∫
[
μ(ρ)|D(u)|2 − (∇d � ∇d) : ∇u

]
dx +

1
2

∫

ρ|ut|2dx

≤1
4
‖∇dt‖2

L2 + C‖∇u‖3
L2‖∇u‖H1 + C‖∇u‖ 3

2
L2‖∇u‖ 3

2
H1 + C‖∇2d‖2

L2‖∇u‖L2‖∇u‖H1 .

(3.31)
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2. Multiplying (3.1)3 by Δdt and integrating the resulting equation over Ω, it follows from the Gagliardo–
Nirenberg inequality, Hölder’s inequality and (1.4) that

1
2

d

dt
‖Δd‖2

L2 + ‖∇dt‖2
L2 (3.32)

=
∫

∇(u · ∇d) : ∇dtdx −
∫

∇(|∇d|2d) : ∇dtdx

≤1
4

∫

|∇dt|2dx + C

∫

|∇u|2|∇d|2dx + C

∫

|u|2|∇2d|2dx

+ C

∫

|∇d|6dx + C

∫

|∇d|2|∇2d|2dx

≤1
4
‖∇dt‖2

L2 + C‖∇u‖2
L3‖∇d‖2

L6 + C‖u‖2
L6‖∇2d‖2

L3

+ C‖∇2d‖6
L2 + C‖∇2d‖2

L3‖∇d‖2
L6

≤1
4
‖∇dt‖2

L2 + C‖∇u‖L2‖∇2d‖2
L2‖∇u‖H1 + C‖∇u‖2

L2‖∇2d‖L2‖∇2d‖H1

+ C‖∇2d‖6
L2 + C‖∇2d‖3

L2‖∇2d‖H1 ,

which together with (3.31) gives rise to

d

dt
B(t) +

1
2
‖√

ρut‖2
L2 +

1
2
‖∇dt‖2

L2

≤C‖∇u‖3
L2‖∇u‖H1 + C‖∇u‖ 3

2
L2‖∇u‖ 3

2
H1 + C‖∇u‖L2‖∇2d‖2

L2‖∇u‖H1

+ C‖∇u‖2
L2‖∇2d‖L2‖∇2d‖H1 + C‖∇2d‖6

L2 + C‖∇2d‖3
L2‖∇2d‖H1 ,

(3.33)

where

B(t) �
∫

(μ(ρ)|D(u)|2 +
1
2
|Δd|2 − ∇d � ∇d : ∇u)dx. (3.34)

By Hölder’s inequality and Sobolev’s inequality, we have
∣
∣
∣
∣

∫

(∇d � ∇d) : ∇udx

∣
∣
∣
∣

≤‖∇u‖L2‖∇d‖L3‖∇d‖L6

≤C‖∇u‖L2‖∇d‖L3‖∇2d‖L2

≤μ

4
‖∇u‖2

L2 + C2‖∇d‖2
L3‖Δd‖2

L2

≤μ

4
‖∇u‖2

L2 + 2C2m
1
9
0 ‖Δd‖2

L2

(3.35)

for some positive constant C2 depending only on Ω and μ. Thus, we obtain that

μ

4
‖∇u‖2

L2 +
1
4
‖Δd‖2

L2 ≤ B(t) ≤ C‖∇u‖2
L2 + C‖Δd‖2

L2 , (3.36)

provided that

m0 ≤
(

1
8C2

)9

. (3.37)
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3. Recall that (u, P ) satisfies the following density-dependent Stokes system:
⎧
⎪⎨

⎪⎩

− div(2μ(ρ)D(u)) + ∇P = −ρut − ρu · ∇u − div(∇d � ∇d), x ∈ Ω,

divu = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω.

(3.38)

Applying Lemma 2.3 with F = −ρut − ρu · ∇u − div(∇d � ∇d), we obtain from (3.2), (3.5) and the
Gagliardo–Nirenberg inequality that

‖u‖H2 + ‖∇P‖H1

≤C(‖ρut‖L2 + ‖ρu · ∇u‖L2 + ‖div(∇d � ∇d)‖L2)(1 + ‖∇μ(ρ)‖
q

q−3
Lq )

≤C‖√ρut‖L2 + C‖u‖L6‖∇u‖L3 + C‖∇d‖L6‖∇2d‖L3

≤C‖√ρut‖L2 + C‖∇u‖L2‖∇u‖ 1
2
L2‖∇u‖ 1

2
H1 + C‖∇2d‖L2‖∇2d‖ 1

2
L2‖∇2d‖ 1

2
H1

≤C‖√ρut‖L2 + C‖∇u‖3
L2 +

1
2
‖∇u‖H1 + C‖∇2d‖ 3

2
L2‖∇2d‖ 1

2
H1 ,

(3.39)

which implies that

‖u‖H2 + ‖∇P‖H1 ≤ C‖√ρut‖L2 + C‖∇u‖3
L2 + C‖∇2d‖ 3

2
L2‖∇2d‖ 1

2
H1 . (3.40)

Taking ∇ operator to the equation (3.1)3, one has

∇dt − Δ∇d = −∇(u · ∇d) + ∇(|∇d|2d). (3.41)

It follows from L2 estimates of the elliptic system (3.41), it is easy to deduce from (3.1)3 that

‖∇2d‖H1 ≤C‖∇dt‖L2 + C‖∇(u · ∇d)‖L2 + C‖∇(|∇d|2d)‖L2 + C‖∇2d‖L2

≤C‖∇dt‖L2 + C‖u‖L6‖∇2d‖L3 + C‖∇u‖L2‖∇d‖L∞

+ C‖∇d‖3
L6 + C‖∇d‖L6‖∇2d‖L3 + C‖∇2d‖L2

≤C‖∇dt‖L2 + C‖∇u‖L2‖∇2d‖ 1
2
L2‖∇2d‖ 1

2
H1 + C‖∇u‖L2‖∇2d‖ 1

2
L2‖∇2d‖ 1

2
H1

+ C‖∇2d‖3
L2 + C‖∇2d‖L2‖∇2d‖ 1

2
L2‖∇2d‖ 1

2
H1 + C‖∇2d‖L2

≤C‖∇dt‖L2 + C‖∇u‖3
L2 + C‖∇2d‖3

L2 + C‖∇2d‖L2 +
1
2
‖∇2d‖H1 ,

(3.42)

which gives

‖∇2d‖H1 ≤ C‖∇dt‖L2 + C‖∇u‖3
L2 + C‖∇2d‖3

L2 + C‖∇2d‖L2 . (3.43)

This along with (3.40) leads to

‖u‖H2 + ‖∇P‖H1 ≤ C‖√ρut‖L2 + C‖∇dt‖L2 + C‖∇u‖3
L2 + C‖∇2d‖3

L2 + C‖∇2d‖2
L2 . (3.44)

Inserting (3.43) and (3.44) into (3.33), and applying Young’s inequality, we deduce that

B′(t) +
1
4
‖√

ρut‖2
L2 +

1
4
‖∇dt‖2

L2

≤C
(‖∇u‖4

L2 + ‖∇2d‖4
L2 + ‖∇u‖2

L2 + ‖∇2d‖2
L2

) (‖∇u‖2
L2 + ‖∇2d‖2

L2

)
.

(3.45)

Applying Gronwall’s inequality, (3.2), (3.6) and (3.36) leads to

sup
[0,T ]

(‖∇u‖2
L2 + ‖∇2d‖2

L2) +

T∫

0

(‖√
ρut‖2

L2 + ‖∇Δd‖2
L2)dt ≤ C. (3.46)
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For i = {1, 2, 3}, multiplying (3.45) by ti, we obtain from (3.46) and (3.36) that

d

dt
(tiB(t)) +

1
4
ti(‖√

ρut‖2
L2 + ‖∇Δd‖2

L2) (3.47)

≤ Cti(‖∇u‖2
L2 + ‖∇2d‖2

L2) + Cti−1(‖∇u‖2
L2 + ‖∇2d‖2

L2).

For σ as in Lemma 3.2, and any k ∈ N, we derive from (3.8) that

T∫

0

tk(‖∇u‖2
L2 + ‖∇2d‖2

L2)dt ≤ sup
[0,T ]

{tke−σt}
T∫

0

eσt(‖∇u‖2
L2 + ‖∇2d‖2

L2)dt ≤ Cm
2
3
0 . (3.48)

Integrating (3.47) over [0, T ] together with (3.48) leads to (3.22). Moreover, multiplying (3.45) by eσt, we
deduce from (3.46) and (3.36) that

d

dt
(eσtB(t)) + eσt(‖√

ρut‖2
L2 + ‖∇Δd‖2

L2) ≤ Ceσt(‖∇u‖2
L2 + ‖∇2d‖2

L2). (3.49)

Integrating the above inequality over [0, T ] together with (3.8) and (3.36) gives (3.23). Therefore, the
proof of lemma 3.3 is completed. �

Remark 3.1. Combining (3.43) and (3.44), we have

‖u‖H2 + ‖∇d‖H2 + ‖∇P‖H1 ≤ C‖√ρut‖L2 + C‖∇dt‖L2 + C‖∇u‖3
L2 + C‖∇2d‖3

L2 + C‖∇2d‖L2 .(3.50)

And it follows from (3.1)3, (3.21) and the Gagliardo–Nirenberg inequality that

‖dt‖L2 =‖ − u · ∇d + Δd + |∇d|2d‖L2

≤‖u‖L6‖∇d‖L3 + ‖∇2d‖L2 + ‖∇d‖2
L4

≤C‖∇u‖L2 + C‖∇2d‖L2 ,

(3.51)

which together with (3.21), (3.6) and (3.50) implies, for i = {1, 2}
T∫

0

ti
(‖u‖2

H2 + ‖∇d‖2
H2 + ‖√

ρut‖2
L2 + ‖dt‖2

H1

)
dt ≤ Cm

2
3
0 . (3.52)

Lemma 3.4. Under the conditions (3.2), (3.7) and (3.20), for i ∈ {1, 2}, it holds that

sup
[0,T ]

[ti(‖√
ρut‖2

L2 + ‖∇dt‖2
L2)] +

T∫

0

ti(‖∇ut‖2
L2 + ‖∇2dt‖2

L2)dt ≤ Cm
2
3
0 . (3.53)

Moreover, for σ as in Lemma 3.2 and ζ(t) � min{1, t}, one has that

sup
[ζ(T ),T ]

[
eσt(‖√

ρut‖2
L2 + ‖∇dt‖2

L2)
]
+

T∫

ζ(T )

eσt(‖∇ut‖2
L2 + ‖∇2dt‖2

L2)dt ≤ C. (3.54)

Proof. 1. Differentiating (3.1)2 with respect to time variable t gives

ρutt + ρu · ∇ut − div(2μ(ρ)D(u)t) + ∇Pt = −ρt(ut + u · ∇u)

− ρut · ∇u + div(2μ(ρ)tD(u)) − [div(∇d � ∇d)]t .
(3.55)
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Multiplying (3.55) by ut and integrating the resulting equality by parts over Ω, we deduce from (3.1)1
that

1
2

d

dt

∫

ρ|ut|2dx +
∫

2μ(ρ)D(u)t : ∇utdx

=
∫

div(ρu)|ut|2dx +
∫

div(ρu)(u · ∇u · ut)dx −
∫

ρut · ∇u · utdx

− 2
∫

μ(ρ)tD(u) : ∇utdx +
∫

(∇d � ∇d)t : ∇utdx

�
5∑

i=1

Ji.

(3.56)

By Hölder’s inequality, Sobolev’s inequality, the Gagliardo–Nirenberg inequality, (3.5), (3.21) and (3.24),
we obtain that

J1 ≤
∣
∣
∣
∣

∫

div(ρu)|ut|2dx

∣
∣
∣
∣

=
∣
∣
∣
∣2

∫

ρu · ∇ut · utdx

∣
∣
∣
∣

≤2‖ρ‖L∞‖u‖L6‖√
ρut‖L3‖∇ut‖L2

≤C‖∇u‖L2‖√
ρut‖

1
2
L2‖∇ut‖

3
2
L2

≤ μ

10
‖∇ut‖2

L2 + C‖√ρut‖2
L2 ,

J2 ≤
∣
∣
∣
∣

∫

div(ρu)(u · ∇u · ut)dx

∣
∣
∣
∣

≤
∫

ρ|u||∇u|2|ut|dx +
∫

ρ|u|2|∇2u||ut|dx

+
∫

ρ|u|2|∇u||∇ut|dx

≤‖ρ‖L∞‖u‖L6‖∇u‖L2‖∇u‖L6‖ut‖L6

+ ‖ρ‖L∞‖u‖2
L6‖∇2u‖L2‖ut‖L6

+ ‖ρ‖L∞‖u‖2
L6‖∇u‖L6‖∇ut‖L2

≤C‖∇u‖2
L2‖∇u‖H1‖∇ut‖L2

≤ μ

10
‖∇ut‖2

L2 + C‖∇u‖2
H1 ,

J3 ≤
∣
∣
∣
∣−

∫

ρut · ∇u · utdx

∣
∣
∣
∣

≤‖√ρut‖2
L4‖∇u‖L2

≤C‖√ρut‖
1
2
L2‖√

ρut‖
3
2
L6‖∇u‖L2

≤C‖√ρut‖
1
2
L2‖∇ut‖

3
2
L2‖∇u‖L2

≤ μ

10
‖∇ut‖2

L2 + C‖√ρut‖2
L2 ,
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J4 ≤
∣
∣
∣
∣−2

∫

μ(ρ)tD(u) : ∇utdx

∣
∣
∣
∣

=
∣
∣
∣
∣2

∫

u · ∇μ(ρ)D(u) : ∇utdx

∣
∣
∣
∣

≤C‖∇μ(ρ)‖Lq‖u‖L∞‖∇u‖
L

2q
q−2

‖∇ut‖L2

≤C‖∇u‖ 1
2
L2‖∇u‖ 3

2
H1‖∇ut‖L2

≤ μ

10
‖∇ut‖2

L2 + C‖∇u‖3
H1 ,

J5 ≤
∣
∣
∣
∣

∫

(∇d � ∇d)t : ∇utdx

∣
∣
∣
∣

≤C‖∇d‖L4‖∇dt‖L4‖∇ut‖L2

≤C‖∇dt‖
1
4
L2‖∇2dt‖

3
4
L2‖∇ut‖L2

≤ μ

10
‖∇ut‖2

L2 + C‖∇dt‖
1
2
L2‖∇2dt‖

3
2
L2

≤ μ

10
‖∇ut‖2

L2 + δ‖∇2dt‖2
L2 + C‖∇dt‖2

L2 .

Substituting the above estimates of J1-J5 into (3.56) and noting that

2
∫

μ(ρ)D(u)t : ∇utdx ≥ μ‖∇ut‖2
L2 , (3.57)

we obtain from (3.50), (3.21) and Young’s inequality that

d

dt
‖√

ρut‖2
L2 + μ‖∇ut‖2

L2

≤C(‖√ρut‖2
L2 + ‖∇dt‖2

L2 + ‖∇u‖2
L2 + ‖∇2d‖2

L2)

+ C‖√ρut‖4
L2 + C‖∇dt‖4

L2 + δ‖∇2dt‖2
L2 .

(3.58)

2. Differentiating (3.1)3 with respect to t, and multiplying the resulting equality by dt, we obtain from
integration by parts over Ω that

1
2

d

dt
‖dt‖2

L2 + ‖∇dt‖2
L2 ≤C

∫

|ut||∇d||dt|dx + C

∫

|∇dt||∇d||dt|dx

+ C

∫

|∇d|2|dt|2dx � M1 + M2 + M3.

(3.59)

By Hölder’s inequality, Sobolev’s inequality, the Gagliardo–Nirenberg inequality, (3.5) and (3.21), we
obtain that

M1 ≤C‖ut‖L4‖∇d‖L2‖dt‖L4

≤C‖∇ut‖L2‖∇d‖L2‖dt‖H1

≤μ

4
‖∇ut‖2

L2 + C‖dt‖2
H1 ,

M2 + M3 ≤C‖∇dt‖L2‖∇d‖L4‖dt‖L4 + C‖∇d‖2
L4‖dt‖2

L4

≤C‖∇dt‖L2‖∇2d‖L2‖dt‖H1 + C‖∇2d‖2
L2‖dt‖2

H1

≤C‖dt‖2
H1 .
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Hence,
1
2

d

dt
‖dt‖2

L2 + ‖∇dt‖2
L2 ≤ μ

4
‖∇ut‖2

L2 + C‖dt‖2
H1 . (3.60)

Differentiating (3.41) with respect to t gives

∇dtt − ∇Δdt = −∇(u · ∇d)t + ∇(|∇d|2d)t. (3.61)

Multiplying (3.61) by ∇dt, we obtain from integration by parts that
1
2

d

dt
‖∇dt‖2

L2 + ‖∇2dt‖2
L2 ≤C

∫

|∇ut||∇d||∇dt|dx + C

∫

|∇u||∇dt|2dx

+ C

∫

|ut||∇2d||∇dt|dx + C

∫

|∇d|2|dt||∇2dt|dx

+ C

∫

|∇d||∇dt||∇2dt|dx �
5∑

i=1

Ki.

(3.62)

By Hölder’s inequality, Sobolev’s inequality and the Gagliardo–Nirenberg inequality, we obtain from (3.5)
and (3.21) that

K1 ≤C‖∇ut‖L2‖∇dt‖L4‖∇d‖L4

≤C‖∇ut‖L2‖∇dt‖
1
4
L2‖∇2dt‖

3
4
L2

≤μ

4
‖∇ut‖2

L2 + ‖∇dt‖
1
4
L2‖∇2dt‖

3
2
L2

≤μ

2
‖∇ut‖2

L2 +
1
14

‖∇2dt‖2
L2 + C‖∇dt‖2

L2 .

K2 ≤C‖∇u‖L2‖∇dt‖2
L4

≤C‖∇dt‖
1
2
L2‖∇2dt‖

3
2
L2

≤ 1
14

‖∇2dt‖2
L2 + C‖∇dt‖2

L2 .

K3 ≤C‖ut‖L6‖Δd‖L2‖∇dt‖L3

≤C‖∇ut‖L2‖∇2dt‖
1
2
L2‖∇dt‖

1
2
L2

≤ μ

12
‖∇ut‖2

L2 + C‖∇2dt‖L2‖∇dt‖L2

≤ μ

12
‖∇ut‖2

L2 +
1
14

‖∇2dt‖2
L2 + C‖∇dt‖2

L2 .

K4 ≤C‖∇d‖2
L6‖dt‖L6‖∇2dt‖L2

≤C‖∇2d‖2
L2‖dt‖L6‖∇2dt‖L2

≤C‖dt‖H1‖∇2dt‖L2

≤ 1
14

‖∇2dt‖2
L2 + C‖dt‖2

H1 .

K5 ≤C‖∇d‖L4‖∇dt‖L4‖∇2dt‖L2

≤C‖∇dt‖
1
4
L2‖∇2dt‖

3
4
L2‖∇2dt‖L2

≤ 1
14

‖∇2dt‖2
L2 + C‖∇dt‖2

L2 .
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Substituting the above estimates of K1-K5 into (3.62), we arrive at

d

dt
‖∇dt‖2

L2 + ‖∇2dt‖2
L2 ≤ μ

4
‖∇ut‖2

L2 + C‖dt‖2
H1 . (3.63)

Adding the resulting inequality with (3.58) and (3.60), and choosing δ suitably small, we deduce that

d

dt
(‖√

ρut‖2
L2 + ‖dt‖2

H1) + ‖∇ut‖2
L2 + ‖∇dt‖2

H1

≤C(‖√ρut‖2
L2 + ‖dt‖2

H1 + ‖∇u‖2
L2 + ‖∇2d‖2

L2)

+ C(‖√ρut‖2
L2 + ‖dt‖2

H1)(‖√
ρut‖2

L2 + ‖dt‖2
H1).

(3.64)

Multiplying (3.64) by ti(i ∈ {1, 2, 3}) gives that

d

dt
ti(‖√

ρut‖2
L2 + ‖dt‖2

H1) + ti(‖∇ut‖2
L2 + ‖∇dt‖2

H1)

≤C(‖√ρut‖2
L2 + ‖dt‖2

H1)[ti(‖√
ρut‖2

L2 + ‖dt‖2
H1)]

+ Cti(‖√
ρut‖2

L2 + ‖dt‖2
H1 + ‖∇u‖2

L2 + ‖∇2d‖2
L2) + Cti−1(‖√

ρut‖2
L2 + ‖dt‖2

H1),

(3.65)

which together with Gronwall’s inequality, (3.48), (3.21), and (3.22) leads to (3.53). Furthermore, multi-
plying (3.64) by eσt gives that

d

dt
[eσt(‖√

ρut‖2
L2 + ‖dt‖2

H1)] + eσt(‖∇ut‖2
L2 + ‖∇dt‖2

H1)

≤C(‖√ρut‖2
L2 + ‖dt‖2

H1)[eσt(‖√
ρut‖2

L2 + ‖dt‖2
H1)]

+ eσt(‖√
ρut‖2

L2 + ‖dt‖2
H1 + ‖∇u‖2

L2 + ‖∇2d‖2
L2)

+ σeσt(‖√
ρut‖2

L2 + ‖dt‖2
H1),

(3.66)

which combined with Gronwall’s inequality (3.21), (3.8) and (3.23) implies (3.54). �

Lemma 3.5. Under the conditions (3.2), (3.7) and (3.20), there exists a positive constant C depending
only on Ω, q, ρ̄, μ, μ̄, ‖∇μ(ρ0)‖Lq , ‖∇u0‖L2 and ‖∇2d0‖L2 such that

T∫

0

‖∇u‖L∞dt ≤ C
(
m

1
3
0 + m

1
6
0

)
. (3.67)

Proof. For 3 < r < min {q, 6}, we deduce from Lemma 2.3, (3.2), (3.5), Hölder’s inequality, Sobolev’s
inequality and the Gagliardo–Nirenberg inequality that

‖∇u‖W 1,r + ‖P‖W 1,r

≤C‖ρut‖Lr + C‖ρu · ∇u‖Lr + C‖|∇d||∇2d|‖Lr

≤Cρ̄
1
2 ‖√

ρut‖
6−r
2r

L2 ‖√
ρut‖

3r−6
2r

L6 + C‖ρ‖
L

6r
6−r

‖u‖L∞‖∇u‖L6 + C‖∇d‖L∞‖∇2d‖L6

≤Cρ̄
5r−6
4r ‖√

ρut‖
6−r
2r

L2 ‖∇ut‖
3r−6
2r

L2 + C‖∇u‖ 1
2
L2‖∇u‖ 1

2
H1‖∇u‖H1 + C‖∇2d‖ 1

2
L2‖∇2d‖ 1

2
H1‖∇2d‖H1

≤C‖√ρut‖
6−r
2r

L2 ‖∇ut‖
3r−6
2r

L2 + C‖∇u‖ 1
2
L2‖∇u‖ 3

2
H1 + C‖∇2d‖ 1

2
L2‖∇2d‖ 3

2
H1 ,

(3.68)

which combined with Sobolev’s inequality gives that

‖∇u‖L∞ ≤C‖∇u‖W 1,r

≤C‖√ρut‖
6−r
2r

L2 ‖∇ut‖
3r−6
2r

L2 + C‖∇u‖ 1
2
L2‖∇u‖ 3

2
H1 + C‖∇2d‖ 1

2
L2‖∇2d‖ 3

2
H1 .

(3.69)
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If 0 < T ≤ 1, we derive from (3.53) and Hölder’s inequality that
T∫

0

‖√
ρut‖

6−r
2r

L2 ‖∇ut‖
3r−6
2r

L2 dt

≤
T∫

0

(
t ‖√

ρut‖2
L2

) 6−r
4r

(
t ‖∇ut‖2

L2

) 3r−6
4r

t−
1
2 dt

≤C sup
[0,T ]

(
t ‖√

ρut‖2
L2

) 6−r
4r

⎛

⎝

T∫

0

t ‖∇ut‖2
L2 dt

⎞

⎠

3r−6
4r

⎛

⎝

T∫

0

t−
1
2 · 4r

6+r dt

⎞

⎠

6+r
4r

≤Cm
1
3
0 .

(3.70)

If T > 1, due to 3 < r < min{6, q}, we deduce from (3.53) and Hölder’s inequality that
T∫

1

‖√
ρut‖

6−r
2r

L2 ‖∇ut‖
3r−6
2r

L2 dt

≤
T∫

1

(
t2 ‖√

ρut‖2
L2

) 6−r
4r

(
t2 ‖∇ut‖2

L2

) 3r−6
4r

t−1dt

≤C sup
[1,T ]

(
t2 ‖√

ρut‖2
L2

) 6−r
4r

⎛

⎝

T∫

1

t2 ‖∇ut‖2
L2 dt

⎞

⎠

3r−6
4r

⎛

⎝

T∫

1

t−
4r

6+r dt

⎞

⎠

6+r
4r

≤Cm
1
3
0 ,

(3.71)

which along with (3.70) yields that, for any T > 0,
T∫

0

‖√
ρut‖

6−r
2r

L2 ‖∇ut‖
3r−6
2r

L2 dt ≤ Cm
1
3
0 . (3.72)

It follows from (3.40), (3.2), (3.21) and (3.6) that

T∫

0

‖∇u‖ 1
2
L2‖∇u‖ 3

2
H1dt ≤

⎛

⎝

T∫

0

‖∇u‖2
L2dt

⎞

⎠

1
4

⎛

⎝

T∫

0

‖∇u‖2
H1dt

⎞

⎠

3
4

≤ Cm
1
6
0 , (3.73)

and

T∫

0

‖∇2d‖ 1
2
L2‖∇2d‖ 3

2
H1dt ≤

⎛

⎝

T∫

0

‖∇2d‖2
L2dt

⎞

⎠

1
4

⎛

⎝

T∫

0

‖∇2d‖2
H1dt

⎞

⎠

3
4

≤ Cm
1
6
0 . (3.74)

With the estimates (3.72)-(3.74), integrating (3.69) on [0, T ] gives
T∫

0

‖∇u‖L∞dt ≤ C(m
1
3
0 + m

1
6
0 ). (3.75)

This completes the proof of Lemma 3.5. �
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Proof of Proposition 3.1. Taking the spatial gradient operator ∇ on the transport equation (3.24) implies

(∇μ(ρ))t + u · ∇2μ(ρ) + ∇u · ∇μ(ρ) = 0. (3.76)

Multiplying (3.76) by q|∇μ(ρ)|q−2∇μ(ρ) and integrating the resulting equation over Ω give

d

dt
‖∇μ(ρ)‖Lq ≤ ‖∇u‖L∞‖∇μ(ρ)‖Lq , (3.77)

which combined with Gronwall’s inequality and (3.67) leads to

sup
[0,T ]

‖∇μ(ρ)‖Lq ≤ ‖∇μ(ρ0)‖Lq exp

⎧
⎨

⎩

T∫

0

‖∇u‖L∞dt

⎫
⎬

⎭

≤ ‖∇μ(ρ0)‖Lq exp
{

C3(m
1
3
0 + m

1
6
0 )

}
(3.78)

for some constant C3 depending only on Ω, q, ρ̄, μ, μ̄, ‖∇μ(ρ0)‖Lq , ‖∇u0‖L2 and ‖∇2d0‖L2 . This implies
that

sup
[0,T ]

‖∇μ(ρ)‖Lq ≤ 2‖∇μ(ρ0)‖Lq , (3.79)

provided m0 ≤ ε1 � min
{

1,
(

1
2C1

)9

,
(

1
8C2

)9

,
(

log 2
2C3

)6
}

.

Next, it follows from (3.6) and (3.21) that

T∫

0

(‖∇u‖4
L2 + ‖∇2d‖4

L2)dt ≤ sup
[0,T ]

(‖∇u‖2
L2 + ‖∇2d‖2

L2)

T∫

0

(‖∇u‖2
L2 + ‖∇2d‖2

L2)dt

≤ C4m
2
3
0

(3.80)

for some constant C4 depending only on Ω, q, ρ̄, μ, μ̄, ‖∇μ(ρ0)‖Lq , ‖∇u0‖L2 and ‖∇2d0‖L2 . This yields
that

T∫

0

(‖∇u‖4
L2 + ‖∇u‖4

L2

)
dt ≤ m

1
3
0 , (3.81)

provided m0 ≤ ε2 � min
{(

1
2C1

)9

,
(

1
8C2

)9

, ( 1
C4

)3
}

.

Finally, multiplying (3.41) by 4|∇d|2∇d and integrating by parts over Ω give rise to

d

dt
‖∇d‖4

L4 + 4‖|∇d||∇2d|‖2
L2 + 2‖∇|∇d|2‖2

L2

≤4
∫

|∇u||∇d|4dx + 4
∫

|∇d|6dx + 4
∫

|∇2d||∇d|4dx

≤C‖∇u‖L2‖|∇d|2‖2
L4 + C‖|∇d||∇d|2‖2

L2 + C‖∇2d‖L2‖|∇d|2‖2
L4

≤C‖∇u‖L2‖|∇d|2‖ 1
2
L2‖∇|∇d|2‖ 3

2
L2 + C‖∇d‖2

L6‖|∇d|2‖2
L3

+ C‖∇2d‖L2‖|∇d|2‖ 1
2
L2‖∇|∇d|2‖ 3

2
L2

≤‖∇|∇d|2‖2
L2 + C‖∇u‖4

L2‖∇d‖4
L4 + C‖∇2d‖4

L2‖|∇d|2‖2
L2

≤‖∇|∇d|2‖2
L2 + C(‖∇u‖4

L2 + ‖∇2d‖4
L2‖)‖∇d‖4

L4 ,

(3.82)
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which implies
d

dt
‖∇d‖4

L4 + ‖|∇d||∇2d|‖2
L2 + ‖∇|∇d|2‖2

L2 ≤ C(‖∇u‖4
L2 + ‖∇2d‖4

L2)‖∇d‖4
L4 . (3.83)

This along with Gronwall’s inequality and (3.2) yields that

sup
[0,T ]

‖∇d‖4
L4 +

T∫

0

‖|∇d||∇2d|‖2
L2dt ≤ ‖∇d0‖4

L4 exp

T∫

0

(‖∇u‖4
L2 + ‖∇2d‖4

L2)dt ≤ C. (3.84)

Subsequently, it follows from (3.6), (3.84) and Hölder’s inequality that

sup
[0,T ]

‖∇d‖3
L3 ≤ sup

[0,T ]

(‖∇d‖L2‖∇d‖2
L4

) ≤ C sup
[0,T ]

‖∇d‖L2 ≤ C5m
1
3
0 (3.85)

for some constant C5 depending only on Ω, q, ρ̄, μ, μ̄, ‖∇μ(ρ0)‖Lq , ‖∇u0‖L2 and ‖∇2d0‖L2 . This yields
that

sup
[0,T ]

‖∇d‖3
L3 ≤ m

1
6
0 (3.86)

provided m0 ≤ ε3 � min
{(

1
2C1

)9

,
(

1
8C2

)9

, ( 1
C5

)6
}

.

As a consequence, if

m0 ≤ ε0 � min{ε1, ε2, ε3} = min

{

1,

(
1

2C1

)9

,

(
1

8C2

)9

,

(
log 2
2C3

)6

,

(
1
C4

)3

,

(
1
C5

)6
}

,

we derive (3.2) from (3.79), (3.75) and (3.85). Therefore, the proof of Proposition 3.1 is complete. �

Lemma 3.6. Under the conditions (3.2) and (3.20), there exists a positive C depending only on
Ω, q, μ, μ, ρ̄, ‖∇u0‖L2 , ‖∇2d0‖L2 and ‖∇μ(ρ0)‖Lq such that

sup
[0,T ]

(‖∇ρ‖L2 + ‖ρt‖
L

3
2
) ≤ C. (3.87)

Proof. By an argument similar to the one used in (3.79), we obtain from (1.7) that

sup
[0,T ]

‖∇ρ‖L2 ≤ C. (3.88)

It follows from (3.1)1, Hölder’s inequality and Sobolev’s inequality that

‖ρt‖
L

3
2

= ‖u · ∇ρ‖
L

3
2

≤ ‖u‖L6‖∇ρ‖L2 ≤ C‖∇u‖L2‖∇ρ‖L2 , (3.89)

which together with (3.89) and (3.21) yields that

sup
[0,T ]

‖ρt‖
L

3
2

≤ C. (3.90)

This completes the proof of Lemma 3.6. �

Lemma 3.7. Under the conditions (3.2),(3.7) and (3.20), there exists a positive constant C depending on
Ω, q, μ, μ, ρ̄, ‖∇u0‖L2 , ‖∇2d0‖L2 and ‖∇μ(ρ0)‖Lq such that for r ∈ (3,min{q, 6}),

sup
[0,T ]

[t(‖u‖2
H2 + ‖∇d‖2

H2)] +

T∫

0

t(‖u‖2
W 2,r + ‖∇P‖2

Lr + ‖∇d‖2
H3)dt ≤ C. (3.91)

Furthermore, for σ as in Lemma 3.2 and ζ(t) as in Lemma 3.4, one has that

sup
[ζ(T ),T ]

[eσt(‖u‖2
H2 + ‖∇P‖2

L2 + ‖∇d‖2
H2)] ≤ C. (3.92)
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Proof. We obtain from (3.50) and (3.21) that

‖u‖2
H2 + ‖∇d‖2

H2 ≤ C(‖√ρut‖2
L2 + ‖∇dt‖2

L2 + ‖∇u‖2
L2 + ‖∇2d‖2

L2), (3.93)

which together with (3.22) and (3.53) implies

sup
[0,T ]

[t(‖u‖2
H2 + ‖∇d‖2

H2)] ≤ C. (3.94)

And it follows from (3.93), (3.53) and (3.23) that

sup
[0,T ]

[eσt(‖u‖2
H2 + ‖∇d‖2

H2)] ≤ C. (3.95)

For 3 < r < min {q, 6}, we get from (3.68) and (3.93) that

‖u‖2
W 2,r + ‖∇P‖2

Lr

≤C(‖√ρut‖2
Lr + ‖ρu · ∇u‖2

Lr + ‖|∇d||∇2d|‖2
Lr )

≤C‖√ρut‖
6−r

r

L2 ‖∇ut‖
3r−6

r

L2 + C‖∇u‖L2‖∇u‖3
H1 + C‖∇2d‖L2‖∇2d‖3

H1

≤C‖√ρut‖2
L2 + C‖∇ut‖2

L2 + C(‖√ρut‖2
L2 + ‖∇dt‖2

L2 + ‖∇u‖2
L2 + ‖∇2d‖2

L2)2,

(3.96)

which combined with (3.6), (3.21), (3.22) and (3.53) leads to
T∫

0

t(‖u‖2
W 2,r + ‖∇P‖2

Lr )dt ≤ C. (3.97)

Finally, it follows from L2-theory of elliptic equations, (3.21) and Sobolev’s inequality that

‖∇d‖2
H3 ≤C‖∇dt‖2

H1 + C‖∇(u · ∇d)‖2
H1 + C‖∇(|∇d|2d)‖2

H1 + C‖∇d‖2
H2

≤C‖∇dt‖2
L2 + C‖∇2dt‖2

L2 + C‖u · ∇2d‖2
L2 + C‖∇u · ∇d‖2

L2

+ C‖u · ∇3d‖2
L2 + C‖∇u · ∇2d‖2

L2 + C‖∇2u · ∇d‖2
L2 + C‖∇d · ∇2d‖2

L2

+ C‖|∇d|3‖2
L2 + C‖∇d · ∇3d‖3

L2 + C‖|∇d|2|∇2d|‖2
L2 + C‖∇2d‖2

H1

≤C‖∇dt‖2
L2 + C‖∇2dt‖2

L2 + C‖∇u‖2
L3‖∇2d‖2

L6 + C‖∇2d‖2
H1

+ C(‖u‖2
L∞ + ‖∇d‖2

L∞)(‖u‖2
H2 + ‖∇d‖2

H2)

≤C‖∇dt‖2
L2 + C‖∇2dt‖2

L2 + C‖∇2d‖2
H1 + C‖u‖4

H2 + ‖∇d‖4
H2 ,

(3.98)

which along with (3.22), (3.53), (3.48), (3.94) and (3.52) implies that
T∫

0

t‖∇d‖2
H3dt ≤ C. (3.99)

Therefore, the proof of Lemma 3.7 is complete. �

4. proof of Theorem 1.1

With all the a priori estimates obtained in Sect. 2 at hand, we are now in a position to give a proof of
Theorem 1.1.

Proof of Theorem 1.1. First, by Lemma 2.1, there exists a T∗ > 0 such that the initial and boundary
value problem (1.1)-(1.4) admits a unique local strong solution (ρ,u,d, P ) on Ω × (0, T∗]. It follows from
(1.7) that there exists a T1 ∈ (0, T∗] such that (3.2) holds for T = T1.
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Next, set

T ∗
1 � sup{T > 0|(ρ,u,d, P ) is a strong solution on Ω × (0, T ] and (3.2) holds}, (4.1)

and

T ∗ � sup{T > 0|(ρ,u,d, P ) is a strong solution on Ω × (0, T ]}. (4.2)

Then T ∗
1 ≥ T1 > 0. In particular, Proposition 3.1 together with continuity argument implies that (3.2)

in fact holds on (0, T ∗). Thus,

T ∗
1 = T ∗, (4.3)

provided that m0 < ε0 as assumed.
Moreover, for any 0 < τ < T ≤ T ∗ with T finite, one deduces from standard embedding that

∇d ∈ L∞(τ, T ;H2) ∩ H1(τ, T ;H2) ↪→ C([τ, T ];H2). (4.4)

Combining (3.53) and (3.91) gives for any 0 < τ < T ≤ T ∗,

∇u, P ∈ C([τ, T ];L2) ∩ C(Ω × [τ, T ]), (4.5)

where one has used the standard embedding

L∞(τ, T ;H1 ∩ W 1,r) ∩ H1(τ, T ;L2) ↪→ C([τ, T ];L2) ∩ C(Ω × [τ, T ]).

Moreover, it follows from (3.2), (3.5), (3.87) and [17, Lemma 2.3] that

ρ ∈ C([0, T ];H1), ∇μ(ρ) ∈ C([0, T ];Lq). (4.6)

Thanks to (3.23) and (3.91), the standard arguments yield that

ρut ∈ H1(τ, T ;L2) ↪→ C([τ, T ];L2), (4.7)

which together with (4.5) and (4.6) gives

ρut + ρu · ∇u + div(∇d � ∇d) ∈ C([τ, T ];L2). (4.8)

Since (ρ,u) satisfies (3.38) with F = −ρut −ρu ·∇u−div(∇d�∇d), we deduce from (3.1)2, (4.5), (4.6),
(4.8) and (3.91) that

∇u, P ∈ C([τ, T ];H1 ∩ W 1,r). (4.9)

Now, we claim that

T ∗ = ∞. (4.10)

Otherwise, T ∗ < ∞. Proposition 3.1 implies that (3.3) holds at T = T ∗. It follows from (3.87), (3.79)
and (3.21) that

(ρ∗,u∗,d∗)(x) � (ρ,u,d)(x, T ∗) = lim
t→T ∗

(ρ,u,d)(x, t)

satisfies

ρ∗ ∈ H1, ∇μ(ρ∗) ∈ Lq, u∗,∇d∗ ∈ H1
0 .

Therefore, one can take (ρ∗,u∗,d∗) as the initial data and apply Lemma 2.1 again to extend the local
strong solution beyond T ∗. This contradicts the assumption of T ∗ in (4.2). Hence, T ∗ = ∞. We thus
complete the proof of Theorem 1.1 since exponential decay of solution (1.11) follows directly from (3.92)
and (3.54).
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