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Global classical solutions to an indirect chemotaxis-consumption model with signal-
dependent degenerate diffusion and logistic source

Meng Zheng and Liangchen Wang

Abstract. This paper deals with the following indirect chemotaxis-consumption model with signal-dependent degenerate
diffusion and logistic source

v = Av — vw, z€eQ,t>0,

ut = A (uv®) + au — bul, © € Q,t >0,
wy = —ow + u, € Q,t>0,

under homogeneous Neumann boundary conditions in a smooth bounded domain 2 C R™ (n > 1). Here, the parameters
a>0,b>0,a>1,0>0and!l > 2. For all suitably regular initial data, if one of the following cases holds:

(i) 1>2

(i) 1=2,n<3;

(iii) { = 2,n >4, and b is sufficiently large, then the corresponding initial boundary value problem possesses a global
classical solution.
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Keywords. Indirect chemotaxis-consumption, Degenerate diffusion, Signal-dependent motility.

1. Introduction
In 1971, Keller and Segel [16] proposed the following well-known Keller—Segel model

{ut:Au—xV-(UVU)+f(U)7$€Q7t>O’ (1.1)

vy = Av — uw, e t>0,

where u = u(x,t) represents the density of the bacteria, v = v(x, t) denotes the oxygen concentration, x €
R represents the chemotactic sensitivity coefficient. When the logistic source vanishes (i.e., f(u) = 0), Tao
[32] showed that (1.1) has global bounded classical solution under the conditions |[vol| 7~ ) < m.
Tao and Winkler [34] proved that (1.1) admits at least one global weak solution in a three-dimensional
domain which becomes smooth after some waiting time. The large time behavior of (1.1) has also been
studied by Zhang and Li [57]. When f(u) = ku — pu?, k € R, > 0, Lankeit and Wang [18] found that
(1.1) has global bounded classical solutions for sufficiently large u and weak solutions exist for any p > 0.
Furthermore, researchers have studied a modified version of system (1.1) (see [46-49]).

In view of (1.1), it is important to note that the utilization of the chemotaxis signal by cells may be
more intricate in real-world scenarios. The signal could originate from external substances, be indirectly

Published online: 05 August 2024
) Birkhauser


http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-024-02303-x&domain=pdf

160 Page 2 of 19 M. Zheng and L. Wang ZAMP

generated, or even consist of multiple signals generated through diverse mechanisms ( [35]). In particular,
a chemotaxis system with indirect signal consumption has been considered in [4]:

ur = Au—V - (uVv) + f(u), z € Q,t >0,
vy = Av — vw, zeNt>0, (1.2)
wy = —ow + u, e t>0,

where § > 0 is a constant. When f(u) = 0, Fuest [4] proved that either n <2 or n > 3 with [|vo| e ) <

ﬁ, (1.2) possesses global bounded classical solutions which converges to a spatially constant equilibrium

in the large time. When f(u) = pu(l —u), p > 0, if u is suitably large, global existence of classical
solutions has been established in Li et al. [26]. In addition, numerous findings pertain to the qualitative
analysis of indirect signal mechanisms (see [8,12,21]).

It is widely recognized that chemotaxis systems with signal-dependent motility have garnered sig-
nificant attention in the recent literature [11,27]. Firstly, let us introduce the following Keller—Segel-
production models with signal-dependent motility

{ut = A(y(v)u) + f(u), x € Q,t >0,

v = Av — v + u, xeQt>0. (1.3)

In the case of the absence of the logistic source (i.e., f(u) = 0), under the assumption that v(s) has a

positive lower and upper bounds (i.e., ky < y(s) < K, for all s > 0, where k., K, > 0), Tao and Winkler
[38] showed that (1.3) possesses global bounded classical solutions in two dimensions and global weak
solutions in high dimensions. In particular, such weak solution will eventually become smooth in three-
dimensional settings. For the particular case y(s) = co/s(co, k > 0), the existence of global classical
solutions has been studied in [56] if ¢y is small enough. If the motility function ~ (s) = s~ with o > 0,
global existence of classical solutions was shown in [1,6,10,14,43]. Moreover, global weak solutions in
lower dimensions (n < 3) were obtained in [3]. If the motility function v (s) = e~* for all s > 0, certain
critical mass phenomenon of (1.3) in the two-dimensional case has been detected in [7,15]. For another
results on (1.3), we refer to [2,9,50].

When f(u) = pu (1 —u), p > 0 and ~(s) satisfies y(s) > 0, 7/(s) < 0 and lir+n % exists, Jin et

al. [13] obtained the global classical solution of (1.3) in two-dimensional settings. Moreover, if y > £¢
with Ky = max M,
0<v<oo V(8
higher dimensions in [25,40]. When f(u) = pu — pu!, p € R, > 0, global classical solutions was showed
in [29,30] if / > max {%}2,2}. There are some other results on (1.3), see [5,31].
Whereas if the signal is degraded, rather than produced, by the cells, the chemotaxis-consumption
with signal-dependent motility has also been considered

up = A(y(v)u) + fu), x € Q,t >0,
v = Av — uv, xeQt>0.

the asymptotic stability was established. The similar result was proved in the

(1.4)

In the case of vanishing logistic source (i.e., f(u) = 0), if v € C3(]0,+00)) is positive on [0, +0c0), by
constructing a weighted integral function, Li and Zhao [20] found that (1.4) has global bounded classical
solutions if [|vo[[ 1« () is sufficiently small. Li and Winkler [23] showed that (1.4) possesses global classical
bounded solutions without the smallness assumption of vy when n < 2 and global weak solutions when
n > 3, such weak solutions become eventually smooth in the three-dimensional setting. If v € C°([0, +00))
is positive on [0, +00), (1.4) admits global very weak solutions for all n > 1 [24]. If the motility function
v(s) = s, a > 0, Tao and Winkler [39] obtained that there exists a very weak-strong solution; under
the additional restrictions that 2 < n < 5 and a > =2, (1.4) has global weak solutions. If the motility
function 7 (s) = s*,a > 0 for all s > 0, there are some another results in [52-55].

When f(u) = pu(l — u), the global classical solutions in two dimensions for any p > 0 and in the
higher dimensions for large y > 0 were established in [22]. When f(u) = au — bu! (a,b > 0), Wang [41]
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obtained that (1.4) possesses global bounded classical solutions and then (1.4) admits at least one global
weak solution (n > 3), which becomes smooth after some waiting time. If v € C'*([0, 00)) N C3((0, 00)) is
positive on (0, +00) with o > 1, then global classical solutions can be established in [42]. On the other
hand, if v has rather mild regularities, then (1.4) admits at least one global weak solution in case a > 0. In
addition, then the above weak solutions become eventually smooth if o > 1. Some scholars also consider
the system (1.4) in other situations, readers can refer to [19,28].

Motivated by the above works, in this paper, we consider the following system

ur = A (uv®) + au — bul, reN, t>0,
vy = Av — vw, reN, t>0,
wy = —0w + u, e, t>0, (1.5)
Ju — Jv =, red, t>0,

u(x,0) = ug (z),v (z,0) = v (z),w (x,0) = wo (x), z € Q,
in a smooth bounded domain Q@ C R™ (n > 1), where a > 0,b > 0,6 > 0,1 > 2, > 1. The initial data
ug € CO() is nonnegativein €2,
vp € WH*(Q) is positive in Q and (1.6)
wo € WH(Q) is nonnegative in Q.
Theorem 1.1. Let Q C R™(n > 1) be a bounded domain with smooth boundary. Suppose that a > 0,b > 0,
d >0 and o > 1, and that the initial data (ug,vo, wo) satisfy (1.6). If one of the following cases holds:
(i) 1>2;
(i) 1 =2,n <3;
" " a(nt2)=2 o "ot ) A2
(i) 1=2,n> 4, andb > (252)"% (ny/m)* (n—1)" 3 a5 g |y + 2 et/ a2y 2
(€) (n42)(n—-1)%6"3
lvol|Loe (), then one can find nonnegative functions
u € COQ x [0,00)) NC%H(Q x (0,00)),
ve N C%0,00); WH(Q)) N CELHQ x (0,00)),

w 6053@ % [0,00)) N COL(Q x (0, 00)),

such that (u,v,w) solves the problem (1.5) in the classical sense.

This paper is arranged as follows. In Sect. 2, we will get some preliminary inequalities and some basic
lemmas. Some estimates of the solution and the proof of Theorem 1.1 are shown in Sect. 3.

2. Preliminaries

In this section, based on the well-established parabolic theory in [13,33], we can obtain the local-in-time
existence result of a classical solution of (1.5).

Lemma 2.1. Let Q@ C R"(n > 1) be a bounded domain with smooth boundary, and let a,b,d,a be some
positive constants. If the initial data fulfill (1.6), then there exist a triple (u, v, w) of nonnegative functions

u € COQ X [0, Trax)) N C*HQ x (0, Tinax)),
ve N CUO, Tmax); WH(2)) N C*HQ x (0, Tiax))s

O>n

w € CYUQ % [0, Trnax)) N C%HQ x (0, Thax))s
which solves (1.5) in the classical sense. Moreover, if Tax < 00, we have

lim sup [[u(-, )| Lo (@) = 0o

max
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The following lemma can be easily obtained.

Lemma 2.2. Let (1.6) hold and [ > 1. Then, there exists C > 0 such that
HU(‘,t)”Ll(Q) <C forallte (O,Tmax>, (21)
0<v< ||U0||Loo(Q) imn € x (07Tmax)

and
t+71

/ul <C forallte (0,Tmax —T), (2.3)
t Q

where T := min {1, %Tmax}.

Proof. Integrating the first Eq. in (1.5), we have

%/u:a/u—b/ulga/u—b\ml_l /u (2.4)
Q Q Q Q Q

for all t € (0, Tiax). Then, an ODE comparison argument implies (2.1). Consequently, an integration of
(2.4) shows (2.3). From the nonnegativity v, w and the maximum principle, we derive (2.2). O

In order to prove our main results later, we quote a basic property of parabolic Eq. in [17, Lemma
1.2] (see also [21]).

Lemma 2.3. Let T € (0,+00). Suppose that zg € W1>°(Q), and that z € C°(Q x [0,T))NC?1(Q2 x (0,T))
is the solution of

21 =Az—2z2g9, x€Q,te(0,T),
9z _ (), x €00 te(0,T),

ov

z(2,0) =29 (x), 2 €Q,
where g € C%(Q x (0,T)) satisfies g € L>=((0,T); LP(Q)) with p > 0. Then for each
o[ e
[1,00] if p>mn,
there exists a constant C' > 0 such that
|z, ) lwrr) < C forall te(0,T).

The following auxiliary statement on a boundedness property will be used in the time-independent
estimates (see [37, Lemma 3.2]).

Lemma 2.4. LetT >0, tg € (0,T), a >0, b > 0. Suppose thaty : [0,T) — [0,00) is absolutely continuous
and that
y'(t) +ay(t) < h(t) forae te(0,T),

where h is a nonnegative function in L}, ([0,T)) satisfying

t+to

h(s)ds <b te[0,T —tg).

Then, we have

y(t) < max {y(O) +b, % + Qb} forall ¢ e (0,7).
ato
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Next, we shall collect two lemmas that will be frequently used later.

Lemma 2.5. ( [51, Lemma 3.4]) Let ¢ > 2 and ¢ € C*(Q) be positive fulfilling % aw =0 on 0. Then, we
obtain

/w*q71|vw|q+2 < (q+ﬁ)2/¢*q+3|v¢‘q72 |D2 1n1/}|2
Q Q

and

/w Q+1|v¢|q 2|D21/}| q_|_\/>+ /w q+3|vw|q 2‘D21n1/)|

Lemma 2.6. ( [51, Lemma 3.5]) Let ¢ > 2 and n > 0. There is C = C(q,n) > 0 such that every positive
¥ € C2(Q) with 92 =0 on 9 satisfies

- 3|V¢|2
U U w - 1IVqu“Jrn YTy D2+ ¢ w

Combining (2.3) and Lemma 2.4, we can derive the boundedness of [w!(-,t) with [ > 1.
Q

Lemma 2.7. If (1.6) and ! > 1 hold, then there exists C' > 0 such that

/wl(-,t) < C forall te(0,Tmax)- (2.5)
Q

Proof. We test the w- equatlon of (1.5) by w'~! and integrate to obtain

ldt :76/w+/uw
1—1 /6l
< Ly l
afutel [ SR (5)
Q

for all ¢ € (0, Tyax). Combining (2.3) and Lemma 2.4, we obtain (2.5) O

(2.6)

L
1-1

v(z,t)
llvo HLOQ(SZ)

bound for v. The ideas come from [42,45].

By a transformation z(z,t) = —In , we can construct a time-dependent pointwise lower

Lemma 2.8. Let (1.6) hold and n > 1. For some p > &, assume that there exists C1 > 0 satisfying

lw(-,t)||Lr) < C1 forall t € (0, Tax)- (2.7)
Then, given any T € (0, Timax) there exists Co(T) > 0 such that
v(z,t) > Co(T) forall te (0,7T). (2.8)
Proof. Let z(z,t) = —In % Then, using the second equation of (1.5), we derive
= Az —|Vz]? +w, x €Ot e (0, Thax),
% =0, x €9t € (0, Thax) , (2.9)

2(2,0) = z0(x) = —In —2@) 2 € Q.

HWOHLOO(Q)
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On the basis of the variation-of-constants formula of (2.9), using the nonnegativity of w and a comparison
principle, we have
t t
2(-,t) = ePlzg — /e(t_s)A|Vz|2 —I—/e(t_s)Aw(-,s)ds
0 0
t

< Pz + /e(t_s)Aw(-,s)ds
0

for all ¢ € (0, Timax). Then by virtue of (2.7) and the smoothing properties of Neumann heat semigroup
(eA);>0 on Q ( [44, Lemma 1.3]), we infer the existences of ¢; > 0 and ¢y > 0 such that

t
tA —s)A
12 Ollmioy < a0l gy + [ 2wt ds
0
t
< ol + e [ {1 (6= )% } . 9)l1o(eds (210)

0
t

S ||ZO||LW(Q)+02/<1+J_%> do
0

for all t € (0, Tmax). Hence, thanks to p > 5, for any T' € (0, Tinax), (2.10) in conjunction with (2.11)
implies that one can find some c3(7T,p) > 0 fulfilling

20, )l poe ) < es(Tsp) forall t € (0,T). (2.11)
Then according to the definition of z(-,t), we can readily obtain (2.8). g

With the lower bound of v at hand, we can show local boundedness criterion of solutions of (1.5).

Lemma 2.9. Let (1.6) hold. For alln > 1, assume that there exist C > 0 and q > 1 with ¢ > 5 such that

lu(-,t) Loy < C forall t € (0, Tiax)- (2.12)
Then for all T € (0, Tynax), one can find C(T) > 0 such that
[[us Ol zoe () + [[0( Dlwree @) + w8 @) < C(T) - forall t € (0,T). (2.13)

Proof. We may test the third equation in (1.5) by qw?~! and use Young’s inequality to find some ¢; > 0

such that
4 wl=—qd [ wi+q [ vw??!
dt
Q Q Q

1)
S—%/ q—|—61/uq

Q Q
for all ¢ € (0, Tinax)- Using (2.12) and (2.14), we can show that there exists a constant ¢y > 0 fulfilling

(2.14)

/wq < co forallte (0, Thax)- (2.15)
Q

Because ¢ > 5, we have (nfg)+ > n. Thus, we can pick 6 > max {1, %} such that (n23)+ > 20 > n. An

application of (2.15) and Lemma 2.3 implies that there exists c5 > 0 such that [[Vu(,?)[ 120 q) < c5 for
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all t € (0, Tiax). Moreover, (2.15) in conjunction with Lemma 2.8 shows that for any T' € (0, Tryax), We
can find ¢4 (T) > 0 fulfilling v > ¢4(T) in Q x (0, 7).
For all p > 1, multiplying the first equation of (1.5) by u?~! and using Young’s inequality, we end up

with

o _ 2 _

%/u”Jr Gl\lpp— ) (T)p;p D) /up_2|Vu\2+/up <2 ) CS(T)Qp(p D) /uPIVvl2 + (ap+1)/up
Q Q Q Q Q

(2.16)

for all t € (0,T), where ¢5(T) == max{

(1), ||1}0H%;2(Q } Regarding for 6 > max {1, 2}, thus 2% <
, by an Ehrling-type inequality and (2.1), there exists a positive constant cg(p,T') such that

(n 2)
o?es(T)p(p — 1) a?es( p(p 1)
f/“pva (ap+1 /u u 2H2 . ||Vv||2L29(Q)
Q Q
» a?cies(T — P
Fap+ 1)uf 3y < CBBORR =D g, (2.17)

2 L7-1(Q)

cg(T)p(p — 1)
2

T (ap + D)[uF 2o < ‘/wﬁﬁ+%mT>

for all ¢ € (0,T). Combining (2.16) and (2.17), and using an ODE argument, we infer that there exists
cr(p,T') > 0 satisfying [[u(-,t)|[1»q) < c7(p,T) for all ¢ € (0,T). This along with Lemma 2.3 implies that
one can find some cg(T") > 0 such that

lo(, t)lwieo) < cs(T) forallt e (0,T). (2.18)
Thus, according to [36, Lemma A.1], we can find a constant cg(7") > 0 satisfying

lu(-,t)| o) < co(T) forall te(0,T). (2.19)
Applying the variation-of-constants formula for w, we have

¢

w(-,t) = e twy + /e_‘s(t_s)u(-,s) ds forall te (0,7),

0
which together with (2.19) implies that there exists ¢19(7") > 0 such that
|w(-, )| L= (o) < c10(T) forall te (0,T). (2.20)
Hence, collecting (2.18)—(2.20), we can derive the claimed conclusion (2.13). O

3. Proof of Theorem 1.1

In this section, our goal is to obtain global classical solutions of (1.5). To this end, we will establish
certain integral inequalities of (1.5). The ideas used in this section are mainly taken from [18,42,51,52].
We start with the following integral of the type [ u”.

Q

Lemma 3.1. Let (1.6) hold. We have
d 1 *p(p—1
dt/ p+7( 5 )/u”_Qvo“|Vu|2 < epp-) p(}; )/u”va_Q\VUP—I—ap/up—bp/up“_l (3.1)

Q Q Q Q
for all t € (0, Trax)-
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Proof. We test the u-equation of (1.5) by uP~! and use Young’s inequality to obtain

d
T /up =—p(p—-1) /up_2vo‘|Vu\2 —ap(p — 1)/up_lvo‘_1Vu -V
Q Q Q
—l—ap/up —bp/up'“_1
Q Q
-1 *p(p — 1
S_p(pQ )/up—Qv(x|vu‘2+ « P(Z; )/upva—2|vv|2
Q Q
—I—ap/up —bp/up“_1
Q Q
for all ¢ € (0, Tyax). Hence, we obtain (3.1). O

Next we establish a differential inequality of [v~91|Vu|? for all ¢ > 2. This idea comes from [42,51],
Q

which is the key to the proof of this paper.

Lemma 3.2. If (1.6) holds, then for all ¢ > 2, we obtain

d _ _ _ q _ 5, O|Vu)?

el qg+1 q _ 1 q+3 q—2 D21 2 < 1 q+1 q—2 .

& [erivelt a1 [o S e
Q Q o (32)
+q(q—2+\/ﬁ)/wv_q+2|V1}|q_2\D2v|

Q
fOT‘ allt S (O,Tmax)'

2

Proof. Integrating by parts in the second Eq. in (1.5) and using 2Vv - VAv = A|Vv|? —2 ’DQU , we can

find

%/v*q+1|V1}|q :q/v*q+1|Vv\q*2Vv -V(Av —vw) — (¢ — 1)/v*q|Vv|q(Av —vw)
Q Q Q

:g/v_q+1\Vv|q_2A|Vv|2 —q/v_q+1|Vv|q_2|D21J\2
Q Q

- q/v_q+1|Vv|q_2Vv -V (vw)
Q

—(q— 1)/U7q|Vv\qu—|— (g—1) /wv7q+1|Vv|q
Q Q
=q(qg—1) /v*q|Vv|q*2V’u V|V - q/fu*q“|Vz}|q*2\D2v|2

Q Q

-2
22 [ VTR — gl - 1) [0 vl

Q Q
2 -2

+ g /v_q+1\Vv|q_2 Rl + ale=2) /wv_q+2|Vv|q_4Vv - V|Vl

ov 2
o0 Q
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+ q/wv_q+2|Vv|q_2Av —(qg—1)? /wv_q+1\Vv|q
Q Q
(3.3)

for all ¢t € (0, Timax). For the first four terms on the right of (3.3), we use the pointwise identity ( [51,
Lemma 3.2])

1 1 1 _
|D?Ing|? = —EVQO “V|Ve|? + ?|D2<p|2 + E|V<p|4 for all positive p € C%(Q)
and V|Vov|? = 2D%v - Vv to obtain
q(g—1) /v_q|Vv|q_2Vv - V|Vo|? - q/1)_‘7'*'1|V1)|‘1_2\D2v|2

Q Q

L2 [ TP — gfg — 1) [0l
Q Q

_ _ 1 1 1
=-q(g-1) /U 93| 7y[1? (—v?)Vv -V |Vo|* + U7|D2v|2 + v4|Vv|4)

=—q(g—1) /u*q+3|vu|q*2\D2 Inv|?
Q
(3.4)

for all ¢ € (0, Timax). The sixth and seventh summands on the right-hand side of (3.3) can be estimated
as follows:

M/wv*q“\VvP*‘LVv-V|VU|2+q/wv*q+2|Vv|q*2Av

Q Q

<q(q—2+vn) /wv_q+2|Vv\q_2|D2v| (3.5)
Q

for all ¢ € (0, Tinax), because of |Av| < \/n|D?v|. Inserting (3.4) and (3.5) into (3.3), we obtain (3.2).

O
In the following, we will drive a differential estimate of the type [wPT!.
Q

Lemma 3.3. Let (1.6) hold. Then for all p > 1, we have

1 2\”
i/wp“ + M/wp+1 < (= /uP+1 for all t € (0, Tinax). (3.6)

dt 2 )
Q Q Q

Proof. Testing the third equation in the model (1.5) by (p 4+ 1)wP, we obtain

& s [urt < [ 0

Q Q Q
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for all t € (0, Trax)- Applying Young’s inequality, we have

(P+1)Q/wpu< le)é/wp“nL ((p—?-pl)6>pﬂ/up+l

Q
(3.8)
<M/wp+1+ 2 p/up+1
-2 8
Q Q
for all t € (0, Tiyax). Plugging (3.8) into (3.7), we obtain (3.6). O

q+2

The following differential inequality ofs{up +§f2v*q+1|V1}|‘1 + B [w®s with some p > 1, ¢ > 2,

(q+2) 5

k1 > 0 and d > 0 can be constructed.

Lemma 3.4. Assume that (1.6) is valid, « > 1 and I > 1. Then for all p > 1 and q > 2, there exists a
constant C' > 0 such that

d
ai| [ [ )5/ - */“”/”_QH'W‘”“/W%
Q Q Q Q Q
2
p(p_l) q_l E 7a(q+2> 2/ p(a+2)
< 7 3.9
=7 (2p< g+ vn)? | u (3.9)

Q
q
8K1 2\?® qt2 bp/ -1
S 2 — = C
+<q+2>5(5> /“ A
Q Q

for allt € (0, Tinax) with k1 := 824(q+f+1)q(q( QY)ZH) =N HvoHLoo<m
q

Proof. We only need to take a linear combination of (3.1) and (3.2) to get

% /up +/v_q+1|Vv\q +/up +/v_q+1|V1}|q

Q Q Q Q

+alg=1) [0Vl D? o
Q

2p(p — 1
<= Lo Wu 4 ap+ 1) [ —tp [t (3.10)
Q Q Q
Falg =24 Vi) [wo t Vel 2D
Q
o 2
+ 4 /U—q+1‘vv|q—2 . M + /v_q+1|Vv|q
9 ov

o Q
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for all t € (0, Tynax). We employ Young’s inequality with any 1 > 0 and Lemma 2.5 to estimate
i o /v‘q_1|V0|q+2

p(p—1
« p(p )/upva—2|VU‘2 Sp(p2 1y

2
Q Q
n p(p; 1)u1—qqﬁa2<qq+2> /up(q;mva(wf)—z
Q
(3.11)
_ 1 2 q+2
Sp(p )(2(]4»\/5) quz /v*q+3|vv|lI*2|D2 an|2
Q
PO=1) o2 e S L e
t=—m " a T ol [ ue
2
Q
2
for all ¢ € (0, Thax). We pick 1 = (5549785 ) ™ and use (3.11) to see that
2p(p—1 -1
=D ure2vep < WD [ omassigope2 o2 o
Q Q
(3.12)
p(p—1) q(g—1) 4 2(at2) aizi s p(a+2)
q q
20— Dig+vnz) lvoll poe iy [ v

to the

+ 2
for all t € (0, Tmax)- Applying Young’s inequality with any ps > 0 and pz > 0 and Lemma 2.5

fourth term on the right hand of (3.10), we have

dla =2+ Vi) [wort 2 Telt 2 D%
Q
Suz/v‘q+1|Vv|q—2|D2v|2 +M2—1q2(q_2+\/ﬁ)2/w2v—q+3|vv|q—2
Q

Q
g+2
SM2(q+\/E_F1)2/U—q+3|vv|q—2|D21nU|2+M2—1q2(q_2+\/5)2//6;—2 /U_q_l|V’U|q+2
Q

Q
_g+2
+u3' (g —2+vn)pg /quzv
Q
q+2
—2}/v—q+3|vuq—2|p2 Inv|?

I

<(¢++vn+1)* {uz + 15" 4% (g — 24+ vn) g
Q

0y g =24 vn)uy Hvolle<ﬂ>/wq2
Q

q—2

q(g—1) _ ( q—1)2
64(g++v/n+1)*(g—2+v/n)?

for all t € (OaTmax)- Lettlng M2 = W,ﬂg

know that
q(g —2++/n) /wv_q+2|Vv|q_2|D2v| < % /v_q+3\VU|q_2|D2 Inv|?
Q

Q
L Blala+ v+ 1)g =2+ V) ool (o) v
(¢—1) J

(3.13)

)m and using (3.13), we

(3.14)
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for all t € (0, Tynax)- Inserting (3.12) and (3.14) into (3.10), we conclude that

d
I /up+/v_q+1\Vv|q +/up+/v_q+1|Vv\q
Q Q Q Q

-1
+7q(q2 )/qu+3|Vv|q*2|D21nv\2

Q
2
p(p - 1) q(q - 1) a 2(q+2) D‘(q+2) 2 / p(q+2)
<

Q

) 88g(g+ v+ 1)7(g = 2+ v)"F ool = (@) / ag2
—1)2
(¢—1)2 A
2
I g /v,q+1|vv|q72 . mgf:‘ + /qu+1|vv|q + (ap+ 1)/up — bp/up+l—1
o0 Q@ ¢ “

for all t € (0, Timax). An application of (2.2), Lemmata 2.5, 2.6 and Young’s inequality shows that for any
1 > 0, there exists some ¢; > 0 such that

d|Vu|?
g/v—q+1‘vv|q—2 . % < W/U_q_1|V7)|q+2+77/U_q+1|vv|q_2|D2v|2 —I—cl/v
v

a0 Q Q Q (3.16)
<2(qg++vn+ 1)2n/v_q+3|Vv|q_2|D2 In v|2 + c1|Q]|vo || L= ()
Q

/v_q+1|VU|q Sn%ﬂ/v_q_1|V1}|q+2+n_%2/v
Q Q Q

and

(3.17)
< (@t ViR [t Vel D ol o oo
Q
for all ¢ € (0, Tynax)- Since I > 1, by Young’s inequality, we can find ¢g > 0 such that
b
(ap + 1)/1#’ - bp/upH*1 < 7527/“;;“71 ) (3.18)

Q Q Q

for all ¢ € (0, Tinax). Choosing n appropriately small, plugging (3.16)—(3.18) into (3.15), we obtain

d
o /up+/v7q+1|Vv|q +/up+/qu+l|vv|q
Q Q Q Q

2
p(p—l)( qlg—1) ) 2042) M/ p(a+2)
< « (Y .. u 9 (3.19)
2p(p )? Iooll ey )

2 - Dlg+vn

+/~t1/wq72f%p/up”*1+0

Q Q
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forallt € (0, Tinax) With sy = 85q<q+‘/ﬁ+1)q(q(_2;‘%f) " ol o) . Letting p := £ in (3.6), and multiplying
o
wg_%)é in the both sides of (3.6), we have
S5 d [ we _ 8m (2)* / ox2
— 2 < - : 3.20
(q+2)5dt/ - Kl/ _(Q+2)5(5> ‘e 320
Q Q
for all ¢t € (0, Tinax). Substituting (3.20) into (3.19), we obtain (3.9). O

Our next plan is to deal with the first two integral terms on the right-hand side of (3.9).
Lemma 3.5. Leta>1,1> 1, p>1 and g > 2 be such that
2p
> —— 3.21
4> (3.21)
Then, there exists a constant C' > 0 such that

2
plp—1) q(¢ —1) S ety o LD 2/ pla+2) bp/ -1
i< = p+ C 3.22
2 <2p(p1)(q+\/ﬁ)2 “ ol o) =3 ] + (3.22)
Q Q

for allt € (0, Tiax)-
Proof. It follows from (3.21) that

plg+2) _(-1g—2p
q
Thus, we utilize Young’s inequality to the first summand on the right hand of (3.9) to show the existence

of ¢ > 0 such that
2
p(p—1) q(¢—1) Ta 2a+2) olgt2)=2 / P/ +H-1
< = p
2 (2p(p ") ¢ Tl A
Q Q

for all ¢ € (0, Tinax), which implies (3.22). O

p+l—1-— > 0.

Lemma 3.6. Let [ > 1, p > 1. Assume that g > 2 satisfies
g<2(p+1-2). (3.23)
Then, one can find a constant C > 0 such that

) [ [

Q

for allt € (0, Timax), where k1 is given by (3.9).
Proof. Using (3.23), we obtain
q+2 q
1—1-9172 1—2-%5y.
p+ 5 P + 5 >

Applying Young’s inequality to the second term on the right of (3.9), one can find ¢ > 0 satisfying

arm(5) [ < [
1 Q Q

for all ¢ € (0, Tyax), which immediately gives (3.24). O

In the case of [ > 2, applying Lemma 3.4, we have the following result.
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Lemma 3.7. Let | > 2. Assume that (1.6) holds with some o > 1. Then for all p > 1, there exists a
constant C > 0 such that

|u(-, )| ry < C for all t € (0, Tiax)- (3.25)

Proof. Since [ > 2, we can readily obtain
2p _2(p+1-2)(1—-1)—p] _2(0-2)(p+1-1)

2 [—2)— = = 0.
pHi=2)-7 1 -1 -
Hence, for any p > 1, we can pick some ¢ > 2 fulfilling
2
% <q<2p+1-2). (3.26)

It follows from Lemmata 3.4-3.6 and (3.26) that one can find ¢; > 0 such that

G\ [ [ S /
Q Q

(3.27)
2) a+2
+min { q+ } / p+/v Vel + o 8'11 / t
Q
for all ¢t € (0, Tinax). Thus, a standard ODE comparison argument implies (3.25). O
In the case [ = 2 and n > 4, we will derive LP-bounds on wu if b is sufficiently large.
Lemma 3.8. Letl =2, n >4 and p > 1. Suppose that (1.6) holds, and that b > 0 satisfies
Ot(p+1) 1
b> Ai(p,n)a )y A2(pn,0)llvollLe ), (3.28)
where
2
M(p.n) = (p— 1 (2p+ V) (2p—1)77 (3.29)
and
24P14(2 1)%7(2p — 2 ptl
No(p,n, 8) e 2 Cp e/t )P2p =24 V)P (3.30)
(p+1)(2p — L)por+t
Then, we infer the existence of C' > 0 such that
|u(-, )| ry < C for all t € (0, Tinax)- (3.31)

Proof. Since [ = 2, using (3.29) and (3.30), we apply Lemma 3.4 to ¢ := 2p to find

d 4
o /up+/v_2p+1|Vv|2p fﬁ / —|—/up—l—/v_2p+1|VU|2p+/i1/prr1
Q Q Q Q Q

1

plp—1) (2p—1) P 2een, o RN /
< p+1
< () [
Q (3.32)

4p+3 2 -~ +1
N 27 (2p + vn + 1) (2p — 2+ /n)P T H|vo| L~ (o) /up+1 B b?p/upﬂ Lo
Q

(p+1)(2p — 1)Portt
Q
( a(p+1)—1

HUO”LOO Q A2(p.n) HUOHLOO(Q) w4+ C
(©)
Q

-£ {b A1 (p,n)a
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for all ¢ € (0, Tiyax)- Using (3.28), we have

VR Eaa 4“5/ -
Q Q
+mm{1p+1 } /‘p+/'2“ﬂVMp+-zm15/ rtl ) <

for all t € (0, Tynax). Therefore, by a standard ODE comparison argument, we have (3.31). O

(3.33)

Next, we only consider n € {2,3} and | = 2, since the global bounded solution is ensured by (2.1) and
Lemma 2.9 when n = 1.

Lemma 3.9. Let n € {2,3} and | = 2, and suppose that (1.6) holds. Then for oll T > 0, one can find
C(T) > 0 such that

[u( D)2y < C(T)  for all t € (0, Tiax)- (3.34)

Proof. Letting ¢ =2 in (3.1), we have

u —|—/ v*|Vul? + /u2 < a2/u20“_2|VU|2+(2a+1)/u2 (3.35)

Q Q

for all ¢ € (0, Tmax). Due to I = 2, (2.5) in conjunction with Lemma 2.8 shows that for any T > 0, we can
find ¢, (T) > 0 fulfilling v > ¢1(T') in  x (0,T). Therefore, (3.35) can be rewritten as

cclit u? + (T )/|Vu|2—|—/u2 SonCg(T)/u2|Vv|2+(2a+1)/u2 (3.36)
Q Q Q Q

for all t € (0, Tinax), where co(T) := max {cf‘z( )5 [Jvol| T = Q)} Since n € {2,3}, I = 2 according to (2.5)
and Lemma 2.3, we can find c3 > 0 satisfying
[Vo(-, )l pagqy < e forall t € (0, Tinax)- (3.37)

Using n < 3, (2.1), (3.37), Holder’s inequality and an Ehrling-type inequality, there exists a positive
constant ¢4(T") such that

o%ey(T) / W2 Vol? 1 (2a + 1) / 0 < e (T) [l oy I V0] 2 oy + 20+ D20
Q Q

(3.38)
c
< aPea(T)e3||ullFagqy + (20 + DlullF20) < + ca(T)
for all t € (0, Trax). Plugging (3.38) into (3.36), we have
d
dt/ L4l /WP /ﬁSMHfMﬂte&%w. (3.39)
Thus, using an ODE argument, we complete the proof of (3.34). O

With the help of Lemma 2.9, the following result can be obtained.

Lemma 3.10. Suppose that (1.6) and o > 1 hold. For all n > 1, if one of the following cases holds:
(i) I > 2;
(ii)) [ =2,n < 3;



160 Page 16 of 19 M. Zheng and L. Wang ZAMP

n a(n+2)—2
(iii) I = 2,n >4, and b > Al(%,n)QZ( T [voll ooty + A2(5,7m,0)[[voll o (), where Ay and Az are as

defined in (3.29) and (3.30), then for all T € (0, Tmax), there exists C(T) > 0 fulfilling
[u( )l zoe (@) + l0 G Dllwree @) + [[w( Dl L@ < C(T) - for all t € (0,T).

Proof. Let p > 1 such that p > 7. In the case [ > 2, Lemma 3.7 guarantees that ||u(-,?)||zr(q) is bounded
for all ¢t € (0, Thax)- In the case [ = 2, for any b > 0, in view of Lemma 3.9 and (2.1), we obtain that
lu(-, )| 2 () is bounded when n € {2,3} and ||u(-,t)|| 11 (o) is bounded when n = 1. Whereas in the case
[ =2 and n > 4, thanks to

2(n+2) a(n+2)—2

n = n
b> A\ <§,n) a n HUOHLOQ(Q) + Ag (5,n, 5) HUQHLoo(Q)

and the continuity of A; and A2, there exists p > % satisfying

(p+1) a(pti)—1

2
b>M(p,n)a 7 lvoll oy + A2(pim; 0)[lvoll L (0)-

Applying Lemma 3.8, we also see that [[u(-,t)||Lr(q) is bounded for all ¢ € (0, Tiax). In conclusion, we
utilize Lemma 2.9 to complete this proof. O

Now, we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Theorem 1.1 is a direct consequence of Lemmata 2.1 and 3.10. O
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