
Z. Angew. Math. Phys.          (2024) 75:181 
c© 2024 The Author(s), under exclusive licence to Springer Nature
Switzerland AG
https://doi.org/10.1007/s00033-024-02320-w

Zeitschrift für angewandte
Mathematik und Physik ZAMP

Boundedness and finite-time blow-up in a Keller–Segel chemotaxis-growth system with
flux limitation

Chunmei Chen and Pan Zheng

Abstract. This paper deals with a parabolic–elliptic Keller–Segel chemotaxis-growth system with flux limitation{
ut = ∇ · ((u + 1)m−1∇u) − ∇ · (uf(|∇v|2)∇v) + λu − μuk, x ∈ Ω, t > 0,

0 = Δv − M(t) + u, x ∈ Ω, t > 0,

under homogeneous Neumann boundary conditions, where Ω ⊂ R
N is a smoothly bounded domain, m ∈ R, λ > 0, μ > 0,

k > 1, M(t) := 1
|Ω|
∫
Ω

u(x, t)dx, f
(|∇v|2) = (1 + |∇v|2)−α, α ∈ R. In this framework, it is shown that when N ≥ 2, m + k >

2, k > 1, k ≥ m and

α >
4N − (m + k)N − 2

4(N − 1)
,

then for all nonnegative initial data, the solution is global and bounded in time. Moreover, when Ω ⊂ R
N (N ≥ 5) is a ball,

if 1 < m < min
{

2N−4
N

, 1 − 1
N

+ 1
N

√
N2 − 4N + 1

}
and the parameters α and k satisfy suitable conditions, there exist

some initial data u0 such that the solution u(x, t) blows up at finite time Tmax in L∞-norm sense.
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1. Introduction

In this paper, we consider the following Keller–Segel chemotaxis-growth system with flux limitation and
nonlinear diffusion⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · ((u + 1)m−1∇u) − ∇ · (uf
(|∇v|2)∇v

)
+ λu − μuk, x ∈ Ω, t > 0,

0 = Δv − M(t) + u, x ∈ Ω, t > 0,∫
Ω

v(x, t)dx = 0, x ∈ Ω, t > 0,

∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω ⊂ R
N (N ≥ 2) is a smoothly bounded domain, m ∈ R, λ > 0, μ > 0, k > 1, M(t) :=

1
|Ω|
∫
Ω

u(x, t)dx and

f
(|∇v|2) = (1 + |∇v|2)−α (1.2)

with α ∈ R. System (1.1) can be an extension of the classical Keller–Segel model in [16–18] for chemotaxis
processes. Next, let’s introduce some research progress about (1.1) as follows.
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• Without the flux limitation (i.e., α = 0):
When λ = μ = 0,m = 1, it was showed in [13,25,26] that the corresponding initial-boundary value
problems in the spatially two-dimensional setting indeed possess some solutions, which blow up in
finite time provided that the initial mass is large enough and concentrated around some point to a
suitable extent, whereas if the initial mass is small then solutions remain bounded in time. When
m �= 1, the scholars have obtained some interesting results addressing blow-up in [3,6,7]. Besides,
when the second equation in (1.1) is replaced by vt = Δv − v + u, please see the references in
[11,28,41].
On the other hand, for the case of λ, μ �= 0 and m = 1, under the assumptions N ≥ 5 and
1 < k < 3

2 + 1
2(N−1) in (1.1), Winkler [42] proved that radially symmetric solutions may blow up

in finite time. Later, when M(t) is replaced by the function v(x, t) in the second equation, Winkler
[45] proved finite-time blow-up of solutions in low-dimensional environments, especially in three
dimensions, under the weaker condition of 1 < k < 7

6 if N ∈ {3, 4} or 1 < k < 1 + 1
2(N−1) if N ≥ 5.

When the logistic source term is replaced by μu(1−∫
Ω

ukdx), Du and Liu [8] proved that the solution

of this system blows up in finite time under the assumption 0 < k < min
{
2, N

2

}
. When m �= 1,

other types of logistic source term have also been studied by many authors [19,38,49]. When the
second equation is replaced by vt = Δv − v + u, more relevant results can refer to [37,43,51].

• With the flux limitation (i.e., α �= 0):
For the cases of λ = μ = 0,m = 1, f(|∇v|2) = χ|∇v|p−1 with χ > 0 and

p ∈
{

(1,∞), if N = 1,(
1, N

N−1

)
, if N ≥ 2,

(1.3)

Negreanu and Tello [27] obtained the uniform bounds in L∞(Ω) of global solutions and proved that
in the one-dimensional case there exist infinitely many non-constant steady-states for p ∈ (1, 2) for
a given positive mass. In particular, Winkler [39] proved that a global bounded classical solution
exists if α > N−2

2(N−1) , whereas finite-time blow-up occurs if α < N−2
2(N−1) . Marras et.al. [22] proved that

the solution blows up in finite time under the smallness conditions on α and k, and a lower bound
of blow-up time is derived. In addition, they proved that the solution is global and bounded in time
under the largeness conditions on α and k. Moreover, if f(|∇v|2) = χ 1√

1+|∇v|2 and ∇·((u+1)m−1∇u)

is replaced by ∇·
(

u∇u√
u2+|∇u|2

)
, Bellomo and Winkler [1] asserted the existence of a unique classical

solution for arbitrary positive radial initial data u0 ∈ C3(Ω̄) when either N ≥ 2 and χ > 0 or
N = 1, χ > 0 and

∫
Ω

u0dx < mc, where

mc :=

{
1√

χ2−1
, if χ > 1,

∞, if χ ≤ 1.
(1.4)

In [2], Bellomo and Winkler showed that these above conditions are essentially optimal, if χ > 1,
then for any choice of ∫

Ω

u0dx >

{
1√

χ2−1
, if N = 1,

0, if N ≥ 2,
(1.5)

there exist positive initial data u0 ∈ C3(Ω̄) such that the system possesses a uniquely determined
classical solution that blows up in finite time. If f(|∇v|2) = χ uq−1√

1+|∇v|2 and ∇ · ((u + 1)m−1∇u)

is replaced by ∇ ·
(

up∇u√
u2+|∇u|2

)
, Mizukami et.al. [24] derived the local existence and extensibility
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criterion ruling out gradient blow-up when p, q ≥ 1, and moreover showed global existence and
boundedness of solutions when p > q + 1 − 1

N under no-flux boundary conditions, for a radially
symmetric and positive initial data u0 ∈ C3(Ω̄), χ > 0. Chiyoda et.al. [5] gave the existence of
blow-up solutions under some condition for χ and u0 when 1 ≤ p ≤ q. Recently, when m �= 1,
Zhao and Yi [50] showed that the system has a unique global bounded classical solution under the
conditions that α > 2N−2−mN

2(N−1) and m ≥ 1. Moreover, for other types of flux limitation, please read
the references in [4,10,14,23,33,47].

In addition, for the case of λ, μ �= 0,m = 1, the flux limitation term is replaced by f(|∇v|2) = |∇v|p−2

and the logistic source term is replaced by μu(1 − u), Satre-Gomez and Tello [31] studied the global
existence of solutions under the following assumptions{

p < 2, N = 2,

p ∈ (1, 3
2

)
, N ≥ 3,

(1.6)

and u0 ∈ C2+γ(Ω), γ ∈ (0, 1). When f(|∇v|2) = (1 + |∇v|2)− α
2 in system (1.1), Zhang [48] showed that

the corresponding initial value problem possesses a global bounded classical solution for any α, μ > 0 and
N ≤ 2; if k = 2 and α = N−2

2N , there exists μ0 > 0 such that for any μ ≥ μ0, a global bounded classical
solution exists in the case N ≥ 3. Furthermore, there are many similar models with flux limitation,
which has been studied in previous works, such as chemotaxis-fluid models (see [30,44,46]), chemotaxis-
haptotaxis models (see [15,34–36]), etc.

Inspired by the works in [22,39,50], we extend their approaches to study the global boundedness
and finite-time blow-up of solutions in system (1.1). The present work is addressed to concern with the
interplay of the nonlinear diffusivity (u+1)m−1, flux limitation f(|∇v|2) = (1+ |∇v|2)−α and generalized
logistic source λu − μuk in (1.1). Our main results of this paper are as follows. Firstly, we consider the
global existence and boundedness of solutions for system (1.1).

Theorem 1.1. Let Ω ⊂ R
N , N ≥ 2 be a bounded domain with smooth boundary. Assume that m ∈ R,m +

k > 2, k > 1, k ≥ m,λ, μ > 0 and f satisfies (1.2) with

α >
4N − (m + k)N − 2

4(N − 1)
, (1.7)

then for all nonnegative initial data u0 ∈ C0(Ω̄), the system (1.1) possesses a unique global bounded
classical solution (u, v) in Ω × (0,∞).

Remark 1.1. In contrast to [50], under the influence of a source term, the range of m can be expanded,
which means that the logistic source plays an important role in (1.1).

The second purpose of this paper is to study finite-time blow-up of radially symmetric solutions of
(1.1) under some suitable conditions, when Ω = BR(0) ⊂ R

N is a ball, which is centered at the origin
with radius R > 0.

Theorem 1.2. Let Ω = BR(0) ⊂ R
N , N ≥ 5 be a ball. Suppose that λ, μ > 0, 1 < m < min{

2N−4
N , 1 − 1

N + 1
N

√
N2 − 4N + 1

}
, f satisfies (1.2) with

2N − 4 − mN

(2N − 2)m
< α <

2N − 2 − mN

2N − 2
(1.8)

and

k ∈ (1,min {2, k1, k2}) , (1.9)

where

k1 =

(
(2− 2

N )(α−αm+1)−m
2
N +(2− 2

N )α

)2

− (2 − 2
N

)
α

(2− 2
N )(α−αm+1)−m
2
N +(2− 2

N )α(
2 − 2

N

)
α + 1

+ 1 (1.10)
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and

k2 =

(
(2− 2

N )α(1− 1
m )+2+( 2

N −1) 1
m

(2− 2
N )α− 2

mN

)2

− (2 − 2
N

)
α

(2− 2
N )α(1− 1

m )+2+( 2
N −1) 1

m

(2− 2
N )α− 2

mN(
2 − 2

N

)
α + 1

+ 1. (1.11)

Then for all m0 > 0, there exist positive radially symmetric nonincreasing initial data

u0 ∈ C2(Ω̄) with
∂u0

∂ν
= 0 on ∂Ω (1.12)

fulfilling 1
|Ω|
∫
Ω

u0dx = m0, such that (1.1) possesses a unique classical solution (u, v) in Ω× (0, Tmax) with

some Tmax ∈ (0,∞), which satisfies

lim
t↗Tmax

sup ‖u(·, t)‖L∞(Ω) = ∞. (1.13)

Remark 1.2. If N ≥ 5, 1 < m < min
{

2N−4
N , 1 − 1

N + 1
N

√
N2 − 4N + 1

}
and α fulfills (1.8), it is easy to

see that k1, k2 > 1, which implies that (1.9) makes sense. Moreover, it follows from Theorem 1.2 that the
logistic source cannot completely suppress the occurrence of finite-time blow-up of solutions in (1.1).

Remark 1.3. For the particular cases of m = 1 and α = 0, Theorem 1.2 can extend the previous results
in [42] into more complex situations.

2. Preliminaries

In this section, we present some preliminary lemmas, which shall be used in the proof of our main results.
The first lemma concerns with the local-in-time existence of classical solution to system (1.1).

Lemma 2.1. Let N ≥ 1 and Ω ⊂ R
N be a bounded domain with smooth boundary. Assume that the

function f satisfies (1.2) and u0 ∈ C0(Ω̄) is a nonnegative initial function. Then there exist Tmax ∈ (0,∞]
and a unique pair

(u, v) ∈ ((C0(Ω̄ × [0, Tmax)) ∩ C2,1(Ω̄ × (0, Tmax))
)2

,

which solves (1.1) in the classical sense in Ω × (0, Tmax). Moreover, if Tmax < +∞, then

lim
t↗Tmax

sup ||u(·, t)||L∞(Ω) = ∞.

Proof. The local existence of classical solution of system (1.1) is established by a fixed point theorem
in the context of Keller–Segel-type chemotaxis systems. We refer the readers to [7,12,42] for detailed
reasonings in closely related situations. �

The next result is the standard Gagliardo–Nirenberg inequality, referring to [38] for the details.

Lemma 2.2. Let Ω ⊂ R
N be a smoothly bounded domain. Assume that l ∈ (0, p) and Φ ∈ W 1,2(Ω)∩Ll(Ω),

then there exists a positive constant CGN (Ω, p, l) such that

||Φ||Lp(Ω) ≤ CGN (||∇Φ||rL2(Ω)||Φ||1−r
Ll(Ω)

+ ||Φ||Ll(Ω)), (2.1)

where r ∈ (0, 1) fulfills

1
p

= r

(
1
2

− 1
N

)
+ (1 − r)

1
l
,

namely

r =
1
l − 1

p
1
l + 1

N − 1
2

.
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Lemma 2.3. (See Lemma 2.3 of [22]). Let Ω ⊂ R
N , N ≥ 1 be a bounded and smooth domain, and λ > 0,

μ > 0, k > 1. Then for a solution (u, v) of (1.1), we have∫
Ω

u dx ≤ m̄ for all t ∈ (0, Tmax), (2.2)

where

m̄ = max

⎧⎨
⎩
∫
Ω

u0 dx,

(
λ

μ
|Ω|k−1

) 1
k−1

⎫⎬
⎭ . (2.3)

Lemma 2.4. (See Lemma 2.4 of [42]). Let θ > 0, δ > 0, γ > 0 and suppose that for some T > 0,
y ∈ C0([0, T ]) is a nonnegative function satisfying

y(t) ≥ θ + δ

t∫
0

y1+γ(τ)dτ ∀t ∈ (0, T ).

Then T ≤ 1
γδθγ .

3. Boundedness

This section mainly discusses the boundedness of solutions for (1.1) through the following estimates.

Lemma 3.1. Assume that the conditions of Theorem 1.1 hold, then for all p > 1, there exists a positive
constant C > 0 such that

||u(·, t)||Lp(Ω) ≤ C for all t ∈ (0, Tmax).

Proof. Letting

p > max
{

1, 1 − k +
(m + k − 2)N

(2 − 4α)(N − 1)
, 2 − 2

N
− m, p1, p2

}
, (3.1)

where p1 = (N−m−k)(2−4α)−(m+k−2)N+
√

[(N−m+k−2)(2−4α)−(m+k−2)N ]2−2(2−4α)(m+k−2)N(2m−2k)

2(2−4α) and p2 =
(2−4α)(k−1)(N−1)−(m+ 2

N −1)(m+k−2)N

(m+k−2)N−(2−4α)(N−1) , multiplying the first equation in (1.1) by up−1, integrating by parts
and using Young’s inequality, we get

1
p

d
dt

∫
Ω

up =
∫
Ω

up−1∇ · ((u + 1)m−1∇u
)−
∫
Ω

up−1∇ ·
(

u∇v

(1 + |∇v|2)α

)

+ λ

∫
Ω

up − μ

∫
Ω

up+k−1

= −(p − 1)
∫
Ω

up−2(u + 1)m−1|∇u|2 + (p − 1)
∫
Ω

up−1 ∇u · ∇v

(1 + |∇v|2)α

+ λ

∫
Ω

up − μ

∫
Ω

up+k−1

≤ −p − 1
2

∫
Ω

up+m−3|∇u|2 +
p − 1

2

∫
Ω

up+1−m|∇v|2−4α − μ

2

∫
Ω

up+k−1 + c1

(3.2)
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for all t ∈ (0, Tmax), where c1 > 0. For the case α < 1
2 , using Young’s inequality with m+k > 2, we have

p − 1
2

∫
Ω

up+1−m|∇v|2−4α ≤ c2

∫
Ω

|∇v|(2−4α) p+k−1
m+k−2 +

μ

4

∫
Ω

up+k−1, (3.3)

for all t ∈ (0, Tmax), where c2 > 0. Combining (3.2) with (3.3) and applying Young’s inequality, we obtain

1
p

d
dt

∫
Ω

up +
∫
Ω

up ≤ − 2(p − 1)
(p + m − 1)2

∫
Ω

∣∣∣∇u
p+m−1

2

∣∣∣2 + c2

∫
Ω

|∇v|(2−4α) p+k−1
m+k−2 + c3, (3.4)

for all t ∈ (0, Tmax), where c3 > 0. Then applying the standard Sobolev inequality and using the second
equation of (1.1), one can find c4 = c4(p, k,m, α,Ω) fulfilling∫

Ω

|∇v|(2−4α) p+k−1
m+k−2 = ||∇v||(2−4α) p+k−1

m+k−2

L
(2−4α) p+k−1

m+k−2 (Ω)

≤ c4||u||(2−4α) p+k−1
m+k−2

L
(2−4α)(p+k−1)N

(2−4α)(p+k−1)+(m+k−2)N (Ω)

= c4

∥∥∥u p+m−1
2

∥∥∥ 2
p+m−1 (2−4α) p+k−1

m+k−2

L
2

p+m−1
(2−4α)(p+k−1)N

(2−4α)(p+k−1)+(m+k−2)N (Ω)
.

Making use of the Gagliardo–Nirenberg inequality, there exists a positive constant c5 such that∥∥∥u p+m−1
2

∥∥∥ 2
p+m−1 (2−4α) p+k−1

m+k−2

L
2

p+m−1
(2−4α)(p+k−1)N

(2−4α)(p+k−1)+(m+k−2)N (Ω)
≤ c5

(∥∥∥∇u
p+m−1

2

∥∥∥a1

L2(Ω)

∥∥∥u p+m−1
2

∥∥∥1−a1

L
2

p+m−1 (Ω)

+
∥∥∥u p+m−1

2

∥∥∥
L

2
p+m−1 (Ω)

) 2
p+m−1 (2−4α) p+k−1

m+k−2

≤ c5

(
m̄

(1−a1)(p+m−1)
2

∥∥∥∇u
p+m−1

2

∣∣∣a1

L2(Ω)
+

m̄
p+m−1

2

) 2
p+m−1 (2−4α) p+k−1

m+k−2
,

(3.5)

where m̄ is given in (2.3) and

a1 =
p+m−1

2 − (2−4α)(p+k−1)+(m+k−2)
(2−4α)(p+k−1)N

p+m−1
2 + 1

N − 1
2

∈ (0, 1),

by selecting

p > max
{

1, 1 − k +
(m + k − 2)N

(2 − 4α)(N − 1)
, 2 − 2

N
− m, p1

}
,

where p1 is given in (3.1), α < 1
2 and k ≥ m. Next combining (3.4) and (3.5), there exists a positive

constant c6 such that
1
p

d
dt

||u||pLp(Ω) + ||u||pLp(Ω) ≤ − 2(p − 1)
(p + m − 1)2

∥∥∥∇u
p+m−1

2

∥∥∥2

L2(Ω)

+ c6

(
m̄

(1−a1)(p+m−1)
2

∥∥∥∇u
p+m−1

2

∥∥∥a1

L2(Ω)
+ m̄

p+m−1
2

) 2
p+m−1 (2−4α) p+k−1

m+k−2

+ c5,

for all t ∈ (0, Tmax). When m + k − 2 > 0, k > 1, k ≥ m and 4N−(m+k)N−2
4(N−1) < α < 1

2 , we conclude

a1(2 − 4α)
2

p + m − 1
p + k − 1
m + k − 2

=
(2 − 4α) p+k−1

m+k−2 − (2−4α)(p+k−1)
(m+k−2)N − 1

p+m−1
2 + 1

N − 1
2

< 2,
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where p satisfies (3.1). In view of Young’s inequality, there exists a positive constant c7 such that

1
p

d
dt

∫
Ω

up +
∫
Ω

up ≤ c7.

For the case α ≥ 1
2 , using (3.2) and applying Young’s inequality with m + k > 2, we obtain

1
p

d
dt

∫
Ω

up ≤ − 2(p − 1)
(p + m − 1)2

∫
Ω

∣∣∣∇u
p+m−1

2

∣∣∣2 +
p − 1

2

∫
Ω

up+1−m − μ

2

∫
Ω

up+k−1 + c1

≤ − 2(p − 1)
(p + m − 1)2

∫
Ω

∣∣∣∇u
p+m−1

2

∣∣∣2 − μ

4

∫
Ω

up+k−1 + c8,

(3.6)

where c8 > 0. Adding
∫
Ω

up to both sides of (3.6), applying Young’s inequality and neglecting the negative

term − 2(p−1)
(p+m−1)2

∫
Ω

|∇u
p+m−1

2 |2, there exists c9 > 0 such that

1
p

d
dt

∫
Ω

up +
∫
Ω

up ≤ c9. (3.7)

In light of Young’s inequality and the ODE comparison, there is a positive constant c10 such that∫
Ω

up ≤ c10.

The proof of Lemma 3.1 is completed. �

Proof of Theorem 1.1. In view of Lemma 3.1 and the elliptic regularity theory applied to the second
equation in system (1.1), there exists c11 > 0 such that

sup
0<t<Tmax

||v(·, t)||W 2,p(Ω) ≤ c11 for all p > 1.

It follows from the Sobolev embedding theorem that

sup
0<t<Tmax

||∇v(·, t)||L∞(Ω) ≤ c12,

where c12 > 0. Following the steps in the proof of Lemma A.1 in [32], there exists a positive constant c13

independent of t such that

||u(·, t)||L∞(Ω) ≤ c13 for all t ∈ (0, Tmax),

which along with Lemma 2.1 shows that Tmax = ∞. The proof of Theorem 1.1 is completed. �

4. Blow-up in L∞-norm

In this section, the aim is to prove Theorem 1.2. To this end, we show that the radially symmetric solutions
blow up in finite time under some suitable conditions. Assume that Ω = BR(0) ⊂ R

N is a ball with R > 0,
u0 satisfies (1.12) and is radially symmetric with respect to x = 0. If (u, v) is the corresponding radial
solution in Ω× (0, Tmax) asserted by Lemma 2.1, we write u = u(r, t) and v = v(r, t) with r = |x| ∈ [0, R].
Following [13], we introduce the mass accumulation function

w(s, t) :=

s
1
N∫
0

ρN−1u(ρ, t)dρ, s = rN ∈ [0, RN
]
, t ∈ [0, Tmax) , (4.1)
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then

ws(s, t) =
1
N

u
(
s

1
N , t
)

≥ 0, wss(s, t) =
1

N2
s

1
N −1ur

(
s

1
N , t
)

.

From the second equation in (1.1), we deduce

1
rN−1

(
rN−1vr(r, t)

)
r

= M(t) − u

and

rN−1vr(r, t) = M(t)

r∫
0

ρN−1dρ −
r∫
0

ρN−1u(ρ, t)dρ =
M(t)rN

N
−

r∫
0

ρN−1u(ρ, t)dρ. (4.2)

Using (1.1), we obtain

wt(s, t) =

s
1
N∫
0

ρN−1ut(ρ, t)dρ

=

s
1
N∫
0

(
ρN−1(u + 1)m−1ur

)
r
(ρ, t)dρ −

s
1
N∫
0

(
ρN−1u(ρ, t)vrf

(
v2

r

))
r
dρ

+ λ

s
1
N∫
0

ρN−1u(ρ, t)dρ − μ

s
1
N∫
0

ρN−1uk(ρ, t)dρ

= s1− 1
N (u + 1)m−1ur

(
s

1
N , t
)

− s1− 1
N uvrf

(
v2

r

(
s

1
N , t
))

+ λ

s
1
N∫
0

ρN−1u(ρ, t)dρ − μ

s
1
N∫
0

uk(ρ, t)dρ

= N2s2− 2
N wss(Nws + 1)m−1 + Nws

(
w − M(t)

N
s

)
f

(
s

2
N −2

(
w − M(t)

N
s

)2
)

+ λw − μNk−1

s∫
0

wk
s (σ, t)dσ.

Thus, we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wt = N2s2− 2
N wss(Nws + 1)m−1 + N

(
w − mM(t)

N s
)

wsf

(
s

2
N −2

(
w − M(t)

N s
)2
)

+λw − μNk−1
s∫
0

wk
s (σ, t)dσ, s ∈ (0, RN

)
, t ∈ (0, Tmax) ,

w(0, t) = 0, w
(
RN , t

)
= M(t)RN

N , t ∈ (0, Tmax) ,
w(s, 0) = w0(s), s ∈ (0, RN

)
,

(4.3)

where w0(s) =
s

1
N∫
0

ρN−1u0(ρ)dρ, s ∈ [
0, RN

]
. Our aim is to prove that the functional y(t) :=

RN∫
0

s−awb(s, t)ds with suitable parameters a, b ∈ (0, 1) blows up in finite time.
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Lemma 4.1. (See Lemma 3.4 of [39]). Let η ∈ R and β ∈ (0, 1]. Then

(1 + ξ)−η ≥ 1 − η+

β
ξβ for all ξ ≥ 0,

where η+ := max {η, 0}.
Lemma 4.2. Assume that the nonnegative initial data u0 satisfies (1.12) and is radially symmetric and
nonincreasing with respect to |x|, then for all s ∈ [0, RN

]
and t ∈ (0, Tmax),

ws(s, t) ≤ w(s, t)
s

≤ ws(0, t) (4.4)

holds.

Proof. Under the condition of (1.12), it follows from the well-known theory on the higher regularity in
scalar parabolic equations in [20,21] that ur ∈ C0([0, R] × [0, Tmax)) ∩ C2,1((0, R) × (0, Tmax)). By the
similar way as in Lemma 2.2 of [40] (see Lemma 2.3 of [1] or Lemma 3.7 of [9]), we have

ut =
N − 1

r
(u + 1)m−1ur + (m − 1)(u + 1)m−2u2

r + (u + 1)m−1urr

− urvr

(1 + |vr|2)α
+

2αuv2
rvrr

(1 + |vr|2)α+1
− uM(t)

(1 + |vr|2)α
+

u2

(1 + |vr|2)α
+ g(u)

where g(u) = λu − μuk for u ≥ 0. Then we get

urt = −N − 1
r2

(u + 1)m−1ur +
N − 1

r
(m − 1)(u + 1)m−2u2

r +
N − 1

r
(u + 1)m−1urr

+ (m − 1)(m − 2)(u + 1)m−3u3
r + 3(m − 1)(u + 1)m−2ururr

+ (u + 1)m−1urrr − urrvr

(1 + |vr|2)α
− urvrr

(1 + |vr|2)α

+
4αurv

2
rvrr

(1 + |vr|2)α+1
+

4αuvrv
2
rr

(1 + |vr|2)α+1
+

2αuv2
rvrrr

(1 + |vr|2)α+1
− 4(α + 1)αuv3

rv2
rr

(1 + |vr|2)α+2

− urM(t)
(1 + |vr|2)α

+
2αuM(t)vrvrr

(1 + |vr|2)α+1
+

2uur

(1 + |vr|2)α
− 2αu2vrvrr

(1 + |vr|2)α+1
+ g′(u)ur

= a(r, t)urrr + b(r, t)urr + c(r, t)ur + d(r, t)u,

where
a(r, t) := (u + 1)m−1

b(r, t) :=
N − 1

r
(u + 1)m−1 + 3(m − 1)(u + 1)m−2ur − vr

(1 + |vr|2)α

c(r, t) := −N − 1
r2

(u + 1)m−1 +
N − 1

r
(m − 1)(u + 1)m−2ur

+ (m − 1)(m − 2)(u + 1)m−3u2
r − vrr

(1 + |vr|2)α
+

4αv2
rvrr

(1 + |vr|2)α+1

− M(t)
(1 + |vr|2)α

+
2u

(1 + |vr|2)α
+ g′(u)

d(r, t) :=
4αvrv

2
rr

(1 + |vr|2)α+1
+

2αv2
rvrrr

(1 + |vr|2)α+1
− 4(α + 1)αv3

rv2
rr

(1 + |vr|2)α+2
+

2αM(t)vrvrr

(1 + |vr|2)α+1
− 2αuvrvrr

(1 + |vr|2)α+1
.

Due to Lemma 3.6 of [9], we have −vrr ≤ u, so that for fixed T ∈ (0, Tmax), 1 < m < 2, we can obtain

sup
r∈(0,R),t∈(0,T )

c(r, t) ≤ 3||u||L∞((0,R)×(0,T )) + ||g′||L∞(0,||u||L∞((0,R)×(0,T ))) < ∞,
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which implies that the maximum principle in Proposition 52.4 of [29] becomes applicable and yields
ur ≤ 0 in (0, R) × (0, T ), which upon taking T ↗ Tmax implies the statement. Next following the steps
in [10,40], we arrive to (4.4). �

Lemma 4.3. Assume that u0 satisfies (1.12) and (u, v) denotes the solution of (1.1) in Ω×(0, Tmax). Then
for all β ∈ (0, 1), α > 0, a ∈ (

(
2 − 2

N

)
α,
(
2 − 2

N

)
(α + β)) and b ∈ (0, 1), the function w satisfies

1
b

RN∫
0

s−awb(s, t)ds ≥ 1
b

RN∫
0

s−awb
0(s)ds + c1

t∫
0

RN∫
0

s2− 2
N −awb−2wm+1

s dsdτ

+ c1

t∫
0

RN∫
0

s(2− 2
N )α−a−1wb+1dsdτ − 2Nm(N − 1)

t∫
0

RN∫
0

s1− 2
N −awb−1wm

s dsdτ

− m̄|Ω|−1

t∫
0

RN∫
0

s1−awb−1wsdsdτ − μNk−1

t∫
0

RN∫
0

s−awb−1

⎛
⎝ s∫

0

wk
s dσ

⎞
⎠dsdτ

= H1 + H2 + H3 − H4 − H5 − H6 (4.5)

for all t ∈ (0, Tmax), where c1 := min
{

1
mNm+1(1 − b), NM̄−α

b+1

[
a − (2 + 2

N )α
]}

, M̄ := 2|Ω|m̄2R2N

N2 and m̄

is defined by (2.3).

Proof. Multiplying the first equation in (4.3) by (s+ ε)−awb−1 with ε > 0, following the steps of [52] and
integrating over s ∈ (0, RN ), we have

1
b

d
dt

RN∫
0

(s + ε)−awb(s, t)ds ≥ N2

RN∫
0

s2− 2
N (s + ε)−awb−1wss(Nws + 1)m−1ds

+ N

RN∫
0

(s + ε)−awb−1ws

(
w − M(t)s

N

)
f

(
s

2
N −2

(
w − M(t)s

N

)2
)

ds

− μNk−1

RN∫
0

(s + ε)−awb−1

⎛
⎝ s∫

0

wk
s dσ

⎞
⎠ds

= J1 + J2 + J3. (4.6)

Integrating by parts, we obtain

J1 = N2

RN∫
0

s2− 2
N (s + ε)−awb−1wss(Nws + 1)m−1ds

≥ 1
m

Nm+1

RN∫
0

s2− 2
N (s + ε)−awb−1(wm

s )sds

=
1
m

Nm+1s2− 2
N (s + ε)−awb−1wm

s

∣∣RN

0

− 1
m

Nm+1(b − 1)

RN∫
0

s2− 2
N (s + ε)−awb−2wm+1

s ds
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− 1
m

Nm+1

RN∫
0

d
ds

(s2− 2
N (s + ε)−a)wb−1wm

s ds (4.7)

≥ 1
m

Nm+1(1 − b)

RN∫
0

s2− 2
N (s + ε)−awb−2wm+1

s ds

−2
1
m

Nm(N − 1)

RN∫
0

s1− 2
N (s + ε)−awb−1wm

s ds,

where we have used the fact that m > 1, N ≥ 2, b ∈ (0, 1) and

d
ds

(
s2− 2

N (s + ε)−a
)

=
(

2 − 2
N

)
s1− 2

N (s + ε)−a − as2− 2
N (s + ε)−a−1

≤
(

2 − 2
N

)
s1− 2

N (s + ε)−a.

As for J2, we have

J2 = N

RN∫
0

(s + ε)−awb−1ws

(
w − M(t)s

N

)
f

(
s

2
N −2

(
w − M(t)s

N

)2
)

ds

= N

RN∫
0

(s + ε)−awbwsf

(
s

2
N −2

(
w − M(t)s

N

)2
)

ds

−
RN∫
0

s(s + ε)−awb−1wsM(t)f

(
s

2
N −2

(
w − M(t)s

N

)2
)

ds

= J21 + J22.

(4.8)

By the strong maximum principle, we have u ≥ 0 in Ω̄ × (0, Tmax). Thus, it follows from ws(s, t) =
1
N u(s

1
N , t) ≥ 0 and the boundary condition at s = RN that w(s, t) ≤ M(t)RN

N for all s ∈ [0, RN ] and

t ∈ (0, Tmax). Using w(s, t) ≤ M(t)RN

N and s ≤ RN , we arrive that

(
w − M(t)s

N

)2

≤ M(t)2s2

N2
+ w2 ≤ 2

M(t)2R2N

N2
≤ 2

|Ω|2m̄2R2N

N2
:= M̄, (4.9)

where m̄ is defined by (2.3). Next by means of Lemma 4.1, we can estimate

(
1 + s

2
N −2

(
M(t)s

N
− w

)2
)−α

≥ s(2− 2
N )αM̄−α ·

(
1 + s2− 2

N M̄−1
)−α

≥ s(2− 2
N )αM̄−α ·

(
1 − α

β

(
s2− 2

N M̄−1
)β
)

= s(2− 2
N )αM̄−α − α

β
s(2− 2

N )(α+β)M̄−(α+β).

(4.10)
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Combining (4.8)–(4.10), we derive

J21 = N

RN∫
0

(s + ε)−awbwsf

(
s

2
N −2

(
w − M(t)s

N

)2
)

ds

≥ NM̄−α

RN∫
0

(s + ε)−awbwss
(2− 2

N )αds − αNM̄−(α+β)

β

RN∫
0

(s + ε)−awbwss
(2− 2

N )(α+β)ds

= I1 − I2.

(4.11)

As for I1, integrating by parts, we have

I1 = NM̄−α

RN∫
0

(s + ε)−awbwss
(2− 2

N )αds

= −NM̄−α

b + 1

RN∫
0

∂s

{
(s + ε)−as(2− 2

N )α
}

wb+1ds

=
aNM̄−α

b + 1

RN∫
0

(s + ε)−a−1s(2− 2
N )αwb+1ds − NM̄−α

b + 1

(
2 − 2

N

)
α

RN∫
0

(s + ε)−as(2− 2
N )α−1wb+1ds.

(4.12)

As for I2, once more integrating by parts, we compute

I2 =
αNM̄−(α+β)

β

RN∫
0

(s + ε)−awbwss
(2− 2

N )(α+β)ds

= −αNM̄−(α+β)

β(b + 1)

RN∫
0

∂s

{
(s + ε)−as(2− 2

N )(α+β)
}

wb+1ds

=
aαNM̄−(α+β)

β(b + 1)

RN∫
0

(s + ε)−a−1s(2− 2
N )(α+β)wb+1ds

− αNM̄−(α+β)

β(b + 1)

(
2 − 2

N

)
(α + β)

RN∫
0

(s + ε)−as(2− 2
N )(α+β)−1wb+1ds.

(4.13)

Since 1[
1+s

2
N

−2(M(t)s
N −w)2

]α ≤ 1, it follows that

J22 = −
RN∫
0

s(s + ε)−awb−1wsM(t)f

(
s

2
N −2

(
w − M(t)s

N

)2
)

ds

= −
RN∫
0

s(s + ε)−awb−1wsM(t)
1[

1 + s
2
N −2

(
M(t)s

N − w
)2
]α ds (4.14)
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≥ −
RN∫
0

s(s + ε)−awb−1wsM(t)ds

≥ −m̄|Ω|−1

RN∫
0

s(s + ε)−awb−1wsds,

where m̄ is defined by (2.3). Replacing (4.7), (4.8) and (4.11)–(4.14) in (4.6) and integrating over (0, t),
we obtain

1
b

RN∫
0

(s + ε)−awb(s, t)ds ≥ 1
b

RN∫
0

(s + ε)−awb
0(s)ds

+
1
m

Nm+1(1 − b)

t∫
0

RN∫
0

s2− 2
N (s + ε)−awb−2wm+1

s dsdτ

− 2
1
m

Nm(N − 1)

t∫
0

RN∫
0

s1− 2
N (s + ε)−awb−1wm

s dsdτ

+
aNM̄−α

b + 1

t∫
0

RN∫
0

(s + ε)−a−1s(2− 2
N )αwb+1dsdτ

− NM̄−α

b + 1

(
2 − 2

N

)
α

t∫
0

RN∫
0

(s + ε)−as(2− 2
N )α−1wb+1dsdτ

+
aαNM̄−(α+β)

β(b + 1)

t∫
0

RN∫
0

(s + ε)−a−1s(2− 2
N )(α+β)wb+1dsdτ

− αNM̄−(α+β)
(
2 − 2

N

)
(α + β)

β(b + 1)

t∫
0

RN∫
0

(s + ε)−as(2− 2
N )(α+β)−1wb+1dsdτ

− m̄|Ω|−1

t∫
0

RN∫
0

s(s + ε)−awb−1wsdsdτ

− μNk−1

t∫
0

RN∫
0

(s + ε)−awb−1

⎛
⎝ s∫

0

wk
s dσ

⎞
⎠dsdτ.

(4.15)

Taking ε ↘ 0 in (4.15), applying the monotone convergence theorem and neglecting the positive term I2

in (4.13) by selecting a ∈ ((2 − 2
N )α, (2 − 2

N )(α + β)) where α > 0, β ∈ (0, 1), then we can arrive at (4.5).
�

Next we estimate H4 and H5, which are defined in Lemma 4.3.
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Lemma 4.4. Assume that N ≥ 2, 1 < m < 2N−2
N , 0 < α < 2N−2−mN

2N−2 , then there exist

b ∈ (max {0, B1, B2} , 1) ,

where B1 = (2− 2
N )α(2−m)+m−2+ 2

N

(2− 2
N )(1−α)−m

, B2 = m−2+ 2
N

(2− 2
N )(1−α)−m

and

0 < a < min {A1, A2} , (4.16)

with

A1 =

(
2 − 2

N

)
α +

[(
2 − 2

N

)
(1 − α) − m

]
(b + 1)

2 − m
, (4.17)

and

A2 =

(
2 − 2

N

)
α
(
2 − 1

m

)
+
[
2 +
(

2
N − 1

)
1
m − (2 − 2

N

)
α
]
(b + 1)

2 − 1
m

, (4.18)

such that

H4 ≤ 1
2
H2 +

1
4
H3 + c2t (4.19)

and

H5 ≤ 1
2
H2 +

1
4
H3 + c3t (4.20)

for all t ∈ (0, Tmax), where c2, c3 > 0 and H2,H3,H4,H5 are defined in Lemma 4.3.

Proof. Using Young’s inequality, we have

H4 = 2Nm(N − 1)

t∫
0

RN∫
0

s1− 2
N −awb−1wm

s dsdτ

≤ c1

2

t∫
0

RN∫
0

s2− 2
N −awb−2wm+1

s dsdτ + c4

t∫
0

RN∫
0

s2−a− 2
N wb−2(s−1w)m+1dsdτ

=
1
2
H2 + c4

t∫
0

RN∫
0

s1−a−m− 2
N wb+m−1dsdτ

≤ 1
2
H2 +

1
4
c1

t∫
0

RN∫
0

s(2− 2
N )α−a−1wb+1dsdτ + c5

t∫
0

RN∫
0

s(2− 2
N )α−a−1s[(2− 2

N )(1−α)−m] b+1
2−m dsdτ

≤ 1
2
H2 +

1
4
H3 + c2t,
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where c1, c2, c4, c5 > 0 and we have used the fact that (2 − 2
N )α − a − 1 + [(2 − 2

N )(1 − α) − m] b+1
2−m > −1

due to 0 < a < A1. It follows from Young’s inequality that

H5 = m̄|Ω|−1

t∫
0

RN∫
0

s1−awb−1wsdsdτ

≤ 1
2
c1

t∫
0

RN∫
0

s2− 2
N −awb−2wm+1

s dsdτ + c6

t∫
0

RN∫
0

s2− 2
N −awb−2(s

2
N −1w)

m+1
m dsdτ

=
1
2
H2 + c6

t∫
0

RN∫
0

s1−a+( 2
N −1) 1

m wb−1+ 1
m dsdτ

≤ 1
2
H2 +

1
4
c1

t∫
0

RN∫
0

s(2− 2
N )α−a−1wb+1dsdτ + c7

t∫
0

RN∫
0

s(2− 2
N )α−a−1s

[2+( 2
N −1) 1

m −(2− 2
N )α] b+1

2− 1
m dsdτ

≤ 1
2
H2 +

1
4
H3 + c3t,

for all t ∈ (0, Tmax), where c1, c3, c6, c7 > 0 and we have used the fact that (2 − 2
N )α − a − 1 + [2 + ( 2

N −
1) 1

m − (2 − 2
N )α] b+1

2− 1
m

> −1 due to 0 < a < A2. �

Now, we shall estimate the term H6 in Lemma 4.3.

Lemma 4.5. Let N ≥ 5 and suppose that 1 < m < min
{

2N−4
N , 1 − 1

N + 1
N

√
N2 − 4N + 1

}
, 2N−4−mN

(2N−2)m <

α < 2N−2−mN
2N−2 and

k ∈ (1,min {2, k1, k2}) , (4.21)

where

k1 =

(
(2− 2

N )(α−αm+1)−m
2
N +(2− 2

N )α

)2

− (2 − 2
N

)
α

(2− 2
N )(α−αm+1)−m
2
N +(2− 2

N )α(
2 − 2

N

)
α + 1

+ 1 (4.22)

and

k2 =

(
(2− 2

N )α(1− 1
m )+2+( 2

N −1) 1
m

(2− 2
N )α− 2

mN

)2

− (2 − 2
N

)
α

(2− 2
N )α(1− 1

m )+2+( 2
N −1) 1

m

(2− 2
N )α− 2

mN(
2 − 2

N

)
α + 1

+ 1. (4.23)

Then we can find a = b ∈ (0, 1) fulfilling (4.16) such that

H6 ≤ 1
4
H3 + c8t, (4.24)

for all t ∈ (0, Tmax), where c8 > 0 and H3,H6 are defined in Lemma 4.3.

Proof. By Fubini’s theorem, we obtain

H6 = μNk−1

t∫
0

RN∫
0

s−awb−1

⎛
⎝ s∫

0

wk
s dσ

⎞
⎠dsdτ

= μNk−1

t∫
0

RN∫
0

⎛
⎜⎝

RN∫
σ

s−awb−1ds

⎞
⎟⎠wk

s (σ)dσdτ.
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Since b ∈ (0, 1) and ws ≥ 0, then wb−1(s) decreases in s. Thus,

H6 ≤ μNk−1

t∫
0

RN∫
0

⎛
⎜⎝

RN∫
σ

s−ads

⎞
⎟⎠wb−1(σ)wk

s (σ)dσdτ

=
1

1 − a
μNk−1

t∫
0

RN∫
0

(
RN(1−a) − σ1−a

)
wb−1(σ)wk

s (σ)dσdτ.

Since a ∈ (0, 1), we neglect the negative term to derive

H6 ≤ μNk−1

1 − a
RN(1−a)

t∫
0

RN∫
0

wb−1(s)wk
s (s)dsdτ.

Fixed b = a ∈ (0, 1), then we have (2− 2
N )(α−αm+1)−m
2
N +(2− 2

N )α
∈ (0, 1) and (2− 2

N )α(1− 1
m )+2+( 2

N −1) 1
m

(2− 2
N )α− 2

mN

∈ (0, 1)

fulfilling (4.16), thanks to the facts that 1 < m < min
{

2N−4
N , 1 − 1

N + 1
N

√
N2 − 4N + 1

}
, N ≥ 5 and

2N−4−mN
(2N−2)m < α < 2N−2−mN

2N−2 . Then by selecting a = b, using Young’s inequality and applying Lemma 4.2
we have

H6 ≤ μNk−1

1 − a
RN(1−a)

t∫
0

RN∫
0

wb−1wk
s dsdτ

≤ μNk−1

1 − a
RN(1−a)

t∫
0

RN∫
0

wk+a−1s−kdsdτ

≤ 1
4
c1

t∫
0

RN∫
0

s(2− 2
N )α−a−1wb+1dsdτ + c9

t∫
0

RN∫
0

s(2− 2
N )α−a−1s[−k+a+1−(2− 2

N )α] b+1
2−k dsdτ

=
1
4
H3 + c8t,

for all t ∈ (0, Tmax), where c8, c9 > 0 and we have used the fact that (2 − 2
N )α − a − 1 + [−k + a + 1 −

(2 − 2
N )α] b+1

2−k > −1 due to (4.21). �
Taking into account of Lemmas 4.3–4.5, we obtain an integral inequality for the functional y(t) =

RN∫
0

s−awb(s)ds.

Lemma 4.6. Assume that the conditions of Theorem 1.2 hold. Then there exist a, b ∈ (0, 1), δ > 0 and
C > 0 such that

RN∫
0

s−awb(s, t)ds ≥
RN∫
0

s−awb
0(s)ds + δ

t∫
0

⎛
⎜⎝

RN∫
0

s−awb(s, τ)ds

⎞
⎟⎠

b+1
b

dτ − Ct (4.25)

for all t ∈ (0, Tmax).

Proof. Collecting (4.19), (4.20) and (4.24) in (4.5) and selecting

a = b ∈
(

0,min

{(
2 − 2

N

)
(α − αm + 1) − m

2
N +

(
2 − 2

N

)
α

,

(
2 − 2

N

)
α
(
1 − 1

m

)
+ 2 +

(
2
N − 1

)
1
m(

2 − 2
N

)
α − 2

mN

})
,



ZAMP Boundedness and finite-time blow-up in a Keller–Segel Page 17 of 20   181 

then we have
RN∫
0

s−awb(s, t)ds ≥
RN∫
0

s−awb
0(s)ds +

b

4
c1

t∫
0

RN∫
0

s(2− 2
N )α−a−1wb+1dsdτ − Ct (4.26)

for all t ∈ (0, Tmax).
Using the Hölder inequality, we obtain

RN∫
0

s−awb(s, t)ds =

RN∫
0

(
s(2− 2

N )α−a−1wb+1
) b

b+1
s−a− [(2− 2

N )α−a−1]b
b+1 ds

≤

⎛
⎜⎝

RN∫
0

s(2− 2
N )α−a−1wb+1ds

⎞
⎟⎠

b
b+1
⎛
⎜⎝

RN∫
0

s−a− [(2− 2
N )α−a−1]b

b+1 ds

⎞
⎟⎠

1
b+1

,

which implies

RN∫
0

s(2− 2
N )α−a−1wb+1ds ≥ c10

⎛
⎜⎝

RN∫
0

s−awbds

⎞
⎟⎠

b+1
b

(4.27)

where c10 =

⎛
⎝ 1−a− [(2− 2

N
)α−a−1]b
b+1

R
N

(
1−a− [(2− 2

N
)α−a−1]b
b+1

)

⎞
⎠

1
b

and we have used the fact −a − [(2− 2
N )α−a−1]b

b+1 > −1 due to

a < 1 < 1 + [2 − (2 − 2
N )α]b. Then replacing (4.27) into (4.26) we arrive at (4.25) with δ = 1

4bc1c10. �

Proof of Theorem 1.2.. We fix N ≥ 5 and may assume that Ω = BR(0) ⊂ R
N with some R > 0.

Then for given 1 < m < min
{

2N−4
N , 1 − 1

N + 1
N

√
N2 − 4N + 1

}
, 2N−4−mN

(2N−2)m < α < 2N−2−mN
2N−2 , k ∈

(1,min {2, k1, k2}), where k1 and k2 are defined by (4.22) and (4.23) and m0 > 0, we let a, b ∈ (0, 1), δ > 0
and C > 0 be as provided by Lemma 4.6. Now for fixed T > 0, we pick θ > 0 large such that

θ >

(
b

δT

)b

. (4.28)

Next, following the steps in the proof of Theorem 0.1 in [42], let

φε(s) :=
m0

N
· RN + ε

s + ε
· s, s ∈ [0, RN ], ε > 0, (4.29)

then φε(s) is nonnegative and satisfies

φε(s) ↗ m0R
N

N
for all s ∈ [0, RN ] as ε ↘ 0. (4.30)

By the monotone convergence theorem, it asserts
RN∫
0

s−aφε(s)b(s)ds → +∞ as ε ↘ 0. (4.31)

Thus, we can find some sufficiently small ε > 0 such that
RN∫
0

s−aφb
ε(s)(s)ds ≥ θ + CT. (4.32)
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With this value of ε fixed henceforth, we let

w0(s) := φε(s), s ∈ [0, RN ], (4.33)

and then it is obvious to see that w0 belongs to C∞([0, RN ]) and satisfies w0 = 0, w0(RN ) = m0RN

N and
w0 s(s) > 0 for all s ∈ [0, RN ]. Therefore, the function u0 defined by u0(x) := Nw0s(|x|N ) for x ∈ Ω̄ is
radially symmetric, smooth and positive in Ω̄ with 1

|Ω|
∫
Ω

u0(x)dx = m0. Next, we claim that the maximal

existence time Tmax of the corresponding solution (u, v) of system (1.1) satisfies Tmax < T . Let

y(t) :=

RN∫
0

s−awb(s)ds, t ∈ (0, Tmax), (4.34)

then it follows from (4.32), (4.33), (4.34) and Lemma 4.6 that

y(t) ≥ θ + δ

t∫
0

y1+ 1
b (τ)dτ for all t ∈ (0, Tmax). (4.35)

By Lemma 2.4, it is easy to see that

Tmax ≤ 1
1
b δθ

1
b

.

In conjunction with (4.28), this entails that indeed Tmax < T . The proof of Theorem 1.2 is complete. �
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