
Z. Angew. Math. Phys.          (2024) 75:171 
c© 2024 The Author(s), under exclusive licence to Springer Nature
Switzerland AG
https://doi.org/10.1007/s00033-024-02311-x

Zeitschrift für angewandte
Mathematik und Physik ZAMP

Semiclassical wave packets for weakly nonlinear Schrödinger equations with rotation

Xiaoan Shen and Christof Sparber

Abstract. We consider semiclassically scaled, weakly nonlinear Schrödinger equations with external confining potentials and
additional angular-momentum rotation term. This type of model arises in the Gross–Pitaevskii theory of trapped, rotating
quantum gases. We construct asymptotic solutions in the form of semiclassical wave packets, which are concentrated in
both space and in frequency around an classical Hamiltonian phase-space flow. The rotation term is thereby seen to alter
this flow, but not the corresponding classical action.
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1. Introduction

Semiclassical wave packets are a well-known tool in the approximate description of quantum mechanics
as ε � � → 0. The latter represents a singular limiting regime which leads to highly oscillatory solutions
in the corresponding Schrödinger dynamics, cf. [5] for a general introduction. In an attempt to overcome
this issue, one seeks a representation for the exact quantum mechanical wave function ψε via

ψε(t, x) ∼
ε→0

ε−d/4v
(
t,

x − q(t)√
ε

)
ei(S(t)+p(t)·(x−q(t)))/ε, x ∈ R

d. (1.1)

Here, q(t) ∈ R
d and p(t) ∈ R

d denote the mean position and momentum at time t ∈ R, whereas S(t) ∈ R

is a purely time-dependent phase proportional to the classical action. Finally, the amplitude function
v(t, y) ∈ C describes slowly varying changes due to dispersive effects within the dynamics. The right
hand side of (1.1) corresponds to a wave function which is well-localized (at scale

√
ε) both in space

and in frequency (or momentum). In particular, for wave functions of the form (1.1) the following three
quantities

‖ψε(t)‖L2(Rd),

∥∥∥∥
(√

ε∇ − i
p(t)√

ε

)
ψε(t)

∥∥∥∥
L2(Rd)

, and
∥∥∥∥

x − q(t)√
ε

ψε(t)
∥∥∥∥

L2(Rd)

are all of order O(1), as ε → 0.
It is known that the amplitude v satisfies a homogenized, i.e., ε-independent, Schrödinger-type equa-

tion with an effective quadratic potential (see the derivation below). A popular ansatz for the solution
v of this homogenized equation is that of a Gaussian function, which can be shown to be propagated
exactly. In this case, wave packets of the form (1.1) comprise semiclassically scaled coherent states which
minimize the Heisenberg uncertainty relation, cf. [16]. Coherent states allow to approximately describe
the full quantum dynamics of ψε via a system of ordinary differential equations for q, p, and the matrices
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used to parametrize the Gaussian function v, see [10,11]. This makes this type of approximation partic-
ularly interesting for numerical simulations, where one seeks to represent general states ψε(t, ·) ∈ L2(Rd)
by a (well chosen) superposition of such Gaussian wave packets, see [15,19] for a general overview of this
topic. One should note, however, that the derivation of the aforementioned ordinary differential equa-
tions can be rather involved, in particular if the Hamiltonian operator governing the dynamics of ψε has
a complicated expression.

Motivated by the mean-field description of trapped rotating quantum gases, the aim of this paper is to
show how to use semi-classical wave packets in the context of (weakly nonlinear) Schrödinger equations
with external scalar potential and additional angular momentum rotation term. To this end, we consider
the following Gross–Pitaevskii equation with rotation

iε∂tψ
ε = −ε2

2
Δψε + V (x)ψε + λεα|ψε|2ψ + ε(Ω · L)ψε, ψε

|t=0 = ψε
0. (1.2)

Here (t, x) ∈ R × R
d with d = 2 or 3, respectively, λ ∈ R denotes a coupling constant, which allows for

both focusing and defocusing nonlinearities, and α = α(d) > 0 is a parameter used to ensure the critical
strength of the nonlinearity (see below). The operator Ω · L describes the rotation around a given axis
Ω ∈ R

d, where

L = −ix ∧ ∇,

is the quantum mechanical angular momentum operator. In addition, V (x) denotes some external poten-
tial, for which we shall impose:

Assumption 1.1. The potential V ∈ C∞(Rd; R) is smooth and sub-quadratic, i.e.,

∂α
x V ∈ L∞(Rd) ∀|α| ≥ 2.

A typical example, for such a potential is that of a harmonic confinement, i.e., V (x) = 1
2 |x|2, which is

often used to describe the electromagnetic trapping of experimental Bose-Einstein condensates.
We further assume that the initial data ψε

0 is given in the form of a localized wave packet, i.e.,

ψε
0(x) = ε−d/4v0

(x − q0√
ε

)
ei(x−q0)·p0/ε, q0, p0 ∈ R

d, (1.3)

where v0 ∈ Σ3, but not necessarily Gaussian. Here, and in the following we shall denote the natural
energy space associated with (1.2) by

Σk =
{

f ∈ L2(Rd) : ‖f‖Σk :=
∑

|α|+|β|�k

‖xα∂β
x f‖L2(Rd) < ∞

}
. (1.4)

In the next two sections, we shall show how to rigorously derive the dynamical equations needed to
construct an approximation of the solution to (1.2) in the form (1.1), first in the linear case λ = 0, and
second in the case of a critical nonlinearity, i.e., λ = 0 and α = αcrit, where

αcrit =

{
2 for d = 2,
5
2 for d = 3.

The assumption α = αcrit thereby ensures that nonlinear effects are present in the dynamics of the slowly
varying amplitude v, while for α > αcrit the problem becomes effectively linearizable. Of course, αcrit > 0
means that the nonlinearity in (1.2) formally vanishes in the limit ε → 0, which is why we call it a
weakly nonlinear regime. As we shall see, the approximation in the linear case will hold up to Ehrenfest
time-scales t ∼ O(ln 1

ε ), whereas in the (weakly) nonlinear case, we will need to restrict ourselves to
time-scales t ∼ O(1). In the case λ = 0 and v0 given by a Gaussian, we shall show how to adapt the
system of ordinary differential equations governing such wave packets to the case with rotation.
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2. The linear case

In this section, we shall study the case λ = 0, i.e., we consider

iε∂tψ
ε = −ε2

2
Δψε + V (x)ψε + ε(Ω · L)ψε, ψε

|t=0 = ψε
0, (2.1)

where ψε
0 is given in the form (1.3). In order to understand how the rotation term influences the dynamics,

we first notice that the linear Hamiltonian H can be seen as the ε-quantization of the following classical
Hamiltonian phase-space function H : R

2d → R:

H(x, ξ) =
1
2
|ξ|2 + V (x) + Ω · (x ∧ ξ).

The corresponding Hamiltonian trajectories for a particle with position q(t) ∈ R
d and momentum p(t) ∈

R
d are therefore given by{

q̇ = ∇pH(q, p) = p + Ω ∧ q, q(0) = q0,

ṗ = −∇qH(q, p) = −∇V (q) + Ω ∧ p, p(0) = p0.
(2.2)

Lemma 2.1. (Classical dynamics) Let (q0, p0) ∈ R
d × R

d and V satisfy Assumption 1.1. Then, (2.2) has
a unique global, smooth solution (q, p) ∈ C∞(R; Rd)2, which grows at most exponentially.

Proof. The local well-posedness of the solution can be inferred from the fact that V is smooth. From
(2.2), we see that q solves the following ordinary differential equation:

q̈ = −∇V (q) + 2Ω ∧ q̇ − Ω ∧ (Ω ∧ q).

Multiply both sides by q̇,
d

dt
H(q, p) ≡ d

dt

(1
2
|q̇|2 − 1

2
|Ω ∧ q|2 + V (q)

)
= 0.

We can see that |Ω ∧ q|2 � 〈q〉2, and V (q) � 〈q〉2 by Assumption 1.1, so

q̇ � 〈q〉,
which shows that

|q(t)| � ec0t.

Plugging this into (2.2) yields the same estimate for p(t). �

Remark 2.2. The system (2.2) has already been studied in [2] in the case of a purely harmonic, but not
necessarily isotropic, confinement potential V (x) =

∑d
j=1 γjx

2
j . It is shown that in this case there are

indeed initial data for which the solution grows exponentially forward or backward in time, and thus the
classical dynamics is no longer trapped within a bounded phase-space region.

Next, we compute the Lagrangian L(q, p) corresponding to H(q, p), via

L(q, p) = p · q̇ − H(q, p)

= p · (p + Ω ∧ q) − 1
2
|p|2 − V (q) − Ω · (q ∧ p)

=
1
2
|p|2 − V (q),

using the fact that Ω · (q ∧ p) = p · (Ω ∧ q). One can see that L(q, p) is indeed of the same form as in the
case without rotation. In particular, we shall define the associated action function to be as usual, i.e.,

S(t) =
∫ t

0

1
2
|p(s)|2 − V (q(s)) ds. (2.3)
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The latter will be used to determine the purely t-dependent part of the phase of our wave packets.

Remark 2.3. An alternative way to express the Hamiltonian dynamics with rotation is to introduce the
canonical momentum π(t) := p(t) + Ω ∧ q(t), and compute

π̇ = ṗ + Ω ∧ q̇

= −∇V (q) + Ω ∧ p + Ω ∧ π

= −∇V (q) + 2Ω ∧ π − Ω ∧ (Ω ∧ q).

Using this, (2.2) can be rewritten in the following form:{
q̇ = π,

π̇ = −∇V (q) + 2Ω ∧ π − Ω ∧ (Ω ∧ q).
(2.4)

This system has been used to describe rotating solutions of mean-field models for self-gravitating classical
particles, see [18].

Having derived the classical dynamics in the case with rotation, we can now turn to the derivation
of the semiclassical approximation. To this end, we first change the unknown ψε into a new function uε,
via

ψε(t, x) = ε−d/4uε
(
t,

x − q(t)√
ε

)
ei(S(t)+p(t)·(x−q(t)))/ε, (2.5)

where q(t) and p(t) are solutions to (2.2), and S(t) is defined by (2.3). Plugging this ansatz into equation
(2.1) and assuming sufficient smoothness, we obtain, after some lengthy computations, that

0 = iε∂tψ
ε +

ε2

2
Δψε − V (x)ψε − ε(Ω · L)ψε

= ε−d/4eiφ/ε
(
εR1 + ε1/2R2 + R3

)
,

where we denote

φ(t, x) = S(t) + p(t) · (x − q(t)),

and we also find

R1 = i∂tu
ε +

1
2
Δuε − (Ω · L)uε,

R2 = i∇uε · (p − q̇ + Ω ∧ q),

R3 =
(

− √
εy · (ṗ − Ω ∧ p) + p · q̇ + V (q) − V (q +

√
εy) − |p|2 − Ω · (q ∧ p)

)
uε.

In here, the fact that S(t) is given by (2.3) is essential. Recalling that p, q are assumed to be solutions
to (2.2), we see that, indeed, R2 ≡ 0, whereas R3 simplifies to

R3 = uε
(√

εy · ∇V (q) + V (q) − V (q +
√

εy)
)
.

In order for uε to be a solution to (2.1), we therefore have to guarantee that

εR1 + R3 = 0,

which is equivalent to imposing

i∂tu
ε = −1

2
Δuε + Vε(t, y)uε + (Ω · L)uε, uε

|t=0 = v0. (2.6)

Here, v0 is the initial amplitude induced by (1.3), and Vε is a time-dependent potential given by

Vε(t, y) =
1
ε

(
V (q(t) +

√
εy) − V (q(t)) − √

εy · ∇V (q(t))
)
. (2.7)
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By formally passing to the limit ε → 0 in this expression, we observe that

Vε(t, y) ∼
ε→0

1
2
y · QV (t)y,

i.e., a harmonic potential with QV (t) = ∇2V (q(t)), the Hessian matrix of V . Note that Assumption 1.1
implies that QV ∈ C∞

b (R; R2d).
We therefore expect that uε is asymptotically close (in an appropriate norm) to v, defined to be the

solution of the following, ε-independent effective amplitude equation:

i∂tv = −1
2
Δv +

1
2
(
y · QV (t)y

)
v + (Ω · L)v, v|t=0 = v0. (2.8)

We shall briefly study the existence of solutions v to this equation. The corresponding time-dependent
classical Hamiltonian function

H(t, y, ξ) :=
1
2
|ξ|2 +

1
2
y · QV (t)y + Ω · (y ∧ ξ) (2.9)

is smooth and sub-quadratic in (y, ξ) ∈ R
2d and therefore fits within the framework of [14], where the

fundamental solution of the associated Schrödinger propagator is constructed (see also the appendix).

Lemma 2.4. (from [14]) Let d = 2, 3, v0 ∈ Σk and V satisfy Assumption 1.1. Then, for all k ∈ N, equation
(2.8) has a unique global solution v ∈ C(R,Σk), satisfying

‖v(t, ·)‖L2(Rd) = ‖v0‖L2(Rd) ∀t ∈ R.

In addition, there exists a Ck,d > 0, such that

‖v(t, ·)‖Σk � eCk,d t.

We can now state the main approximation result of this section.

Proposition 2.5. (Linear wave packets with rotation) Let d = 2 or 3, v0 ∈ Σ3 and V satisfy Assumption
1.1. Consider the semiclassical wave packet given by

ϕε(t, x) = ε−d/4v
(
t,

x − q(t)√
ε

)
ei(S(t)+p(t)·(x−q(t)))/ε,

where v ∈ C(R,Σ3) is a solution to (2.8), S(t) is the action defined in (2.3) and (q, p) ∈ C∞(R; Rd)2

solve the Hamiltonian equations (2.2). Then, there exists a constant C > 0 and independent of ε ∈ (0, 1],
such that

‖ψε(t, ·) − ϕε(t, ·)‖L2(Rd) �
√

εeCt.

In particular, there exists c > 0 independent of ε, such that, as ε → 0 :

sup
0�t�c log 1

ε

‖ψε(t, ·) − ϕε(t, ·)‖L2(Rd) −→ 0.

Proof. The proof follows along the same as in [7]. We first notice that since V is smooth and sub-quadratic,
a Taylor-expansion shows

|Δε
V (t, y)| =

∣∣∣Vε(t, y) − 1
2y · QV (t)y

∣∣∣ �
√

ε|y|3. (2.10)

We can define the error term rε(t, y) = uε(t, y)−v(t, y), and obtain that rε solves the following equation

i∂tr
ε = −1

2
Δrε + (Ω · L)rε + Vε(t, y)rε +

(
Vε(t, y) − 1

2
y · QV (t)y

)
v, (2.11)

with vanishing initial data rε(0, y) = 0. Since the right hand side of (2.11) is given by self-adjoint operators
acting on rε plus a source term, a standard energy estimate shows that

‖rε(t, ·)‖L2(Rd) �
∫ t

0

|Δε
V (τ, y)| dτ �

√
ε

∫ t

0

‖|y|3v(τ, ·)‖L2(Rd).
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We note that

‖|y|3v(τ, ·)‖L2(Rd) � ‖v(τ, ·)‖Σ3 � eCτ , ∀τ ∈ R,

in view of Lemma 2.4. We therefore obtain

‖rε(t, ·)‖L2(Rd) �
√

εeCt.

The result then follows from the fact that the wave packet rescaling (2.5) leaves the L2-norm invariant,
and thus

‖ψε(t, ·) − ϕε(t, ·)‖L2(Rd) = ‖uε(t, ·) − v(t, ·)‖L2(Rd) ≡ ‖rε(t, ·)‖L2(Rd) �
√

εeCt.

�
Remark 2.6. The time-scale t ∼ O(log 1

ε ) is called the Ehrenfest-time. It is known to be the longest
possible time-scale until which one can hope to establish an effective semi-classical approximation, in
general, cf. [17]. Under stronger assumptions on v0, it is possible to generalize the above approximation
result to hold in stronger Σk norms up to Ehrenfest-time.

A particular class of global solutions v to (2.8) is obtained for (complex-valued) Gaussian initial data.
More precisely, by following the ideas of Hagedorn [10], we consider initial data of the form

v0(y) =
1

(det A0)1/2
exp

(
− 1

2
y · (

B0A
−1
0

)
y
)
, (2.12)

where the matrices A0 and B0 satisfy the following properties:

A0 and B0 are invertible;
B0A

−1
0 is symmetric; B0A

−1
0 = M1 + iM2, with Mj symmetric;

Re B0A
−1
0 is strictly positive definite;

(Re B0A
−1
0 )−1 = A0A

∗
0. (2.13)

We shall now show that such Gaussian wave packets are indeed propagated by equation (2.8).

Corollary 2.7. (Gaussian wave packets) Let v ∈ C(R,Σk) be the solution to (2.8), with v0 given by (2.12)–
(2.13). Then, for all time t ∈ R, v is given by

v(t, y) =
1(

det A(t)
)1/2

exp
(

− 1
2
y · (

B(t)A(t)−1
)
y
)
, (2.14)

provided A(t) and B(t) solve the following ordinary differential equations{
Ȧ(t) = iB(t) − [RΩ, A(t)]; A(0) = A0,

Ḃ(t) = iQV (t)A(t) − [RΩ, B(t)]; B(0) = B0,
(2.15)

where RΩ is a skewed-symmetric matrix, given by

RΩ =

⎡
⎣

0 Ω3 −Ω2

−Ω3 0 Ω1

Ω2 −Ω1 0

⎤
⎦ .

In addition, (2.15) guarantees that A(t) and B(t) satisfy (2.13) for all t ∈ R.

Proof. We first assume that A and B satisfy (2.13) for all t ∈ R and plug the Gaussian ansatz (2.14) into
(2.8). After another lengthy computation we find that v solves (2.8), if and only if the matrices A and B
satisfy:

Tr(iȦA−1 + BA−1)+

y�
(
iḂA−1 − iBA−1ȦA−1 − BA−1BA−1 + QV + 2iRΩBA−1

)
y = 0.
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In a first step, this implies

iȦA−1 + BA−1 + Λ = 0, (2.16)

where Λ is any matrix such that Tr(Λ) = 0. By choosing Λ = i[RΩ, A]A−1 this fact is guaranteed and
we directly obtain the first equation of (2.15). Using the right hand side of this equation as the new
expression for Ȧ, we find, in a second step, the following condition for B:

y�
(
Ḃ − iQV A + [RΩ, B]

)
A−1y + y�

(
BA−1RΩ + RΩBA−1

)
y = 0. (2.17)

In fact, since

y�RΩBA−1y = −(BA−1RΩy)�y = −y�BA−1RΩy,

we have y�(
BA−1RΩ + RΩBA−1

)
y = 0, which means that (2.17) simplifies to

y�
(
Ḃ − iQV A + [RΩ, B]

)
A−1y = 0,

which is guaranteed to hold, provided B satisfies the second equation of (2.15).
To prove that A(t) and B(t) satisfy (2.13), we employ the same argument as in [10, Lemma 2.1]: We

first define two functions

F (t) := A∗(t)B(t) + B∗(t)A(t), G(t) := A�(t)B(t) − B�(t)A(t).

and note that

Ḟ (t) = (iB − [RΩ, A])∗B + A∗(iQA − [RΩ, B])

+ (iQA − [RΩ, B])∗A + B∗(iB − [RΩ, A]) = 0,

as RΩ is skewed-symmetric and QV (t) is symmetric. Hence,

F (t) = F (0) = A∗
0B0 + B∗

0A0 = A∗
0

(
B0A

−1
0 + (A∗

0)
−1B∗

0

)
A0

= A∗
0

(
2Re(B0A

−1
0 )

)
A0 = 2A∗

0

(
(A0A

∗
0)

−1
)
A0 = 2I.

For any z ∈ C, we thus have

〈z, z〉 =
1
2
〈z, F (t)z〉 =

1
2
〈A(t)z, B(t)z〉 +

1
2
〈B(t)z, A(t)z〉,

which equals zero only if z = 0. Thus, kerA(t) = ker B(t) = {0}, i.e., A(t) and B(t) are invertible.
Similarly, we infer that Ġ(t) = 0, and thus G(t) = G(0), where

G(0) = A�
0

(
B0A

−1
0 − (A�

0 )−1B�
0

)
A0

= A�
0

(
B0A

−1
0 − (B0A

−1
0 )�

)
A0 = 0,

since B0A
−1
0 is symmetric. Hence, A�(t)B(t) = B�(t)A(t), which shows that B(t)A(t)−1 is symmetric.

Finally, since F (t) = 2I, we have

2I = A∗
(
BA−1 + (A∗)−1B∗

)
A = A∗

(
BA−1 +

(
BA−1

)∗)
A = 2A∗Re

(
BA−1

)
A,

and thus Re
(
BA−1

)
= (AA∗)−1. This also proves that Re(BA−1) is strictly positive definite. �

Remark 2.8. One might wonder, why we chose a commutator in equation (2.16), when any other Λ with
trace equal to zero would also be a possibility. However, the commutators are a natural choice in view of
the following fact: Let

AΩ(t) = etRΩA(t)e−tRΩ , BΩ(t) = etRΩB(t)e−tRΩ ,
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be two new matrices obtained by conjugating A and B with time-dependent rotation matrices. Then,
one checks that AΩ, BΩ solve {

ȦΩ(t) = iBΩ(t)
ḂΩ(t) = iQV,Ω(t)AΩ(t),

(2.18)

which implies that AΩ, BΩ also have all the properties (2.13). The system (2.18) is identical to the
one originally derived by Hagedorn, provided QV,Ω = QV . The latter is true for potentials V which are
symmetric with respect to the rotation axis Ω, since in this case [RΩ, V ] = 0. This reflects the well-known
fact that solutions v to (nonlinear) Schrödinger equations with angular momentum term are related to
solutions ṽ of the same equation but without angular momentum term, via the following time-dependent
unitary transformation

vΩ(t, y) = eitΩ·Lv(t, y) = v
(
t, etRΩy

)
, (2.19)

see [1,2] for more details. Acting with change of variables onto the Gaussian ansatz (2.14), one can see
that the latter remains Gaussian, provided A and B are replaced by AΩ and BΩ, respectively.

3. Extension to the weakly nonlinear case

In this section, we shall show how to extend the construction of semi-classical wave packets to the case
of weakly nonlinear Schrödinger equations with rotation. We thereby follow the ideas of [7] and only
consider the critical case, where α = 1 + d

2 . We consequently are interested in

iε∂tψ
ε = −ε2

2
Δψε + V (x)ψε + λε1+d/2|ψε|2ψε + ε(Ω · L)ψε, ψε

|t=0 = ψε
0, (3.1)

for d = 2 or 3, and initial data ψε
0 given in the form (1.3). Rewriting the unknown ψε in terms of uε as

given by (2.5), we notice that |ψε|2 ∼ ε−d/2 and thus, by following the same steps as in the linear case,
we (formally) arrive at the corresponding amplitude equation with cubic nonlinearity, i.e.,

i∂tv = −1
2
Δv +

1
2
(
y · QV (t)y

)
v + λ|v|2v + (Ω · L)v, v|t=0 = v0. (3.2)

Remark 3.1. If we had chosen a subcritical α > 1+ d
2 , the nonlinearity would not appear in (3.2), and thus

the situation is very similar to the one in our previous section. The supercritical case α < 1+ d
2 , however,

is much more involved and the only rigorous results available to date are for the case of (nonlocal) Hartree
nonlinearities, cf. [3].

Equation (3.2) falls within the class of models studied in [1], and local existence of solutions is guar-
anteed for smooth initial data. More precisely, we have:

Lemma 3.2. (Local Existence) Let v0 ∈ Σk with k > d/2. There exists Tcrit ∈ (0,+∞] and a unique
maximal solution v ∈ C([0, Tcrit); Σk) to (3.2), such that ‖v(t, ·)‖L2 = ‖v0‖L2 . The solution is maximal
in the sense that if Tcrit < ∞, then

lim
t→Tcrit

‖v(t, ·)‖Σk = +∞.

Remark 3.3. In general, Tcrit < +∞, in particular in the focusing case λ < 0 where the appearance of
finite-time blow-up is a possibility, see [1]. The change of variable (2.19) allows one to map solutions to
(3.2) onto solutions of NLS without rotation term, but with time-dependent, sub-quadratic potentials,
for which the long time behavior is studied in [4].

Our main result in this section is as follows:
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Theorem 3.4. (Weakly nonlinear wave packets) Let d = 2 or 3, v0 ∈ Σ3 and V satisfy Assumption 1.1.
Let S be the classical action (2.3) and

ϕε(t, x) = ε−d/4v
(
t,

x − q(t)√
ε

)
ei(S(t)+p(t)·(x−q(t)))/ε

be a semiclassical wave packet concentrated, as before, along the trajectories (2.2), but with an amplitude
v ∈ C([0, Tcrit); Σ3) given by the maximal solution to the nonlinear equation (3.2). Then, for any T < Tcrit,
we have

sup
0�t�T

‖ψε(t, ·) − ϕε(t, ·)‖L2(Rd) �
√

ε.

Even in cases where the maximal life-span of solutions to (3.2) is Tcrit = +∞, it is not clear whether
this nonlinear approximation result extends up to Ehrenfest times t ∼ O(log 1

ε ). With considerably more
effort, however, it was shown in [7] that time-scales of order t ∼ O(log log 1

ε ) can be reached in the critical
case. Here, we only treat the case of finite, macroscopic times t ∼ O(1), in the interest of giving a short
and not too technical proof which relates to the linear case in a transparent way.

Proof. As in the linear case, we denote the remainder by rε(t, y) = uε(t, y) − v(t, y), and first note that
the unknown uε defined via (2.5) solves

i∂tu
ε = −1

2
Δuε + Vε(t, y)uε + (Ω · L)uε + λ|uε|2uε, uε

|t=0 = v0, (3.3)

where Vε is given by (2.7). We recall the definition of Δε
V (t, y) given by (2.10) and consequently infer

that rε is the solution to

i∂tr
ε = −1

2
Δrε + Vε(t, y)rε + (Ω · L)rε + Δε

V (t, y)v + λ
(
|uε|2uε − |v|2v

)
, (3.4)

subject to initial data rε(0, y) = 0.
Next, we denote by Uε

Ω(t, s) the L2-unitary operator furnishing the Schrödinger dynamics associated
with the time-dependent Hamiltonian

Hε
Ω(t) = −1

2
Δ + Vε(t, x) + (Ω · L). (3.5)

By applying Duhamel’s formula to (3.4), we obtain

rε(t + τ) =Uε
Ω(τ, t)rε(t) − i

∫ t+τ

t

Uε
Ω(t + τ, s)Δε

V v(s) ds

− iλ

∫ t+τ

t

Uε
Ω(t + τ, s)

(
|uε|2uε − |v|2v

)
(s) ds.

In view of the results described in the Appendix, the propagator Uε
Ω(t, s) allows for ε-independent local

in-time dispersive estimates. Recall from [12] that (q, r) is an admissible Strichartz pair associated with
the space-time norm Lq

tL
r
x, if 2 � r � 2d

d−2 (resp. 2 � r < ∞ if d = 2), and

2
q

= d
(1

2
− 1

r

)
.

Define I = [t, t + τ ], with t ≥ 0, τ > 0, and let

q =
8
d
, r = 4,

such that (q, r) is admissible. In addition, we put

q′ =
8

8 − d
, r′ =

4
3
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being the Hölder conjugates of (q, r). The Strichartz estimates derived in [12] then imply

‖rε‖L8/d(I;L4) � ‖rε‖L2 + ‖Δε
V v‖L1(I;L2) +

∥∥|uε|2uε − |v|2v∥∥
L8/(8−d)(I;L4/3)

.

For the last term, we have the following pointwise estimate∣∣∣|uε|2uε − |v|2v
∣∣∣ � |rε|

(
|rε|2 + |v|2

)
. (3.6)

By Hölder’s inequality,

‖rε‖L8/d(I;L4) � ‖rε‖L2 + ‖Δε
V v‖L1(I;L2)

+
(

‖rε‖2
L8/(4−d)(I;L4) + ‖v‖2

L8/(4−d)(I;L4)

)
‖rε‖L8/d(I;L4). (3.7)

Since amplitude functions uε and v solve evolutionary equations within the same class of nonlinear
Schrödinger type models with smooth and sub-quadratic potentials, Lemma 3.2 yields that both uε, v ∈
C([0, T ]; Σk). Hence, we have

‖Puε‖L∞([0,T ];L2) + ‖Pv‖L∞([0,T ];L2) � C(T ),

for any operator P ∈ {Id, ∇, x}.
Next, we recall the Gagliardo–Nirenberg inequality, i.e.,

‖f‖L4(Rd) � ‖f‖1−d/4

L2(Rd)
‖∇f‖d/4

L2(Rd)
, ∀f ∈ H1(Rd).

Applying this to v yields

‖v‖L4 � ‖v‖2−d/2
L2 + ‖∇v‖d/2

L2 � C(T ),

and same is true for uε. Hence,

‖rε‖2
L8/(4−d)(I;L4) + ‖v‖2

L8/(4−d)(I;L4) � C(T )
(∫ t+τ

t

ds

) 4−d
4

� τ (4−d)/4. (3.8)

Thus, (3.7) can be reduced to

‖rε‖L8/d(I;L4) � ‖rε‖L2 + ‖Δε
V v‖L1(I;L2) + τ (4−d)/4‖rε‖L8/d(I;L4). (3.9)

Now, fix τ < 1 to be sufficiently small, and repeat this estimate a finite number of times to cover [0, T ].
This yields

‖rε‖L8/d([0,T ];L4) � ‖rε‖L1([0,T ];L2) + ‖Δε
V v‖L1([0,T ];L2). (3.10)

Next, applying Strichartz estimates again, with a second admissible pair (q1, r1) = (∞, 2) on J = [0, t]
for 0 � t � T ,

‖rε‖L∞(J;L2) � ‖Δε
V v‖L1(J;L2) +

∥∥|uε|2uε − |v|2v∥∥
L8/(8−d)(J;L4/3)

. (3.11)

Using the pointwise estimate (3.6) and repeating the steps (3.7)–(3.9), we obtain

‖rε‖L∞(J;L2) � ‖Δε
V v‖L1(J;L2) + ‖rε‖L8/d(J;L4)

� ‖rε‖L1(J;L2) + ‖Δε
V v‖L1(J;L2)

� ‖rε‖L1(J;L2) +
√

ε
∥∥|y|3v(t, y)

∥∥
L1(J;L2)

,

where the last inequality follows by Taylor expansion, just like in the linear case. The above estimate is
readily observed to be of Gronwall type, which consequently yields

‖rε(t)‖L2 �
√

εet, t ∈ [0, T ],

and thus

sup
0�t�T

‖uε(t, ·) − v(t, ·)‖L2 ≡ sup
0�t�T

‖rε(t, ·)‖L2 �
√

ε.
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By recalling the fact that the wave-packet rescaling (2.5) leaves the L2-norm invariant, the proof is
complete. �
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Appendix A. On the existence of Strichartz estimates

We briefly discuss the existence of ε-independent Strichartz estimates for the propagator Uε
Ω(t, s) asso-

ciated with the Hamiltonian Hε
Ω(t) as given by (3.5). To this end, we first consider the case without

rotation Ω = 0, i.e., we study solutions

uε(t, x) = Uε(t, s)u0(x),

to the non-autonomous Schrödinger equation

i∂tu
ε +

1
2
Δuε = Vε(t, x)uε, uε(s, x) = u0(x), (A.1)

where we recall from (2.7) that

Vε(t, y) =
1
ε

(
V (q(t) +

√
εy) − V (q(t)) − √

εy · ∇V (q(t))
)
.

One seeks to construct a strongly continuous map (t, s) �→ Uε(t, s) which is unitary on L2(Rd), and which
satisfies Uε(t, t) = Id,

Uε(t, τ)Uε(τ, s) = Uε(t, s), Uε(t, s)∗ = Uε(t, s)−1
.

Under our hypothesis on the potential V , this can be done using the approach developed in [9] (see
also [8] for a detailed revisit of this technique). Indeed, Assumption 1.1 implies that Vε is a real-valued
C∞-function, such that Vε ∈ L2

t L
∞
loc,x and, for any fixed t ∈ R, Vε(t, ·) is sub-quadratic in space. A short

computation also shows that

∀ |α| = 2 : ∂α
y Vε(t, y) = ∂α

x V (q(t) +
√

εy),

which in view of Lemma 2.1 and Assumption 1.1 implies that for t ∈ [0, T ]:

M := ‖∇2
yVε‖L2

t L∞
x

= ‖∇2
yV ‖L2

t L∞
x

� c(T ). (A.2)

In particular, M > 0 is ε-independent.



  171 Page 12 of 13 X. Shen, C. Sparber ZAMP

The propagator Uε(t, s) can thus be constructed, using Fujiwara’s time-slicing approach, from an
associated family of parametrices given by

Eε(t, s)ϕ(y) =
(

1
2πi(t − s)

)d/2 ∫

Rd

eiSε(t,s,y,z)ϕ(z) dz, ϕ ∈ S(Rd),

where Sε is the associated classical action, cf. [8, Chapter 1.5]. For small enough δ > 0 and 0 < |t−s| < δ,
this oscillatory integral defines a bounded operator

‖Eε(t, s)ϕ‖L2 � γ‖ϕ‖L2 ,

where the constant γ > 0 only depends on δ and M defined in (A.2) above. Thus, also γ > 0 is seen to be
ε-independent. Taking a partition of the time-interval [s, t] and an associated iterated integral operator
induced by Eε(t, s), one obtains the propagator {Uε(t, s) : t, s ∈ [−T, T ]} by taking the size of the
partition step to zero (in an appropriate sense), cf. [8, Chapter 1.6] for full details. In particular, Uε(t, s)
inherits the dispersive properties of Eε(t, s) in the sense that

‖Uε(t, s)ϕ‖L∞(Rd) � C

|t − s|d/2
‖ϕ‖L1(Rd),

where C = C(δ,M) > 0. The general theory developed in [12] shows that this short-time dispersive
estimate is sufficient to imply the existence of local in-time Strichartz estimates for the propagator
Uε(t, s), and thus for the solution uε to (A.1).

Finally, we note that by applying the time-dependent change of variables (2.19) to uε, i.e., by defining

uε
Ω(t, y) = eitΩ·Luε(t, y) = uε

(
t, etRΩy

)
,

we obtain the solution uε
Ω to a Schrödinger equation with rotation

i∂tu
ε
Ω +

1
2
uε

Ω = Vε
Ω(t, y)uε

Ω + Ω · Luε
Ω, uε

Ω(s, x) = u0(x), (A.3)

where Vε
Ω(t, y) = Vε

(
t, etRΩy

)
. Since RΩ is the generator of an orthogonal time-dependent rotation, this

change of variables leaves every Lp(Rd)-norm of uε invariant and guarantees that Vε
Ω is of the same class

as Vε itself. In particular, it holds

M = ‖∇2
yVε‖L2

t L∞
x

= ‖∇2
yVε

Ω‖L2
t L∞

x
.

The short-time Strichartz estimates available for solutions uε without rotation therefore directly transfer
to uε

Ω, a fact which has already been recognized in [6, Remark 2.2].
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