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Abstract. In this paper, we consider the following nonlinear Choquard equation with magnetic field

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
ε

i
∇ − A(x)

)2

u + V (x)u = εµ−N

⎛

⎜
⎝

∫

RN

|u(y)|2∗
μ + F (|u(y)|2)
|x − y|µ dy

⎞

⎟
⎠

(

|u|2∗
μ−2u +

1

2∗
µ

f(|u|2)u
)

in R
N ,

u ∈ H1(RN ,C)

where ε > 0 is a small parameter, N ≥ 3, 0 < μ < N , 2∗
µ = 2N−µ

N−2
, V (x) : R

N → R
N and A(x) : R

N → R
N is a

continuous potential, f is a continuous subcritical term, and F is the primitive function of f . Under a local assumption on
the potential V , by the variational methods, the penalization techniques and the Ljusternik–Schnirelmann theory, we prove
the multiplicity and concentration properties of nontrivial solutions of the above problem for ε > 0 small enough.
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1. Introduction and main results

In this paper, we study the following nonlinear Choquard equation with magnetic fields

(ε

i
∇ − A(x)

)2

u + V (x)u = εμ−N

⎛

⎝

∫

RN

|u(y)|2∗
μ + F (|u(y)|2)
|x − y|μ dy

⎞

⎠

(

|u|2∗
μ−2u +

1
2∗

μ

f(|u|2)u
)

, (1.1)

where x ∈ R
N , ε > 0 is a parameter, N ≥ 3, 0 < μ < N , 2∗

μ = 2N−μ
N−2 , V (x) ∈ C(RN , R) is an electric

potential, and A(x) ∈ C(RN , RN ) is a magnetic potential. The operator
(

1
i ∇ − A(x)

)2, called magnetic
Laplacian, is defined by

−ΔAu :=
(

1
i
∇ − A(x)

)2

u = −Δu − 2
i
A(x) · ∇u + |A(x)|2u − 1

i
u div(A(x)).

For problem (1.1), there are vast literature concerning the existence and multiplicity of nonlinear
Choquard equation without magnetic field, namely A ≡ 0. Then, (1.1) turns to the Choquard equation

− ε2Δu + V (x)u = εμ−N

⎛

⎝

∫

RN

G(u(y))
|x − y|μ dy

⎞

⎠ g(u) in R
N . (1.2)
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When ε = 1, Eq. (1.2) reduces to the generalized Choquard equation:

− Δu + V (x)u =
( 1

|x|μ ∗ |u|p
)
|u|p−2u in R

3. (1.3)

The case of (1.3) N = 3, p = 2, V (x) = 1 and μ = 1 describes the quantum mechanics of a polaron at
rest by Pekar [36]. In 1976, Choquard [26] described an approximation to Hartree–Fock theory of a one
component plasma by (1.3). Thus, Eq. (1.3) is also called the nonlinear Schrödinger–Newton equation.
By using critical point theory, Lions [28] obtained the existence of infinitely many radially symmetric
solutions in H1

(
R

N
)

and Ackermann [1] proved the existence of infinitely many geometrically distinct
weak solutions for a general case.

Moroz and Van Schaftingen [31,33] eliminated this restriction and showed the regularity, positivity
and radial symmetry of the ground states for the optimal range of parameters, and also derived that
these solutions decay asymptotically at infinity.

On the other hand, the semiclassical limit problem attracts people’s attention, namely ε → 0 in (1.2).
The question of the existence of semiclassical solutions for the nonlocal problem (1.2) has been posed
in [6]. Moroz and Van Schaftingen [32] develop a novel nonlocal penalization by variational methods to
show that equation (1.2) with G(u) = |u|q has a family of solutions concentrated at the local minimum
of V , with V satisfying some additional assumptions at infinity. Other results see [5,12,25,30,43] and
references therein.

The magnetic nonlinear Schrödinger equation (1.1) has been extensively investigated by many authors
by applying suitable variational and topological methods (see [3,9,13,14,16,17,20,23,40,41] and refer-
ences therein). To the best of our knowledge, the first result involving the magnetic field was obtained by
Esteban and Lions [20]. They used the concentration–compactness principle and minimization arguments
to obtain solutions for ε > 0 fixed and N = 2, 3. For the nonlinear magnetic Schrödinger equation

(
ε

i
∇ − A(x)

)2

u + V (x)u = f(|u|2)u, x ∈ R
N , (1.4)

Alves [3] used the method of the Nehari manifold, the penalization method and the Ljusternik–Schnirelmann
category theory to relate the number of solutions with the topology of the set for a subcritical nonlinearity
f ∈ C1. Ji and Rădulescu [23] showed that the arguments developed in [3] fail if f is only continuous, and
they improved the methods to study the multiplicity and concentration results for magnetic Schrödinger
equation in which the subcritical nonlinearity f is only continuous. Later, Ji and Rădulescu [24] used
the same methods to study the multiplicity and concentration results for magnetic Schrödinger equation
with critical growth.

About the Choquard equations with magnetic potential like

(
ε

i
∇ − A(x)

)2

u + V (x)u = εμ−N

⎛

⎝

∫

RN

F (|u(y)|2)
|x − y|μ dy

⎞

⎠ f(|u|2)u. (1.5)

For ε = 1, μ ∈ (0, N), 2N−μ
N < p < 2N−μ

N−2 , f(u) = |u|p, Cingolani et al. [14] established the existence
of multiple complex-valued solutions. Alves et al. [4] proved the existence and multiplicity of solutions
by using variational methods, penalization techniques and Ljusternik–Schnirelmann theory under the
suitable conditions of V and f .

It is quite natural to consider the multiplicity and concentration phenomena of nontrivial solutions
for problem (1.1) with critical growth. Inspired by [4,24], the main purpose of this paper is to investigate
multiplicity and concentration of nontrivial solutions for problem (1.1) by proposing a local assumption
on V (x) and adapting the penalization technique and Ljusternik–Schnirelmann category theory.

To go on studying the problem (1.1), we recall an important inequality, namely:
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Lemma 1.1. (Hardy–Littlewood–Sobolev inequality) [27] Let t, r > 1 and 0 < μ < N with 1/t + μ/N +
1/r = 2, f ∈ Lt(RN ) and h ∈ Lr(RN ). There exists a sharp constant C(t,N, μ, r), independent of f, h,
such that

∫

RN

∫

RN

f(x)h(y)
|x − y|μ dxdy ≤ C(t,N, μ, r)|f |t|h|r. (1.6)

If t = r = 2N/(2N − μ), then there is equality in (1.6) if and only if f ≡ Ch and

h(x) = A(γ2 + |x − a|2)−(2N−μ)/2

for some A ∈ C, 0 	= γ ∈ R and a ∈ R
N .

Notice that, by the Hardy–Littlewood–Sobolev inequality, the integral
∫

RN

∫

RN

|u(x)|q|u(y)|q
|x − y|μ dxdy

is well defined if |u|q ∈ Lt(RN ) for some t > 1 satisfying

2
t

+
μ

N
= 2.

Thus, for u ∈ H1(RN ), by Sobolev embedding Theorems, we know

2 ≤ tq ≤ 2N

N − 2
,

that is
2N − μ

N
≤ q ≤ 2N − μ

N − 2
.

Thus, 2N−μ
N is called the lower critical exponent and 2∗

μ = 2N−μ
N−2 is the upper critical exponent in the

sense of the Hardy–Littlewood–Sobolev inequality and the Laplace operator.
Before giving our main result, we present the following hypothesis on the potential V (x) ∈ C(RN , R):
(V1) there exists V1 > 0 such that V1 = infx∈RN V (x);
(V2) there exists a bounded open set Λ ⊂ R

N such that

0 < V0 = inf
x∈Λ

V (x) < min
x∈∂Λ

V (x).

Observe that

M := {x ∈ Λ : V (x) = V0} 	= ∅.

Moreover, the nonlinearity f ∈ C(R, R) be a function satisfying:
(f1) f(t) = 0 if t ≤ 0;
(f2) there exists p, q ∈

(
2N−μ

N , 2∗
μ

)
and λ > 0 such that

f(t) ≥ λt(p−2)/2 ∀t > 0, lim
t→+∞

f(t2)t
tq−1

= 0;

(f3) f(t) is strictly increasing in (0,∞).
The main result of this paper is the following:

Theorem 1.2. Suppose that condictions (V1)–(V2) and (f1)–(f3) are satisfied. Then, for any δ > 0 such
that

Mδ := {x ∈ R
N : dist(x,M) < δ} ⊂ Λ,
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there exists εδ > 0 such that, for any 0 < ε < εδ, problem (1.1) has at least catMδ
(M) nontrivial

solutions. Moreover, for every sequence {εn} such that εn → 0+ as n → ∞, if we denote by uεn
one of

these solutions of (1.1) for ε = εn and ηεn
∈ R

N the global maximum point of |uεn
|, then

lim
n

V (ηεn
) = V0.

We shall use the variational methods, penalization techniques and the Ljusternik–Schnirelmann theory
to prove Theorem 1.2. There are three main difficulties to overcome. The first difficulty is the presence
of the magnetic field A(x), problem (1.1) became a complex-valued problem. We use the diamagnetic
inequality to transform complex values into real values, while corresponding embedding theorem also
holds. The second one is that the nonlocal terms appearing in the equation, the commonly used methods
and techniques may be ineffective. We can use the Hardy–Littlewood–Sobolev inequality to overcome this
difficulty. The last one is that critical exponent occurs the right of problem (1.1), we need more accurate
estimate to overcome the lack of compactness.

The paper is organized as follows. In Sect. 2, we give some preliminaries. In Sect. 3, we introduce a
modified problem. In Sect. 4, we study the associated autonomous problem. In Sect. 5, we obtain the
multiplicity of solutions for problem (1.1). In Sect. 6, we complete the proof Theorem 1.2.

2. Preliminaries

In this section, we collect some notations and some useful preliminary lemmas. Recall that the Sobolev
space with magnetic potential H1

A(RN , C) is defined by

H1
A(RN , C) = {u ∈ L2(RN , C) : |∇Au| ∈ L2(RN , R)},

where ∇Au = (i−1∇ − A)u. The space H1
A(RN , C) is an Hilbert space endowed with the scalar product

〈u, v〉ε = �
⎛

⎝

∫

RN

∇Au∇Av + uvdx

⎞

⎠ ,

where � and the bar denote the real part of a complex number and the complex conjugation, respectively.
Using the change of variable x → εx, problem (1.1) is equivalent to the following one
⎧
⎪⎪⎨

⎪⎪⎩

(
1
i
∇ − Aε(x)

)2

u + Vε(x)u =

⎛

⎝

∫

RN

|u(y)|2∗
μ + F (|u(y)|2)
|x − y|μ dy

⎞

⎠

(

|u|2∗
μ−2u +

1
2∗

μ

f(|u|2)u
)

inR
N ,

u ∈ H1(RN , C)

(2.1)

where Aε(x) = A(εx) and Vε(x) = V (εx).
Owing to the presence of potential Vε(x), we introduce the subspace

Hε = {u ∈ H1
A(RN , C) :

∫

RN

Vε(x)|u|2dx < ∞}.

The space Hε is an Hilbert space endowed with the scalar product

(u, v)ε = �
⎛

⎝

∫

RN

∇εu∇εv + V (εx)uvdx

⎞

⎠ ,
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where ∇εu = (D1
εu, . . . ,DN

ε u) and Dj
εu = i−1∂ju − Aj(εx)u for j = 1, . . . , N . The norm induced by this

inner product is given by

‖u‖ε =

⎛

⎝

∫

RN

|∇εu|2 + V (εx)|u|2dx

⎞

⎠

1
2

.

For readers’ convenience, we recall some useful lemmas.

Lemma 2.1. (Diamagnetic Inequality) [20] For any u ∈ Hε, we get |u| ∈ H1(RN , R) and it holds

|∇|u|| ≤ |∇εu|. (2.2)

Lemma 2.2. [20] The space Hε is continuously embedded into Lr
(
R

N , C
)

for any r ∈ [2, 2∗] and compactly
embedded into Lr

loc

(
R

N , C
)

for any r ∈ [1, 2∗).

From Gao and Yang [21], we denote by

SH,L : = inf
u∈D1,2(RN )\{0}

∫

RN

|∇u|2dx

(
∫

RN

∫

RN

|u(x)|2∗
μ |u(y)|2∗

μ

|x−y|μ dxdy

) N−2
2N−μ

= inf
u∈D1,2

A (RN )\{0}

∫

RN

|∇Au|2dx

(
∫

RN

∫

RN

|u(x)|2∗
μ |u(y)|2∗

μ

|x−y|μ dxdy

) N−2
2N−μ

:= SA,

(2.3)

where D1,2
A (RN ) = {u ∈ L2∗

(RN , C) : ∇Au ∈ L2(RN , C)}. The equality between SH,L and SA was proved
in Mukherjee and Sreenadh [34]. We remark that SA is attained if and only if rotA = 0, see [34, Theorem
4.1].

Lemma 2.3. [21] The constant SH,L defined in (2.3) is achieved if and only if

u = C

(
b

b2 + |x − a|2
)N−2

2

,

where C > 0 is a fixed constant, a ∈ R
N and b ∈ (0,∞) are parameters. Furthermore,

SH,L =
S

C(N,μ)
N−2
2N−μ

,

where S is the best Sobolev constant of the immersion D1,2(RN ) ↪→ L2∗
(RN ) and C(N,μ) depends on N

and μ.

If we consider the minimizer for S given by U(x) := [N(N−2)]
N−2

4

(|1+|x|2) N−2
2

(see [42, Theorem 1.42]), then

Ū(x) = S
(N−μ)(2−μ)
4(N+2−μ) C(N,μ)

2−N
2(N+2−μ)

[N(N − 2)]
N−2

4

(|1 + |x|2)N−2
2

is the unique minimizer for SH,L that satisfies

−Δu =

⎛

⎝

∫

RN

|u|2∗
μ

|x − y|μ dy

⎞

⎠ |u|2∗
μ−2u in R

N ,
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with
∫

RN

|∇Ū |2dx =
∫

RN

∫

RN

|Ū(x)|2∗
μ |Ū(y)|2∗

μ

|x − y|μ dxdy = S
2N−μ

N+2−μ

H,L .

Lemma 2.4. [29] Let N ≥ 3 and r ∈ [2, 2∗). If {un}n∈N
is a bounded sequence in H1(RN , R) and if

lim
n→∞ sup

y∈RN

∫

BR(y)

|un|r dx = 0,

where R > 0, then un → 0 in Lt(RN , R) for all t ∈ (2, 2∗).

3. The modified problem

We will adapt an argument explored by the penalization method, which introduced by del Pino and
Felmer [19] to overcome the lack of compactness. More precisely, let K > 0 determined later, there exists
a unique number a > 0 satisfying

f(a) + a(2∗
μ−2)/2 = V0/K

by (f3), where V0 is given in (V2). Suppose that

f̃(t) :=
{

f(t) + (t+)(2
∗
μ−2)/2, t ≤ a,

V0/K, t > a,

and introduce the penalized nonlinearity

g(x, t) := χΛ(x)(f(t) + (t+)2
∗
μ) + (1 − χΛ(x))f̃(t),

where χΛ is the characteristic function on Λ and G(x, t) :=
t∫

0

f(s)ds.

From assumptions (f1)–(f3), it follows that g satisfies the following properties:
(g1) g(x, t) = 0 for each t ≤ 0 and lim

t→0+
g(x, t) = 0 uniformly in x ∈ R

N ;

(g2) g(x, t) ≤ f(t) + (t+)2
∗
μ for all t ≥ 0 uniformly in x ∈ R

N ;
(g3) 0 < G(t) ≤ g(x, t)t, for each x ∈ Λ, t > 0;
(g4) 0 < G(t) ≤ g(x, t)t ≤ V0t/K, for each x ∈ Λc, t > 0;
(g5) t �→ g(x, t) and t �→ G(x,t)

t are increasing for all x ∈ R
N and t ∈ (0,∞).

Then, we consider the following modified problem
(

1
i
∇ − Aε(x)

)2

u + Vε(x)u =
(

1
|x|μ ∗ G(εx, |u|2)

)

g(εx, |u|2)u, x ∈ R
N . (3.1)

Observe that if u is a nontrivial solution of problem (3.1) with

|u(x)|2 ≤ a, ∀x ∈ Λc
ε,

where Λε = {x ∈ R
N : εx ∈ Λ}, then u is a nontrivial solution of problem (2.1).

The energy function associated to problem (3.1) is

Jε(u) =
1
2

∫

RN

|∇εu|2 + Vε(x)|u|2dx − 1
2 · 2∗

μ

∫

RN

(
1

|x|μ ∗ G(εx, |u|2)
)

G(εx, |u|2)dx.

In the sequel, set p0 = 2N
2N−μ , then for any u ∈ Hε, we have

|F (u)|p0 ≤ C

(

|u|22p0
+ |u|qqp0

)

(3.2)



ZAMP Multiplicity and concentration behavior of solutions Page 7 of 32   183 

and

|G(u)|p0 ≤ C

(

|u|22p0
+ |u|qqp0

+ |u|2·2∗
μ

2∗

)

. (3.3)

Therefore, the Hardy–Littlewood–Sobolev inequality implies that
∫

RN

(
1

|x|μ ∗ G(εx, |u|2)
)

G(εx, |u|2)dx ≤ C|G(u)|2p0
≤ C

(

|u|42p0
+ |u|2q

qp0
+ |u|2·2∗

μ

2∗

)

(3.4)

and
∫

RN

(
1

|x|μ ∗ G(εx, |u|2)
)

g(εx, |u|2)|u|2dx ≤ C

(

|u|42p0
+ |u|2q

qp0
+ |u|2·2∗

μ

2∗

)

. (3.5)

As the argument in the proof of [5, Theorem 1.3], we have the following lemma.

Lemma 3.1. Suppose that (V1) and (f1) − (f3) are satisfied, then J ′
ε is weakly sequentially continuous.

Namely, if un → u in Hε, then J ′
ε (un) → J ′

ε(u) in (Hε)
∗.

Proof. Observe that

〈J ′
ε(u), v〉 = 〈u, v〉ε − 1

2∗
μ

∫

RN

(
1

|x|μ ∗ G
(
εx, |u|2)

)

g
(
εx, |u|2)uv̄dx.

Since f(t) has subcritical growth in the sense of the Hardy–Littlewood–Sobolev inequality and the defi-
nition of g(x, t), to prove that J ′

ε is weakly sequentially continuous, we only need to check that if un → u
in Hε, then

∫∫

R2N

|un(y)|2∗
μ |un(x)|2∗

μ−2
un(x)v(x)

|x − y|μ dxdy −→
∫∫

R2N

|u(y)|2∗
μ |u(x)|2∗

μ−2u(x)v(x)
|x − y|μ dxdy (3.6)

for any v ∈ Hε as n → ∞. Indeed, by the Hardy–Littlewood–Sobolev inequality, the Riesz potential
defines a linear continuous map from L

2N
2N−μ

(
R

N
)

to L
2N
μ
(
R

N
)
, so we know

∫

RN

|un(y)|2∗
μ

|x − y|μ dy →
∫

RN

|u(y)|2∗
μ

|x − y|μ dy in L
2N
μ
(
R

N
)
.

Since |un|2∗
μ−2

un → |u|2∗
μ−2u in L

2N
N−μ+2

(
R

N
)

as n → ∞, we have
⎛

⎝

∫

RN

|un(y)|2∗
μ

|x − y|μ dy

⎞

⎠ |un(x)|2∗
μ−2

un(x) →
⎛

⎝

∫

RN

|u(y)|2∗
μ

|x − y|μ dy

⎞

⎠ |u(x)|2∗
μ−2u(x) in L

2N
N+2

(
R

N
)

as n → ∞. Hence (3.6) holds. �

By a similar argument to Proposition 3.2 in [33], we have the following results.

Lemma 3.2. Let N ≥ 3 and μ ∈ (0, N). If H,K ∈ L
2N

N−μ+2 (RN ) + L
2N

N−μ (RN ), and u ∈ Hε satisfies
(

1
i
∇ − Aε(x)

)2

u + u =
(|x|−μ ∗ (Hu)

)
K.

Then, u ∈ Lr(RN ) for some r ∈
[
2, N

N−μ
2N

N−2

)
. Moreover, there exists a positive constant C(r) indepen-

dent of u such that

‖u‖r ≤ C(r)‖u‖2.
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Now, let us define

B =
{
u ∈ Hε

(
R

N
)

: ‖u‖ε ≤ d
}

where d > 0 is a constant, and we set

Kε(u)(x) =
1

|x|μ ∗ G
(
εx, |u|2) .

The next lemma implies that we can treat the convolution term as a bounded term.

Lemma 3.3. Suppose that (f1) − (f3) hold. Then, there exists C0 > 0 such that

sup
u∈B

|Kε(u)(x)|L∞(RN ) < C0. (3.7)

Proof. Observe that

|G(x, |s|2)| ≤ |F (|s|2)| + |s|2∗
μ , ∀s ∈ R.

Thereby,

|Kε(u)(x)| ≤
∣
∣
∣
∣
∣
∣

∫

RN

F (|u|2)
|x − y|μ dy

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

∫

RN

|u| 2N−μ
N−2

|x − y|μ dy

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

∫

RN

F (|u|2)
|x − y|μ dy

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣
∣

∫

|x−y|≤1

|u| 2N−μ
N−2

|x − y|μ dy

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

∫

|x−y|>1

|u| 2N−μ
N−2

|x − y|μ dy

∣
∣
∣
∣
∣
∣
∣

:= K1 + K2 + K3.

From [4, Lemma 2.5], we know there exist a constant C independent of x and ε such that

|K1| ≤ C. (3.8)

Let H(u) = K(u) = |u|N−μ+2
N−2 , then it is easy to verify that

H(u),K(u) ∈ L
2N

N−μ+2
(
R

N
)

+ L
2N

N−μ (RN ).

Using Lemma 3.2, we obtain u ∈ Lr(RN ) for r ∈
[
2, N

N−μ
2N

N−2

)
. Moreover,

|u|r ≤ C(r)|u|2 ≤ C

for some constant C > 0 independent of ε.
It follows from μ < N that

2N2

3Nμ − μ2
<

N

μ
.

Choosing t > N
μ and 2N2

3Nμ−μ2 < s < N
μ , then

t

t − 1
2N − μ

N − 2
<

N

N − μ

2N

N − 2
,

s

s − 1
2N − μ

N − 2
<

N

N − μ

2N

N − 2
.

By the Hölder inequality, we have

K2 ≤

⎛

⎜
⎝

∫

|x−y|≤1

1
|x − y|μs

dy

⎞

⎟
⎠

1
s
⎛

⎜
⎝

∫

|x−y|≤1

|u| s
s−1

2N−μ
N−2 dy

⎞

⎟
⎠

s−1
s

≤ C,
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and

K3 ≤

⎛

⎜
⎝

∫

|x−y|≥1

1
|x − y|μt

dy

⎞

⎟
⎠

1
t
⎛

⎜
⎝

∫

|x−y|≥1

|u| t
t−1

2N−μ
N−2 dy

⎞

⎟
⎠

t−1
t

≤ C,

where the constant C is independent of x and ε.
The above equalities with (3.8) imply (3.7). Then, we can find C0 > 0 such that

sup
u∈B

|Kε(u)(x)|L∞(RN ) < C0.

�

From Lemma 3.3, we know there exists k0 such that
supu∈B |Kε(u)(x)|L∞(RN )

k0
<

1
2
,

hence we can choose K ≥ k0.
We denote by Nε the Nehari manifold of Jε, that is,

Nε = {u ∈ Hε \ {0} : 〈J ′
ε(u), u〉 = 0},

and define the number cε by

cε = inf
u∈Nε

Jε(u).

Let H+
ε be the open subset of Hε given by

H+
ε = {u ∈ Hε : | supp(u) ∩ Λε| > 0},

and S+
ε = Sε ∩ H+

ε , where Sε is the unit sphere of Hε. Observe that S+
ε is a non-complete C1,1-manifold

of codimension 1, modeled on Hε and contained in H+
ε . Hence, Hε = TuS+

ε ⊕ Ru for each u ∈ S+
ε , where

TuS+
ε = {v ∈ Hε : 〈u, v〉ε = 0}.
The functional Jε satisfies the mountain pass geometry [42].

Lemma 3.4. For any fixed ε > 0, the functional Jε satisfies the following properties:
(a) there exist α, ρ > 0 such that Jε(u) ≥ α with ‖u‖ε = ρ;
(b) there exists e ∈ Hε such that ‖e‖ε ≥ ρ and Jε(e) < 0.

Proof. (a) For any u ∈ Hε \ {0}, it follows from (3.4) and Lemma 2.2 that

Jε(u) =
1
2
‖u‖2

ε − 1
2 · 2∗

μ

∫

RN

(
1

|x|μ ∗ G(εx, |u|2)
)

G(εx, |u|2)dx

≥ 1
2
‖u‖2

ε − C
(
‖u‖4

ε − ‖u‖2q
ε − ‖u‖2·2∗

μ
ε

)
.

Hence, we can find α, ρ > 0 such that Jε ≥ α with ‖u‖ε = ρ.
(b) Fix a positive function u0 ∈ H+

ε with supp (u0) ⊂ Λε, and observe

G(εx, |u0|2) = F (|u0|2).
Set

α(t) := P

(
tu0

‖u0‖ε

)

> 0 for t > 0,

where

P (u) =
1

2 · 2∗
μ

∫

RN

(
1

|x|μ ∗ G(εx, |u|2)
)

G(εx, |u|2)dx.
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By assumption (f3), we have

F (t) ≤ f(t)t, for t > 0.

Therefore, we deduce that

α′(t) ≥ 2 · 2∗
μ

t
α(t). (3.9)

Integrating (3.9) on [1, t ‖u0‖ε] with t > 1
‖u0‖ε

, we have

P (tu0) ≥ P

(
u0

‖u0‖ε

)

‖u0‖2·2∗
μ

ε t2·2∗
μ .

Hence, we have

Jε (tu0) =
t2

2
‖u0‖2

ε − P (tu0) ≤ C1t
2 − C2t

2·2∗
μ for t >

1
‖u0‖ε

.

Taking e = tu0 with t sufficiently large, we can see (b) holds. �

Since f is only continuous, we can apply the next two conclusions to overcome the non-differentiability
of Nε and the incompleteness of S+

ε .

Lemma 3.5. Suppose that the function V satisfies (V1)–(V2) and f satisfies (f1)–(f3), then the following
properties hold:

(A1) For each u ∈ H+
ε , let ϕu : R

+ → R be given by ϕu(t) = Jε(tu). Then, there exists a unique tu > 0
such that ϕ′

u(t) > 0 in (0, tu) and ϕ′
u(t) < 0 in (tu,∞).

(A2) There is a σ > 0 independent on u such that tu > σ for all u ∈ S+
ε . Furthermore, for each compact

set W ⊂ S+
ε , there is CW > 0 such that tu ≤ CW for all u ∈ W.

(A3) The map m̂ε : H+
ε → Nε given by m̂ε(u) = tuu is continuous and mε = m̂ε|S+

ε
is a homeomorphism

between S+
ε and Nε. Moreover, m−1

ε = u
‖u‖ε

.
(A4) If there is a sequence {un} ⊂ S+

ε such that dist(un, ∂S+
ε ) → 0, then ‖mε(un)‖ε → ∞ and Jε(mε(un)) →

∞.

Proof. (A1) We notice from the proof of Lemma 3.4 that ϕu(0) = 0, ϕu(t) > 0 for t > 0 small and
ϕu(t) < 0 for t > 0 large. Therefore, maxt≥0 ϕu(tu) is achieved at a global maximum point t = tu
verifying ϕ′

u(tu) = 0 and tuu ∈ Nε. From (f3), the definition of ϕ and | supp(u) ∩ Λε| > 0, we
may obtain the uniqueness of tu. Therefore, maxt≥0 ϕu(tu) is achieved at a unique t = tu such that
ϕ′

u(tu) = 0 and tuu ∈ Nε.
(A2) Suppose u ∈ S+

ε , then from (3.5) we have

t2u =
1
2∗

μ

∫

RN

(
1

|x|μ ∗ G(εx, |u|2)
)

g(εx, |tuu|2)|tuu|2dx ≤ C
(
t4u + t2q

u + t
2·2∗

μ
u

)
.

which implies that tu > σ for some σ > 0.
If W ⊂ S+

ε is compact, and suppose by contradiction that there is {un} ⊂ W such that tn := tun
→ ∞.

Since W is compact, there is u ∈ W such that un → u in Hε. Then, u ∈ W ⊂ S+
ε . Moreover, using the

proof of Lemma 3.4 (b), we have Jε(tnun) → −∞.
On the other hand, using the proof of lemma 3.4 (a), there exists ρ > 0 such that inf‖u‖ε=ρ Jε(u) >

0. Then combining this with (A1), we have cε = infNε
Jε(u) ≥ inf‖u‖ε=ρ Jε(u) > 0, which yields a

contradiction. Hence (A2) is true.

(A3) Firstly, we observe that mε, m̂ε and m−1
ε are well defined. In fact, by (A1), for each u ∈ H+

ε , there
exists a unique tu > 0 such that tuu ∈ Nε, hence there is a unique m̂ε(u) = tuu ∈ Nε. On the other
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hand, if u ∈ Nε, then u ∈ H+
ε . Therefore, m−1

ε = u
‖u‖ε

∈ S+
ε , is well defined and it is a continuous

function. Since

m−1
ε (mε(u)) = m−1

ε (tuu) =
tuu

‖tuu‖ε
= u, ∀u ∈ S+

ε ,

we conclude that mε is a bijection. To prove that m̂ε : H+
ε → Nε is continuous, let {un} ⊂ H+

ε and
u ∈ H+

ε satisfy un → u in H+
ε . By (A2), there is a t0 > 0 such that tn := tun

→ t0. From tnun ∈ Nε,
we obtain

t2n‖un‖2
ε =

1
2∗

μ

∫

RN

(
1

|x|μ ∗ G(εx, |tnun|2)
)

g(εx, |tnun|2)|tuun|2dx.

By Lemma 3.1 and passing to the limit as n → ∞, it follows that

t20‖u‖2
ε =

1
2∗

μ

∫

RN

(
1

|x|μ ∗ G(εx, |t0u|2)
)

g(εx, |t0u|2)|t0u|2dx

which means that t0u ∈ Nε and tu = t0. This proves m̂ε(un) → m̂ε(u) in H+
ε . So, m̂ε, mε are

continuous functions and (A3) is proved.
(A4) Let {un} ⊂ S+

ε be a subsequence such that dist(un, ∂S+
ε ) → 0, then for each v ∈ ∂S+

ε and n ∈ N,
we have |un| = |un − v| a.e. in Λε. Therefore, by (V1), (V2) and the Sobolev embedding, for any
t ∈ [2, 2∗], there exists a constant Ct > 0 such that

‖un‖Lt(Λε) ≤ inf
v∈∂S+

ε

‖un − v‖Lt(Λε)

≤ Ct

⎛

⎝ inf
v∈∂S+

ε

∫

Λε

(
|∇ε(un − v)|2 + Vε(x) |un − v|2

)
dx

⎞

⎠

1
2

≤ Ct dist
(
un, ∂S+

ε

)

for all n ∈ N. By (g2) and (g4), for each t > 0, we have
∫

RN

(
1

|x|μ ∗ G(εx, |tun|2)
)

G(εx, |tun|2)dx

=
∫

Λε

(
1

|x|μ ∗ G(εx, |tun|2)
)

G(εx, |tun|2)dx +
∫

Λc
ε

(
1

|x|μ ∗ G(εx, |tun|2)
)

G(εx, |tun|2)dx

≤ C
(
t4|un|4L2p0 (Λε) + t2q|un|2q

Lqp0 (Λε) + t2·2∗
μ |un|2·2∗

μ

L2∗ (Λε)

)
+

k0t
2

2K

∫

Λc
ε

V (εx) |un|2 dx

≤ C
(
t4|un|4L2p0 (Λε) + tqp0 |un|2q

L2q(Λε) + t2·2∗
μ |un|2·2∗

μ

L2∗ (Λε)

)
+

k0t
2

2K
‖un‖2

ε

≤ C
(
t4 dist(un, ∂S+

ε )4 + t2q dist(un, ∂S+
ε )2q + t2·2∗

μ dist(un, ∂S+
ε )2·2∗

μ

)
+

k0t
2

2K
.

Therefore,

lim sup
n

∫

RN

(
1

|x|μ ∗ G(εx, |tun|2)
)

G(εx, |tun|2)dx ≤ k0t
2

2K
, ∀t > 0.
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On the other hand, from the definition of mε and the last inequality, for all t > 0, we obtain

lim inf
n

Jε(mε (un)) ≥ lim inf
n

Jε(tun)

≥ lim inf
n

t2

2
‖un‖2

ε − k0t
2

2K

=
K − k0

2K
t2.

This implies that

lim inf
n

1
2
‖mε(un)‖2

ε ≥ lim inf
n

Jε (mε(un)) ≥ K − k0

2K
t2, ∀t > 0.

From the arbitrariness of t > 0, we see that

‖mε(un)‖ε → ∞ and Jε (mε(un)) → ∞ as n → ∞.

This completes the proof of Lemma 3.5.
�

Now we define the function

Ψ̂ε : H+
ε → R

by Ψ̂ε(u) = Jε(m̂ε(u)) and denote by Ψε(u) = (Ψ̂ε(u))|S+
ε
.

From Lemma 3.2, by a similar argument to that of [39, Corollary 10], we have the following results.

Lemma 3.6. Assume that (V1)–(V2) and (f1)–(f3) are satisfied, then

(B1) Ψ̂ε ∈ C1(H+
ε , R) and

〈Ψ̂′
ε(u), v〉 =

‖m̂ε(u)‖ε

‖u‖ε
〈J ′

ε(m̂ε(u)), v〉, ∀u ∈ H+
ε and ∀v ∈ Hε.

(B2) Ψε ∈ C1(S+
ε , R) and

〈Ψ′
ε(u), v〉 = ‖mε(u)‖ε〈J ′

ε(m̂ε(u)), v〉, ∀v ∈ TuS+
ε .

(B3) If {un} is a (PS)c sequence of Ψε, then {mε(un)} is a (PS)c sequence of Jε. If {un} ⊂ Nε is a
bounded (PS)c sequence of Jε, then {m−1

ε (un)} is a (PS)c sequence of Ψε.
(B4) u is a critical point of Ψε if and only if mε(u) is a critical point of Jε. Moreover, the corresponding

critical values coincide and

inf
u∈S+

ε

Ψε(u) = inf
u∈Nε

Jε(u).

As in [39], we have the following variational characterization of the infimum of Jε over Nε:

cε = inf
u∈Nε

Jε(u) = inf
u∈H+

ε

sup
t>0

Jε(tu) = inf
u∈S+

ε

sup
t>0

Jε(tu). (3.10)

Lemma 3.7. Suppose that (f1)–(f3) hold. Assume that {un} ⊂ Nε is a (PS)c sequence with

0 < cε ≤ c <
N + 2 − μ

2(2N − μ)
S

2N−μ
N+2−μ

H,L ,

then {un} is bounded in Hε. Moreover, {un} cannot be vanishing, namely there exist r, δ > 0 and a
sequence {yn} ⊂ R

N such that

lim inf
n→∞

∫

Br(yn)

|un|2dx ≥ δ.
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Proof. Firstly, we prove the boundedness of {un}. Arguing by contradiction, we suppose that {un} is
unbounded in Hε. Without loss of generality, we assume that ‖un‖ε → ∞. Let vn := un

‖un‖ε
, up to a

subsequence, then there exists v ∈ Hε such that
vn ⇀ v weakly in Hε,

vn → v strongly in Lr
loc(R

N ), 2 ≤ r < 2∗,

vn(x) → v(x) a.e. in R
N .

If vn is vanishing, i.e.,

lim
n→∞ sup

y∈RN

∫

Br(y)

|vn|2(x)dx = 0,

then Lemma 2.4 implies that vn → 0 in Lt(RN , R) for all t ∈ (2, 2∗). By (3.2) and (3.3), we have
∫

RN

∫

RN

F (|tvn(x)|2)F (|tvn(y)|2)
|x − y|μ dydx → 0,

∫

RN

∫

RN

F (|tvn(y)|2)
|x − y|μ |tvn(x)|2∗

μdydx → 0. (3.11)

Hence for sufficiently large n, we have

cε + on(1) = Iε (un) ≥ sup
t≥0

Iε (tvn)

≥ sup
t≥0

(
t2

2
− t2·2∗

μ

2 · 2∗
μ

S
−2∗

μ

H,L

)

+ on(1)

=
N + 2 − μ

2(2N − μ)
S

2N−μ
N+2−μ

H,L + on(1),

which is a contradiction. Therefore, {vn} is nonvanishing, namely there exists yn ∈ R
N and δ > 0 such

that
∫

Br(yn)

|vn|2(x)dx > δ. (3.12)

Denote ṽn(·) = vn (· + yn), then we can suppose that

ṽn ⇀ ṽ weakly in Hε,

ṽn → ṽ strongly in Lr
loc

(
R

N
)
, 2 ≤ r < 2∗,

ṽn(x) → ṽ(x) a.e. in R
N .

By (3.12), we have ṽ 	= 0. Hence, there exists a measure set E such that ṽ(x) 	= 0 for x ∈ E. Let
|ûn| := |ṽn|‖un‖ε. Then, |ûn(x)| → +∞ for x ∈ E. By (f3), we have

∫

E

∫

E

1
|x − y|μ

F (|ûn(y)|2)
|û(y)|2 |ṽn(y)|2 F (|ûn(x)|2)

|û(x)|2 |ṽn(x)|2dydx → +∞.

Hence, we know

lim
n→∞

∫

RN

∫

RN

1
|x − y|μ

F (|ûn(y)|2)
|ûn(y)|2 |ṽn(y)|2 F (|ûn(x)|2)

|ûn(x)|2 |ṽn(x)|2dydx = +∞,

namely

lim
n→∞

∫

RN

∫

RN

1
|x − y|μ

F (|un(y)|2)
‖un‖2

ε

F (|un(x)|2)
‖un‖2

ε

dydx = +∞.
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Then, we have

cε

‖un‖4
ε

+ on(1) =
Iε (un)
‖un‖4

ε

→ −∞,

which is a contradiction. Therefore, {un} is bounded in Hε.
Next we prove the second conclusion. By contradiction, if {un} is vanishing, then similar to (3.12),

we have

cε + on(1) = Jε (un) =
1
2

‖un‖2
ε − 1

2 · 2∗
μ

∫

RN

∫

RN

|un(y)|2∗
μ |un(x)|2∗

μ

|x − y|μ dydx + on(1) (3.13)

and

0 = ‖un‖2
ε −

∫

RN

∫

RN

|un(y)|2∗
μ |un(x)|2∗

μ

|x − y|μ dydx + on(1). (3.14)

If ‖un‖ε → 0, then it follows from (3.13) and (3.14) that cε = 0, which is impossible. Then, ‖un‖ε � 0
and by virtue of (3.14) we get

‖un‖2
ε ≤ S

2∗
μ

H,L ‖un‖2·2∗
μ

ε + on(1).

Hence,

lim inf
n→∞ ‖un‖2

ε ≥ S
2N−μ

N+2−μ

H,L .

From (3.13) and (3.14), we deduce that

cε + on(1) = Iε (un) ≥ N + 2 − μ

2(2N − μ)
S

2N−μ
N+2−μ

H,L ,

which yields a contradiction. Therefore, {un} is nonvanishing. �

Lemma 3.8. Assume (V1)–(V2) and (f1)–(f3) hold, the functional Jε satisfies the (PS)c condiction for

all c ∈
[

cε,
N+2−μ
2(2N−μ)S

2N−μ
N+2−μ

H,L

)

.

Proof. Let {un} be a (PS)c sequence for Jε. By Lemma 3.7, {un} is bounded in Hε. Therefore, up to a
subsequence, un ⇀ u in Hε and un → u in Lr

loc(R
N ) for any r ∈ [2, 2∗).

Let R > 0 be such that Λε ⊂ BR(0). We show that for each ξ > 0 and R large enough, it holds that

lim sup
n→∞

∫

Bc
R

|∇εun|2 + Vε|un|2dx < ξ. (3.15)

Let us consider a cut-off function ηR ∈ C∞(RN , R) defined as

ηR(x) =

{
0 if x ∈ BR,

1 if x /∈ B2R,

and |∇ηR|∞ ≤ C/R, where C > 0 is a constant independent of R. Since {unηR} is bounded in Hε, it
follows that

〈J ′
ε(un), unηR〉 = on(1),
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therefore,

�
⎛

⎝

∫

RN

|∇εun∇ε(unηR)dx

⎞

⎠+
∫

RN

Vε|un|2ηRdx

=
1
2∗

μ

∫

RN

(
1

|x|μ ∗ G(εx, |un|2)
)

g(εx, |un|2)|un|2ηRdx + on(1).

Since ∇ε(unηR) = iun∇ηR + ηR∇εun, using (g4), we obtain
∫

RN

(
|∇εun|2 + Vε |un|2

)
ηRdx

=
1
2∗

μ

∫

RN

(
1

|x|μ ∗ G(εx, |un|2)
)

g(εx, |un|2)|un|2ηRdx − �
⎛

⎝

∫

RN

iūn∇εun∇ηRdx

⎞

⎠+ on(1)

≤ k0

2 · 2∗
μK

∫

RN

Vε(x)|u(x)|2dxdy − �
⎛

⎝

∫

RN

iūn∇εun∇ηRdx

⎞

⎠+ on(1).

By the Hölder inequality and the boundedness of {un} in Hε, we deduce that
(

1 − k0

2 · 2∗
μK

)
⎛

⎝

∫

RN

(|∇εun|2 + Vε|un|2)dx

⎞

⎠ ≤ C

R
|ūn|2|∇εun|2 + on(1)

≤ C1

R
+ on(1),

and so (3.15) holds.
Next we prove that un → u in Hε as n → ∞. Setting ωn = ‖un − u‖2

ε, we have

ωn = 〈J ′
ε(un), un〉 − 〈J ′

ε(un), u〉 +
1
2∗

μ

∫

RN

(
1

|x|μ ∗ G(εx, |un|2)
)

g(εx, |un|2)(|un|2 − |u|2)dx + on(1).

Observe that 〈J ′
ε(un), un〉 = 〈J ′

ε (un) , u〉 = on(1), so we only need to prove that
∫

RN

(
1

|x|μ ∗ G(εx, |un|2)
)

g(εx, |un|2)(|un|2 − |u|2)dx = on(1) as n → ∞.

By the [21, lemma 2.4], we have

lim
n→∞

∫

BR

(
1

|x|μ ∗ G(εx, |un|2)
)

g(εx, |un|2)(|un|2 − |u|2)dx = 0.

Now, by (g4) and (3.15) we obtain
∫

Bc
R

(
1

|x|μ ∗ G(εx, |un|2)
)

g(εx, |un|2)(|un|2 − |u|2)dx ≤ k0

K

∫

Bc
R

|∇εun|2 + Vε|un|2dx <
k0

K
ξ.

Therefore, we have

lim
n→∞

∫

RN

(
1

|x|μ ∗ G(εx, |un|2)
)

g(εx, |un|2)(|un|2 − |u|2)dx = 0.

�



  183 Page 16 of 32 H. Tang ZAMP

Since f is only assumed to be continuous, the following Lemma is required for the multiplicity result
in the next section.

Lemma 3.9. The functional Ψε satisfies the (PS)c condiction in S+
ε for all c ∈

[

cε,
N+2−μ
2(2N−μ)S

2N−μ
N+2−μ

H,L

)

.

Proof. Let {un} ⊂ S+
ε be a (PS)c sequence for Ψε. Thus, Ψε (un) → c and ‖Ψ′

ε‖∗ → 0, where ‖ · ‖∗ is the
norm in the dual space (Tun

S+
ε )∗. It follows from Lemma 3.6 (B3) that {mε(un)} is a (PS)c sequence for

Jε in Hε. From Lemma 3.8, we see that there exists a u ∈ S+
ε such that mε(un) → mε(u) in Hε. From

Lemma 3.5 (A3), we conclude that

un → u in S+
ε ,

and the proof is complete. �

4. The autonomous problem

For our scope, we start by considering the limit problem associated to (2.1), namely the problem

− Δu + V0u =

(
|u(y)|2∗

μ + F (|u(y)|2)
|x − y|μ

)(

|u|2∗
μ−2u +

1
2∗

μ

f(|u|2)u
)

in R
N , (4.1)

which has the following associated functional

I0(u) =
1
2

∫

RN

(|∇u|2 + V0|u|2)dx − 1
2 · 2∗

μ

∫

RN

∫

RN

(|u(x)|2∗
μ + F (|u(x)|2))(|u(y)|2∗

μ + F (|u(y)|2))
|x − y|μ dxdy.

The functional I0 is well defined on the Hilbert space H0 = H1(RN , R) with the inner product

〈u, v〉V0 =
∫

RN

(∇u∇v + V0uv)dx,

and the norm

‖u‖V0 =

⎛

⎝

∫

RN

(|∇u|2 + V0|u|2)dx

⎞

⎠

1
2

.

We denote the Nehari manifold associated to I0 by

N0 = {u ∈ H0 \ {0} : 〈I ′
0(u), u〉 = 0}.

and the least energy on N0 is defined by

cV0 = inf
u∈N0

I0(u).

Let H+
0 be the open subset of H0 given by

H+
0 = {u ∈ H0 : | supp(u) ∩ Λε| > 0},

and S+
0 = S0 ∩ H+

0 , where S0 is the unit sphere of H0. Note that S+
0 is a non-complete C1,1-manifold

of codimension 1, modeled on H0 and contained in H+
0 . Therefore, H0 = TuS+

0 ⊕ Ru for each u ∈ S+
0 ,

where TuS+
0 = {v ∈ H0 : 〈u, v〉V0 = 0}.

Next we have the following Lemmas and the proofs that follow from a similar argument used in the
proofs of Lemmas 3.5 and 3.6.

Lemma 4.1. Let V0 be given in (V1) and suppose that f satisfies (f1)–(f3). Then, the following properties
hold:



ZAMP Multiplicity and concentration behavior of solutions Page 17 of 32   183 

(a1) For each u ∈ H0 \ {0}, let φu : R
+ → R be given by φu(t) = I0(tu). Then, there exists a unique

tu > 0 such that φ′
u(t) > 0 in (0, tu) and φ′

u(t) < 0 in (tu,∞).
(a2) There is a σ > 0 independent on u such that tu > σ for all u ∈ S+

0 . Moreover, for each compact set
W ⊂ S+

0 , there is CW > 0 such that tu ≤ CW for all u ∈ W.
(a3) The map m̂ : H0 \{0} → N0 given by m̂(u) = tuu is continuous and m = m̂|S+

0
is a homeomorphism

between S+
0 and N0. Moreover, m−1(u) = u

‖u‖0
.

(a4) If there is a sequence {un} ⊂ S+
ε such that dist(un, ∂S+

ε ) → 0, then we have ‖mε(un)‖ε → ∞ and
I0(mε(un)) → ∞.

We shall consider the functional defined by

Ψ̂0(u) = I0(m̂(u)) and Ψ0 = (Ψ̂0)|S+
0
.

Lemma 4.2. Let V0 be given in (V1) and suppose that f satisfies (f1)-(f3), then

(b1) Ψ̂0 ∈ C1(H+
0 , R) and

〈Ψ̂′
0(u), v〉 =

‖m̂(u)‖0

‖u‖0
〈I ′

0(m̂(u)), v〉, ∀u ∈ H+
0 and ∀v ∈ H0.

(b2) Ψ0 ∈ C1(S+
0 , R) and

〈Ψ′
0(u), v〉 = ‖m(u)‖0〈I ′

0(m(u)), v〉,∀v ∈ TS+
0 .

(b3) If {un} is a (PS)c sequence of Ψ0, then {m(un)} is a (PS)c sequence of I0. If {un} ⊂ N0 is a
bounded (PS)c sequence of I0, then {m−1(un)} is a (PS)c sequence of Ψ0.

(b4) u is a critical point of Ψ0 if and only if m(u) is a critical point of I0. Moreover, the corresponding
critical values coincide and

inf
u∈S+

0

Ψε(u) = inf
u∈N0

I0(u).

Similar to the previous argument, we have the following variational characterization of the infimum
of I0 over N0:

cV0 = inf
u∈N0

I0(u) = inf
u∈H+

0

sup
t>0

I0(tu) = inf
u∈S+

0

sup
t>0

I0(tu).

The next result is useful in later arguments.

Lemma 4.3. Let {un} ∈ H0 be a (PS)c sequence with c ∈
[

cV0 ,
N+2−μ
2(2N−μ)S

2N−μ
N+2−μ

H,L

)

for I0 such that un ⇀ 0.

Then, only one of the following conclusions holds.
(i) un → 0 in H0 as n → ∞;

(ii) there exists R, β > 0 and {yn} ⊂ R
N such that

∫

BR(yn)

|un|2 ≥ β.

Proof. Suppose that (ii) does not hold. Then, for any R > 0, we have

lim
n

sup
y∈RN

∫

BR(yn)

|un|2 = 0.

Similarly to Lemma 3.7, {un} is bounded in H0. Then, by Lemma 2.4, we know

un → 0 in Lr(RN ), r ∈ (2, 2∗).
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Thus, by (f2) we have
∫

RN

∫

RN

(|un(x)|2∗
μ + F (|un(x)|2))(|un(y)|2∗

μ + F (|un(y)|2))
|x − y|μ dxdy = on(1).

From 〈I ′
0(un), un〉 → 0, we get

‖un‖2
0 = on(1).

Therefore the conclusion follows. �

From Lemma 4.3, we can see that, if u is the weak limit of a (PS)cV0
sequence {un} for the functional

I0, then we can assume un 	= 0. Otherwise we would have un ⇀ 0 and once it does not occur that un → 0,
we conclude from Lemma 4.3 that there exist {yn} ⊂ R

N and R, β > 0 such that

lim inf
n→+∞

∫

BR(yn)

|un|2dx ≥ β > 0.

Then set vn(x) = un(x + yn), making a change of variable, we can prove that {vn} is also a (PS)cV0

sequence for the functional I0, it is bounded in H0 and there exists v ∈ H0 such that vn → v in H0 with
v 	= 0.

Next we devote to estimating the least energy cV0 .

Lemma 4.4. There exists uε such that

sup
t≥0

I0(tuε) <
N + 2 − μ

2(2N − μ)
(SH,L)

2N−μ
N+2−μ ,

provided that one of the following conditions holds:

(i) N+2−μ
N−2 < p < 2∗

μ, N = 3, 4 and λ > 0;
(ii) 2N−μ

N < p ≤ N+2−μ
N−2 , N = 3, 4 and λ sufficiently large;

(iii) 2N+2−μ
N−2 < p < 2∗

μ, N ≥ 5 and λ > 0;
(iv) 2N−μ

N < p ≤ 2N−2−μ
N−2 , N ≥ 5 and λ sufficiently large.

Proof. We consider ψ ∈ C∞
0

(
R

N
)

such that

ψ(x) =
{

1, if x ∈ Bδ,
0, if x ∈ R

N\B2δ,
0 ≤ |ψ(x)| ≤ 1, |Dψ(x)| ≤ C,

where C > 0 is a constant. For ε > 0, we define

Uε(x) := ε
2−N

2 U
(x

ε

)
,

uε(x) := ψ(x)Uε(x).

From [21], we have the estimates
∫

RN

|∇uε|2 dx = C(N,μ)
N−2
2N−μ · N

2 S
N
2

H,L + O
(
εN−2

)
(4.2)

and
∫

RN

∫

RN

|uε(x)|2∗
μ |uε(y)|2∗

μ

|x − y|μ dxdy ≥ C(N,μ)
N
2 S

2N−μ
2

H,L − O
(
εN− μ

2

)
. (4.3)
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By direct computation, we have
∫

RN

∫

RN

|uε(x)|p|uε(y)|p
|x − y|μ dxdy =

∫

RN

∫

RN

|ψ(x)Uε(x)|p|ψ(y)Uε(y)|p
|x − y|μ dxdy

=
∫

B2δ

∫

B2δ

|ψ(x)Uε(x)|p|ψ(y)Uε(y)|p
|x − y|μ dxdy ≥

∫

Bδ

∫

Bδ

|Uε(x)|p|Uε(y)|p
|x − y|μ dxdy

= [N(N − 2)](N−2)pε(2−N)p

∫

Bδ

∫

Bδ

1
(
1 +

∣
∣x

ε

∣
∣2
)

(N−2)p
2 |x − y|μ

(
1 +

∣
∣y

ε

∣
∣2
) (N−2)p

2

dxdy

= [N(N − 2)]
(N−2)p

2 ε2N−μ−(N−2)p

∫

Bδ

∫

Bδ

1

(1 + |x|2) (N−2)p
2 |x − y|μ (1 + |y|2) (N−2)p

2

dxdy

= C3ε
2N−μ−(N−2)p.

(4.4)

Case 1. N+2−μ
N−2 < p < 2∗

μ and N = 3, 4 or 2N−2−μ
N−2 < p < 2∗

μ and N ≥ 5.
From Lemma 4.1, there exists unique tε > 0 such that tεuε ∈ N0. Now we estimate I0(tεuε). Notice that

I0(tεuε) =
t2ε
2

∫

RN

(|∇uε|2 + V0|uε|2)dx

− 1
2 · 2∗

μ

∫

RN

∫

RN

(|tεuε(x)|2∗
μ + F (|tεuε(x)|2))(|tεuε(y)|2∗

μ + F (|tεuε(y)|2))
|x − y|μ dxdy

≤ t2ε
2

∫

RN

(|∇uε|2 + V0|uε|2)dx − t
2·2∗

μ
ε

2 · 2∗
μ

∫

RN

∫

RN

|uε(x)|2∗
μ |uε(y)|2∗

μ

|x − y|μ dxdy

− 1
2 · 2∗

μ

∫

RN

∫

RN

F (|tεuε(x)|2)F (|tεuε(y)|2)
|x − y|μ dxdy

≤
⎛

⎝
t2ε
2

∫

RN

|∇uε|2dx − t
2·2∗

μ
ε

2 · 2∗
μ

∫

RN

∫

RN

|uε(x)|2∗
μ |uε(y)|2∗

μ

|x − y|μ dxdy

⎞

⎠

+

⎛

⎝
t2ε
2

∫

RN

V0|uε|2dx − λ2

2 · 2∗
μ

t2p
ε

∫

RN

∫

RN

|uε(x)|p|uε(y)|p
|x − y|μ dxdy

⎞

⎠

:=I1 + I2.

For I1, we may assume that

E :=
∫

RN

|∇uε|2dx,

F =
∫

RN

∫

RN

|uε(x)|2∗
μ |uε(y)|2∗

μ

|x − y|μ dxdy,

and consider the function θ : [0,∞) → R defined by

θ(t) =
1
2
Et2 − 1

2 · 2∗
μ

Ft2·2∗
μ .
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We have that t0 =
(

E
F

) 1
2·2∗

μ−2 is a maximum point of θ and

θ(t0) =
2∗

μ − 1
2 · 2∗

μ

E
2∗

μ
2∗

μ−1 1
F 1−2∗

μ
.

Hence, we have

I1 ≤ N + 2 − μ

2(2N − μ)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∫

RN

|∇uε|2dx

(
∫

RN

∫

RN

|uε(x)|2∗
μ |uε(y)|2∗

μ

|x−y|μ dxdy

) N−2
2N−μ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

2N−μ
N+2−μ

≤ N + 2 − μ

2(2N − μ)

⎛

⎜
⎜
⎝

(C(N,μ))
N−2
2N−μ · N

2 S
N
2

H,L + O
(
εN−2

)

(
C(N,μ)

N
2 S

2N−μ
2

H,L − O
(
ε

2N−μ
2

)) N−2
2N−μ

⎞

⎟
⎟
⎠

2N−μ
N+2−μ

=
N + 2 − μ

2(2N − μ)
(SH,L)

2N−μ
N+2−μ

⎛

⎜
⎜
⎝

1 + O
(
εN−2

)

(
1 − O

(
ε

2N−μ
2

)) 2N−μ
N+2−μ

⎞

⎟
⎟
⎠

2N−μ
N+2−μ

≤ N + 2 − μ

2(2N − μ)
(SH,L)

2N−μ
N+2−μ

⎛

⎜
⎜
⎝1 + C(N,μ)

O
(
εN−2

)
+ O

(
ε

2N−μ
2

)

(
1 − O

(
ε

2N−μ
2

)) N−2
2N−μ

⎞

⎟
⎟
⎠ .

Observing that for ε > 0 sufficiently small, it holds
(
1 − O

(
ε

N−2
2N−μ

)) N−2
2N−μ ≥ 1

2
.

Therefore, we conclude that for any ε > 0 sufficiently small, we have

I1 (tεuε) ≤ N + 2 − μ

2(2N − μ)
(SH,L)

2N−μ
N+2−μ + O

(
εmin{N−2, 2N−μ

2 }) . (4.5)

We claim that there exists C0 > 0 such that for all ε > 0,

t2p
ε ≥ C0.

In fact, assume that there exists a sequence {εn} and εn → 0 as n → ∞, such that tεn
→ 0 as n → ∞.

Thus,

0 < cV0 ≤ sup
t≥0

I0(tuεn
) = I0(tεn

uεn
).

Since uεn
∈ H0 is bounded and tεn

→ 0 as n → ∞, we have tεn
uεn

→ 0 in H0.
The continuity of I0 implies that I0(tεn

uεn
) → I0(0) = 0. Therefore,

0 < cV0 ≤ lim
n→∞ I0(tεn

uεn
) = 0,

which is a contradiction. The claim is holds.
From (4.5) and the above claim, we have

I0(tεuε) <
N + 2 − μ

2(N − μ)
(SH,L)

2N−μ
N+2−μ + O (εη) + C2

∫

RN

|uε(x)|2dx − C3ε
2N−μ−(N−2)p. (4.6)
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We want to obtain that

lim
ε→0

ε−η(C2

∫

RN

|uε(x)|2dx − C3ε
2N−μ−(N−2)p) = −∞. (4.7)

In order to do that, it suffices to show that

lim
ε→0

ε−η(C2

∫

Bδ

|uε(x)|2dx − C3ε
2N−μ−(N−2)p) = −∞ (4.8)

and

C2

∫

B2δ\Bδ

|uε(x)|2dx − C3ε
2N−μ−(N−2)p = O (εη) . (4.9)

Suppose that (4.8) and (4.9) hold, let us continue to complete our proof. Since

O (εη) + C2

∫

RN

|uε(x)|2dx − C3ε
2N−μ−(N−2)p

= εη

⎡

⎣
O (εη)

εη
+ ε−η

⎛

⎝C2

∫

RN

|uε(x)|2dx − C3ε
2N−μ−(N−2)p

⎞

⎠

⎤

⎦ ,

from (4.7), we have

O (εη) + C2

∫

RN

|uε(x)|2dx − C3ε
2N−μ−(N−2)p < 0 (4.10)

for ε > 0 sufficiently small. Thus, (4.6) and (4.10) guarantee

sup
t≥0

I0(tuε) <
N + 2 − μ

2(2N − μ)
(SH,L)

2N−μ
N+2−μ

for ε > 0 sufficiently small and fixed. Once (4.8) and (4.9) are verified, the proof of Case 1 is complete.
Now we prove (4.8). By direct computation, we know

∫

Bδ

|uε(x)|2dx = NωN [N(N − 2)]
N−2

2 ε2

δ
ε∫

0

rN−1

(1 + r2)N−2
dr,

where ωN denotes the volume of the unit ball in R
N .

Let

Iε : = ε−η

⎛

⎝C2

∫

Bδ

|uε(x)|2dx − C3ε
2N−μ−(N−2)p

⎞

⎠

= ε−η

⎛

⎜
⎝C4ε

2

δ
ε∫

0

rN−1

(1 + r2)N−2
dr − C3ε

2N−μ−(N−2)p

⎞

⎟
⎠ .
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The Case N=3. In this case, we have 5−μ < p < 2∗
μ, thus 5−μ−p < 0. And we know min

{
N − 2, 2N−μ

2

}
=

N − 2 = 1 by 0 < μ < N . It is easy to show that

ε2

δ
ε∫

0

r2

1 + r2
dr = ε

(

δ − ε arctan
(

δ

ε

))

.

Therefore,

Iε = C4

(

δ − ε arctan
(

δ

ε

))

− C3ε
5−μ−p.

Our claim follows.
The Case N=4. In this case, 6−μ

2 < p < 2∗
μ implies 6−μ−2p < 0 and min

{
N − 2, 2N−μ

2

}
= N −2 = 2

if 0 < μ < 4. We also have

ε2

δ
ε∫

0

r3

(1 + r2)2
dr =

ε2

2

[

ln
(

1 +
δ2

ε2

)

+
ε2

ε2 + δ2
− 1

]

.

So,

Iε =
C4

2

(

ln
(

1 +
δ2

ε2

)

+
ε2

ε2 + δ2
− 1

)

− C3ε
6−μ−2p.

Our claim follows.
The Case N ≥ 5. We have

Iε = ε2−min{N−2, 2N−μ
2 }

⎛

⎜
⎝C4

δ
ε∫

0

rN−1

(1 + r2)N−2
dr − C3ε

2N−μ−(N−2)p−2

⎞

⎟
⎠ .

It is easy to show that if N ≥ 5, then the integral

lim
ε→0

δ
ε∫

0

rN−1

(1 + r2)N−2
dr

converges.
There are two cases left to be considered:
• 0 < μ < 4 and N ≥ 5;
• μ ≥ 4 and N ≥ 5.
Assume that 0 < μ < 4 and N ≥ 5, we have

2 − η = 2 − min
{

N − 2,
2N − μ

2

}

= −N + 4 < 0.

Also 2N−μ−2
N−2 < p < 2N−μ

N−2 implies 2N − μ − (N − 2)p − 2 < 0. Therefore, Iε → −∞ as ε → 0. Now we
consider the case μ ≥ 4 and N ≥ 5. We have N − 2 ≥ 2N−μ

2 and therefore

2 − η = 2 − min
{

N − 2,
2N − μ

2

}

= 2 − N +
μ

2
< 0.

Since

Iε = ε2−N+ μ
2

⎡

⎢
⎣C4

δ
ε∫

0

rN−1

(1 + r2)N−2
dr − C3ε

2N−μ−(N−2)p−2

⎤

⎥
⎦ ,
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we conclude that Iε → −∞ as ε → 0. We are done.
Now we prove (4.9).

For δ > 0 sufficiently large, we have U2
ε (x) ≤ ε1+η if |x| ≥ δ. Since

1
εη

⎡

⎢
⎣C2

∫

B2δ\Bδ

|uε(x)|2dx − C3ε
2N−μ−(N−2)p

⎤

⎥
⎦ <

C2

εη

∫

B2δ\Bδ

ψ2(x)U2
ε (x)dx ≤ C2ε‖ψ‖2 ≤ C1ε‖ψ‖ε,

our proof is complete.
Case 2. For λ sufficiently large, 2N−μ

N < p ≤ N+2−μ
N−2 and N = 3, 4 or 2N−μ

N < p ≤ 2N−2−μ
N−2 and N ≥ 5.

From lemma 4.1, we know that maxt≥0 I0(tuε) is attained at some tλ > 0. Since I ′
0(tλuε) = 0, we have

∫

RN

(|∇uε|2 + V0|uε|2
)
dx =

1
2∗

μt2λ

∫

RN

∫

RN

(|uε(x)|2∗
μ + F (|uε(x)|2))(|uε(y)|2∗

μ + F (|uε(y)|2))
|x − y|μ dxdy

≥ 1
2∗

μ

λ2t2p−2
λ

∫

RN

∫

RN

|uε(x)|p|uε(y)|p
|x − y|μ dxdy.

Thus, tλ → 0 as λ → +∞ and

max
t≥0

I0 (tuε) =
t2λ
2

∫

RN

(|∇uε|2 + V0|uε|2
)
dx − 1

2 · 2∗
μ

∫

RN

(
1

|x|μ ∗ G(εx, |tλuε|2)
)

G(εx, |tλuε|2)dx

<
t2λ
2

∫

RN

(|∇uε|2 + V0|uε|2
)
dx.

Since tλ → 0 as λ → +∞ and N+2−μ
2(N−μ) (SH,L)

2N−μ
N+2−μ > 0, we conclude that

t2λ
2

∫

RN

(|∇uε|2 + V0|uε|2
)
dx <

N + 2 − μ

2(2N − μ)
(SH,L)

2N−μ
N+2−μ

for λ > 0 sufficiently large.
Therefore,

sup
t≥0

I0 (tuε) <
N + 2 − μ

2(2N − μ)
(SH,L)

2N−μ
N+2−μ

for λ > 0 sufficiently large. �

Theorem 4.1. Assume that (f1)–(f3) hold. Then, autonomous problem (4.1) has a positive ground state
solution u with I0(u) = cV0 .

Proof. By Lemma 3.4 with V (x) = V0 and the mountain pass theorem without (PS) condition, there
exists a (PS)cV0

sequence {un} ⊂ H0 of I0 with

cV0 <
N − μ + 2
2(2N − μ)

(SH,L)
2N−μ

N+2−μ .

If u0 ∈ N0 satisfies I0 (u0) = cV0 , then m−1(u0) ∈ S0 is a minimizer of Ψ0, so that u0 is a critical
point of I0 by Lemma 4.2. Now, we show that there exists a minimizer u ∈ N0 of I0|N0

. Since infS0 Ψ0 =
infN0 I0 = cV0 and S0 is a C1 manifold, by Ekeland’s variational principle, there exists a sequence ωn ⊂ S0

with Ψ0 (ωn) → cV0 and Ψ′
0 (ωn) → 0 as n → ∞. Put un = m (ωn) ∈ N0 for n ∈ N. Then by Lemma 4.2

(b3), we have I0 (un) → cV0 and I ′
0 (un) → 0 as n → ∞. Similar to the proof of Lemma 3.7, it is easy to

check that {un} is bounded in H0. Thus, we have un ⇀ u in H0, un → u in Lr
loc(R

N ), 1 ≤ r < 2∗ and
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un → u a.e. in R
N . Similar to the proof of Lemma 3.1, we have I ′

0(u) = 0. From Lemma 4.3, we know
that u 	= 0. Moreover,

cV0 ≤ I0(u) = I0(u) − 1
2

〈I ′
0(u), u〉

=
1

2 · 2∗
μ

∫

RN

(
1

|x|μ ∗ G(εx, |u|2)
)
(
g(εx, |u|2) − G(εx, |u|2)) dx

≤ 1
2 · 2∗

μ

∫

RN

∫

RN

(
1

|x|μ ∗ G(εx, |un|2)
)
(
g(εx, |un|2) − G(εx, |un|2)) dx

= lim inf
n→∞

(

I0(un) − 1
2
〈I ′

0(un), un〉
)

= cV0 ,

where we used Fatou’s lemma. Therefore, I0(u) = cV0 , which means that u is a ground state solution for
(4.1). From the assumption of f , by [11, Propositions 6 and 7], we know that u(x) > 0 for x ∈ R

N . The
proof is complete. �

The next result is a compactness result on autonomous problem which we will use later.

Lemma 4.5. Let (un) ⊂ N0 be a sequence such that I0 (un) → cV0 . Then, {un} has a convergent subse-
quence in H0.

Proof. Since {un} ⊂ N0, it follows from Lemma 4.1 (a3), Lemma 4.2 (b4) and the definition of cV0 that

vn = m−1 (un) =
un

‖un‖V0

∈ S+
0 , ∀n ∈ N

and

Ψ0 (vn) = I0 (un) → cV0 = inf
S+
0

Ψ0(u).

Although S+
0 is not a complete C1 manifold, we still can apply Ekeland’s variational principle to the

functional E0 : H → R ∪ {∞} defined by

E0(u) := Ψ̂0(u) if u ∈ S+
0

and

E0(u) := ∞ if u ∈ ∂S+
0 ,

where H = S+
0 is the complete metric space equipped with the metric

d(u, v) := ‖u − v‖0.

In fact, by Lemma 4.1 (a4), E0 ∈ C(H, R ∪ {∞}), and from Lemma 4.2 (b4), E0 is bounded from below.
Therefore, there exists a sequence {ṽn} ⊂ S+

0 such that {ṽn} is a (PS)cV0
sequence for Ψ0 on S+

0 and

‖ṽn − vn‖0 = on(1).

Arguing as in Lemma 3.8, we obtain the conclusion of this lemma. �



ZAMP Multiplicity and concentration behavior of solutions Page 25 of 32   183 

5. Solutions for the penalized problem

This subsection is devoted to proving a multiplicity result for the modified problem (3.1) by applying the
Ljusternik–Schnirelmann category theory.

Let δ > 0 be such that Mδ ⊂ Λ, ω ∈ H1(RN , R) be a positive ground state solution of the limit
problem (4.1), and η ∈ C∞(R+, [0, 1]) such that η = 1 if 0 ≤ t ≤ δ

2 and η = 0 if t ≥ δ. We define

Ψε,y(x) := η(|εx − y|)ω
(

εx − y

ε

)

exp
(

iτy

(
εx − y

ε

))

,

for each y ∈ M , where τy :=
N∑

1
Ai(y)xi. Let tε > 0 be the unique positive number such that

max
t≥0

Jε(tΨε,y) = Jε(tεΨε,y).

By noticing that tεΨε,y ∈ Nε, we consider the function Φε := M → Nε defined by setting

Φε := tεΨε,y.

By construction, Φε(y) has compact support for any y ∈ M .

Lemma 5.1. The limit

lim
ε→0+

Jε(Φε(y)) = cV0 .

holds uniformly in y ∈ M .

Proof. Arguing by contradiction, we deduce that there exist δ0 > 0, {yn} ⊂ M and εn → 0+ satisfying

|Jεn
(Φεn

(y)) − cV0 | ≥ δ0. (5.1)

For simplicity, we write Φn,Ψn and tn for Φεn
,Ψεn,yn

and tεn
, respectively.

Arguing as in [13, Lemma 3.2], we see that

‖Ψn‖2
εn

→ ‖u‖V0 as n → ∞. (5.2)

On the other hand, since
〈
J ′

εn
(tnΨn) , tnΨn

〉
= 0, by the change of variables z = (εnx − yn)/εn, we

obtain

‖Ψn‖2
εn

=
1
2∗

μ

∫

RN

(
1

|x|μ ∗ G(εnx, |tnΨn|2)
)

g(εnx, |tnΨn|2)|Ψn|2dx

=
1
2∗

μ

∫

RN

(
1

|x|μ ∗ G(εnz + yn, |tnΨn|2)
)

g(εnz + yn, t2nη2(|εnz|)ω2(z)η2(|εnz|)ω2(z)dz.

(5.3)

If z ∈ Bδ/εn
(0), then εnz + yn ∈ Bδ(yn) ⊂ Mδ ⊂ Λ. Hence, g(x, s) = f(s) for any x ∈ Λ and Ψ(s) = 0 for

s ≥ δ, the last equality leads to

‖Ψn‖2
εn

≥ F (|tnα|2)f(|tnα|2)
2∗

μ · |α|2
∫

Bδ/2(0)

∫

Bδ/2(0)

|ω(y)|2|ω(z)|2
|y − z|μ dxdy,

where α = min{ω(z) : |z| ≤ δ/2}.
If tn → ∞, by (f3) we deduce that ‖Ψn‖2

εn
→ ∞ which contradicts (5.2). Therefore, up to a subse-

quence, we may assume that tn → t0 ≥ 0.
Since g has critical growth and tnΨn ∈ Nε, it follows that t0 > 0. Thereby, taking the limit in (5.3),

we obtain
∫

RN

(|∇ω|2 + V0ω
2)dx =

1
2∗

μ

∫

RN

(
1

|x|μ ∗ G(εnx, |t0ω|2)
)

g(εnx, |t0ω|2)|ω|2dx,
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which implies that t0ω ∈ NV0 . Since ω ∈ NV0 , we obtain t0 = 1. Using the Lebesgue dominated conver-
gence theorem, we get

∫

RN

(
1

|x|μ ∗ G(εnx, |tnΨn|2)
)

G(εny, |tnΨn|2)dx =
∫

RN

(
1

|x|μ ∗ G(εnx, |ω|2)
)

G(εny, |ω|2)dx.

Hence,

lim
n→∞ Jεn

(Φn(yn)) = I0(ω) = cV0 ,

which is a contradiction with (5.1) and the proof is complete. �

Now we define the barycenter map.
Let ρ > 0 be such that Mδ ⊂ Bρ and Υ : R

N → R
N be defined by

Υ(x) :=

{
x if |x| < ρ,

ρx/|x| if |x| ≥ ρ.

The barycenter map βε : Nε → R
N is defined by

βε(u) :=
1

‖u‖2
2

∫

RN

Υ(εx)|u|2dx.

Arguing as Lemma 4.3 in [8], it is easy to see that the function βε verifies the following limit:

Lemma 5.2.

lim
ε→0+

βε (Φε(y)) = y

holds uniformly in y ∈ M .

We are next to establish the following useful compactness result.

Lemma 5.3. Let εn → 0+and (un) ⊂ Nεn
be such that Jεn

(un) → cV0 . Then, there exists a sequence
{ỹn} ⊂ R

N such that vn := |un| (· + ỹn) has a convergent subsequence in H1(RN , R). Moreover, up to a
subsequence, yn := εnỹn → y ∈ M as n → ∞.

Proof. Since 〈J ′
εn

(un), un〉 = 0 and Jεn
(un) → cV0 , arguing as in the proof of Lemma 3.4, we can prove

that there exists C > 0 such that ‖un‖εn
≤ C for all n ∈ N. We claim that there exist a sequence

(ỹn) ⊂ R
N and constants R, β > 0 such that

lim inf
n→∞

∫

BR(ỹn)

|un|2 � β. (5.4)

Thereby, for some subsequence,

vn := |un| (· + ỹn) → v 	= 0 weakly in H1
(
R

N , R
)
.

Let tn > 0 be such that ṽn := tnvn ∈ NV0 . By the diamagnetic inequality (2.1), we have

cV0 ≤ J0 (ṽn) ≤ max
t≥0

Jεn
(tvn) = Jεn

(un) = cV0 + on(1).

Hence, J0 (ṽn) → cV0 as n → +∞.
Since the sequences {vn} and {ṽn} are bounded in H1

(
R

N , R
)

and vn � 0 in H1
(
R

N , R
)
, we deduce

(tn) is also bounded and up to a subsequence, we may assume that tn → t0 ≥ 0.
If t0 = 0, in view of the boundedness of vn in H0, we have ṽn := tnvn → 0 in H0. Hence, I0(ṽn) → 0,

which contradicts cV0 > 0. Thus, up to a subsequence, we may assume that ṽn ⇀ ṽ := t0v 	= 0 in H0,
and, by Lemma 4.5, we can deduce that ṽn → ṽ in H0, which gives vn → v in H0.
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Now we show the final part, namely that {yn} has a subsequence such hat yn → y ∈ M . Assume by
contradiction that {yn} is not bounded and so, up to a subsequence, |yn| → +∞ as n → +∞. Choose
R > 0 such that Λ ⊂ BR(0). Then for n large enough, we have |yn| > 2R, and for any x ∈ BR/εn

(0),

|εnx + yn| ≥ |yn| − εn|x| > R.

Since un ∈ Nεn
, using (V1) and the diamagnetic inequality (2.2), we obtain

∫

RN

(|∇vn|2 + V0|vn|2) dx

≤
∫

RN

(|∇εvn|2 + V (εnx + yn)|vn|2)dx

=
1
2∗

μ

∫

RN

(
1

|x|μ ∗ G(εnx + yn, |vn|2)
)

g(εnx + yn, |vn|2) |vn|2 dx

≤ 1
2∗

μ

∫

BR/εn (0)

(
1

|x|μ ∗ G(εnx + yn, |vn|2)
)

f̃(|vn|2)|vn|2dx

+
1
2∗

μ

∫

Bc
R/εn

(0)

(
1

|x|μ ∗ G(εnx + yn, |vn|2)
)

f(|vn|2)|vn|2dx.

(5.5)

Since vn → v in H0, vn ∈ B and f̃(t) ≤ V0/K, we obtain

min
{

1,
V0

2 · 2∗
μ

} ∫

RN

(|∇vn|2 + |vn|2) dx = on(1),

that is to say vn → 0 in H0, which contradicts v 	= 0.
Therefore, we may assume that yn → y0 ∈ R

N . Assume by contradiction that y0 /∈ Λ̄. Then, there
exists r > 0 such that for every n large enough, we have that |yn − y0| < r and B2r(y0) ⊂ Λ̄c. Then, if
x ∈ Br/εn

(0), we have that |εnx + yn − y0| < 2r so that εnx + yn ∈ Λ̄c, and so, arguing as before, we
achieve a contradiction. Thus, y0 ∈ Λ̄.

To prove that V (y0) = V0, we suppose by contradiction that V (y0) > V0. Using Fatou’s lemma, the
change of variable z = x + ỹn and maxt≥0 Jεn

(tun) = Jεn
(un), we obtain

cV0 = I0(ṽ) <
1
2

∫

RN

(|∇ṽ|2 + V (y0)|ṽ|2) dx − 1
2 · 2∗

μ

∫

RN

(
1

|x|μ ∗ G(εx, |ṽ|2)
)

G(εx, |ṽ|2)dx

≤ lim inf
n

(
1
2

∫

RN

(|∇ṽn|2 + V (εnx + yn)|ṽn|2)dx

− 1
2 · 2∗

μ

∫

RN

(
1

|x|μ ∗ G(εnx, |ṽn|2)
)

G(εnx, |ṽn|2)dx

)

= lim inf
n

(
t2n
2

∫

RN

(|∇|un||2 + V (εnz)|un|2)dx

− 1
2 · 2∗

μ

∫

RN

(
1

|x|μ ∗ G(εnx, |tnun|2)
)

G(εnx, |tnun|2)dx

)

≤ lim inf
n

Jεn
(tnun) ≤ lim inf

n
Jεn

(un) = cV0 ,
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which is impossible and the proof is complete. �
Let h : R

+ → R
+ be any positive function satisfying h(ε) → 0 as ε → 0+. Consider the following

subset of the Nehari manifold

Ñε = {u ∈ Nε : Jε(u) ≤ cV0 + h(ε)}.

Fixed y ∈ M , we conclude from Lemma 5.1 that |Jε (Φε(y))− cV0 | → 0 as ε → 0+. Thus, Φε(y) ∈ Ñε and
Ñε 	= ∅ for ε > 0 small enough.

Arguing as Lemma 4.5 in [8], the next statement is to involve in the relationship between Ñε and the
barycenter map.

Lemma 5.4. For any δ > 0, we have

lim
ε→0+

sup
u∈Ñε

dist (βε(u),Mδ) = 0.

Next we prove our multiplicity result by presenting a relation between the topology of M and the
number of solutions of the modified problem (3.1).

Theorem 5.5. For any δ > 0 such that Mδ ⊂ Λ, there exists ε̃δ > 0 such that, for any ε ∈ (0, ε̃δ), problem
(3.1) has at least catMδ

M nontrivial solutions.

Proof. For any given δ > 0 such that Mδ ⊂ Λ, by Lemmas 5.1, 5.2, and 5.3, we employ an argument as
in [15] to deduce the existence of ε̃δ > 0 such that, for any ε ∈ (0, εδ), the following diagram

M
Φε−−→ Ñε

βε−→ Mδ

is well defined and βε ◦ Φε is homotopically equivalent to the embedding ι : M → Mδ. This fact implies
that catÑε

(Ñε) ≥ catMδ
(M) due to [15, Lemma 2.2]. It follows from Lemma 3.9 and standard Ljusternik–

Schnirelmann theory that Jε possesses at least cat Ñε
(Ñε) critical points on Nε. Consequently, equation

(3.1) possess at least catMδ
(M) critical points. �

6. Proof of Theorem (1.2)

In this section, we prove our main result. The idea is to show that the solutions uε obtained in Theorem 5.5
satisfy

|uε(x)| ≤ a for x ∈ Λc
ε

for ε small enough. Arguing as in [4, Lemma 4.1], we have the following important result.

Lemma 6.1. Let εn → 0+and un ∈ Ñεn
be a solution of (3.1). Then, Jεn

(un) → cV0 and |un| ∈ L∞ (
R

N
)
.

Moreover, for any given γ > 0, there exists R > 0 and n0 ∈ N such that

‖un‖L∞(BR(ỹn)c) < γ for all n ≥ n0, (6.1)

where ỹn is given by Lemma 5.3.

Now, we are ready to give a proof of Theorem 1.2.

Proof of Theorem 1.2. Let δ > 0 be such that Mδ ⊂ Λ. We first claim that there exists ε̃δ > 0 such that
for any 0 < ε < ε̃δ and any solution u ∈ Ñε of the problem (3.1), it holds

‖u‖L∞(RN \Λε) < a. (6.2)

To prove the above claim, we argue by contradiction. Assume that there are two sequences εn → 0+and
un ∈ Ñεn

verifying J ′
εn

(un) = 0 and

‖un‖L∞(RN \Λεn ) ≥ a. (6.3)
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As in Lemma 5.1, we have that Jεn
(un) → cV0 . Therefore, by Lemma 5.3, there exists obtain a sequence

{ỹn} ⊂ R
N such that εnỹn → y0 ∈ M . If we take r > 0 such that Br (y0) ⊂ B2r (y0) ⊂ Λ we have that

Br/εn
(y0/εn) =

1
εn

Br (y0) ⊂ Λεn
.

Moreover, for any z ∈ Br/εn
(ỹn), it holds

∣
∣
∣
∣z − y0

εn

∣
∣
∣
∣ � |z − ỹn| +

∣
∣
∣
∣ỹn − y0

εn

∣
∣
∣
∣ <

1
εn

(r + on(1)) <
2r

εn

for n large. For these values of n, we have that Br/εn
(ỹn) ⊂ Λεn

, that is, R
N\Λεn

⊂ R
N\Br/εn

(ỹn). On
the other hand, it follows from Lemma 6.1 with γ = a that, for any n ≥ n0 such that r/εn > R, it holds

‖un‖L∞(RN \Λεn ) � ‖un‖L∞(RN \Br/εn (ỹn)) � ‖un‖L∞(RN \BR(ỹn)) < a,

which contradicts with (6.3). So the claim is correct.
Let ε̂δ > 0 be given by Theorem 5.5 and set εδ := min {ε̂δ, ε̃δ}. We will show the theorem holds for

this choice of εδ. Let 0 < ε < εδ be fixed. By Theorem 5.5, there is catMδ
(M) nontrivial solutions of the

problem (3.1). If u ∈ Hε is one of these solutions, we have that u ∈ Ñε. Then, by (6.2) g(εx, |u|2) = f(|u|2),
u is a solution of the problem (3.1). An easy calculation shows that û(x) := u(x/ε) is a solution of the
original problem (2.1). Then, problem (2.1) has at least catMδ

(M) nontrivial solutions.
Take εn → 0+ and {un} a sequence of solutions to (3.1). In order to study the behavior of the

maximum points of |un|, we first notice that, by (g4), there exists γ > 0 such that

g
(
εx, s2

)
s2 � V0

K
s2 for all x ∈ R

N , |s| � γ. (6.4)

By Lemma 6.1, there are R > 0 and {ỹn} ⊂ R
N such that

‖un‖L∞(BR(ỹn)c) < γ. (6.5)

Up to a subsequence, we can assume that

‖un‖L∞(BR(ỹn)) � γ. (6.6)

Indeed, if this is not the case, we have ‖un‖L∞(RN ) < γ, and therefore, it follows from J ′
εn

(un) = 0, (6.4)
and the diamagnetic inequality (2.2) that

∫

RN

(|∇|un||2 + V0|un|2)dx ≤ ‖un‖2
εn

=
1
2∗

μ

∫

RN

(
1

|x|μ ∗ G(εx, |un|2)
)

gεn
(x, |un|2)|un|2dx

≤ V0

2 · 2∗
μ

∫

RN

|un|2dx.

The above expression implies that ‖|un|‖H1(RN ,R) = 0, which is a contradiction. Thus, (6.6) holds. By
(6.5) and (6.6), we can infer the maximum point pn ∈ R

N of |un| belongs to BR(ỹn). Hence, pn = ỹn + qn

for some qn ∈ BR(0). Recalling that the associated solution of (2.1) is of the form ûn(x) = un(x/εn), we
conclude that the maximum point ηn of |ûn| is ηεn

:= εnỹn + εnqn. Since (qn) ⊂ BR(0) is bounded and
εnỹn → y0 ∈ M , we obtain

lim
n→∞ V (ηεn

) = V (y0) = V0.

The proof is complete. �
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[41] Wen, L., Rădulescu, V.D., Tang, X., Chen, S.: Ground state solutions of magnetic Schrödinger equations with expo-
nential growth. Discret. Contin. Dyn. Syst. 42, 5783–5815 (2022)

[42] Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser
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