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Abstract. This study investigates the thermocapillary migration of a compound drop placed concentrically within a spherical
cavity under the limit of vanishing Péclet and Reynolds number. The imposed temperature gradient, which is constant along
the line connecting the centers of the drop and cavity, is the driving force for the migration of compound drop. The compound
drop is assumed to translate with an unknown velocity to be determined using force-free conditions. The flow field in each
phase of the drop and the continuous phase is governed by the Stokes equations, whereas the thermal problem in each
phase is governed by the heat conduction equation. The hydrodynamic problem and the thermal problem are coupled
through specific boundary conditions. A complete general solution of the Stokes equation is used to solve the hydrodynamic
problem in each phase. The migration velocity of a compound drop inside a spherical cavity is presented for various values
of the physical parameters involved such as viscosity ratio, thermal conductivity ratio, Marangoni number. It has been
observed that the migration velocity which represents the rate of movement of compound drop due to thermocapillary
effects, decreases as the ratio of the compound drop’s radius to the cavity radius increases. On the other hand, this velocity
decreases with an increase in relative conductivity of the cavity wall and increases with Marangoni number at the interface
of the compound drop. The analytical solution provides a closed-form expression for the migration velocity of the confined
compound drop, and it is seen that the boundary effects play significant role in thermocapilary migration.
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List of symbols

μ1, μ2, μ3 Coefficient of viscosity in Phase j, j = 1, 2, 3
kw, k1, k2, k3 Thermal conductivities at the cavity wall and in Phase j

b, a, εa Radii of cavity, compound drop and droplet
λ21, λ32 Ratio of viscosities in Phase 1, Phase 2 and Phase 2, Phase 3

k10 Ratio of thermal conductivities in Phase 1 and the surface of the cavity
k21, k32 Ratio of thermal conductivities in Phase 1 and Phase 2, Phase 2 and Phase 3
σ21, σ32 Surface tension at the interface between Phase 1–Phase 2 and Phase 2–Phase 3

T1, T2, T3 Thermal distribution in Phase j
T0 Undisturbed temperature at the center of the cavity

Pm
n Associated Legendre polynomials of degree n and order m

an, bn, cn, b′
n, c′

n Unknown coefficients in thermal problem
Ma1, Ma2 Marangoni number at the interface between Phase 1–Phase 2 and Phase 2–Phase 3

ez Unit vector in z direction
∇s Surface gradient operator

V , U Migration velocity of the droplet and compound drop, respectively
τrr, τrθ, τrφ Stress components in spherical coordinates

τ1n̂t̂, τ2n̂t̂, τ3n̂t̂ Tangential stress components in all the phases
(r, θ, φ) Spherical coordinate system
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Tw Temperature distribution at the cavity wall
Pe Péclet number
Re Reynolds number
Ca Capillary number

l Radius ratio b/a
n̂, t̂ Unit normal and unit tangential vectors
Ts Space scale of the temperature

sn, tn Spherical harmonics
A′

nj , B′
nj , C ′

nj , D′
nj Unknown coefficients in the hydrodynamic problem
ξ Strength of heat source
h Location of heat source

1. Introduction

When a drop of one liquid is suspended in an immiscible second liquid that exhibits a temperature gra-
dient, it naturally migrates toward the warmer side. This movement occurs due to the interfacial tension
gradient caused by temperature variations along the surface of the droplet. This intriguing phenomenon
referred to as thermocapillary migration, holds significant importance in processes involving materials
conducted under microgravity conditions,[1] as well as numerous other applications such as cosmetics [2],
petroleum [3]. Compound drops, carrying nanoparticles, offer targeted drug delivery in nanomedicine.
Encapsulating drugs within these drops boosts stability and enables precise, controlled release at specific
body sites, reducing systemic side effects [4]. A simplified model of a spherical drop in a spherical cavity
represents droplets in rock pores. Hydrodynamic interactions between the drop and pore walls influence
viscous resistance and oil recovery efficiency. Recent research [5] used boundary collocation methods and
provided numerical data on hydrodynamic drag forces contributing to our understanding of this process.
In all these applications, the fluid particles guided by thermocapillary migration shift between different
temperature zones within an environment where gravity plays a lesser role. Young et al.[6] were the first
to have understood the thermocapillary migration of droplets when they observed the motion of a drop
within a vertical liquid bridge positioned between the anvils of a micrometer. They generated a temper-
ature gradient by heating the lower anvil to effectively reduce the upward buoyant motion of the drop
and in some cases even directed them downward. Additionally, they developed a formula to calculate
the migration velocity of a spherical droplet that is suspended in an unbounded fluid and subjected to a
uniform temperature gradient under the conditions of small Marangoni and Reynolds numbers.

Subramanian [7] extended the research on thermocapillary migration of bubbles by incorporating
nonzero convective heat transfer effects in the equations governing the temperature distribution. In a
subsequent study, Haj-Hariri et al. [8] introduced the inclusion of inertia in the thermocapillary migration
of fluid droplets and concluded that inertial effect causes the drop to deform into either a prolate spheroid
or an oblate spheroid depending on the density ratio and other controlling parameters. Balasubramaniam
and Chai [9] delved into the thermocapillary migration of a fluid sphere within confined pores, examining
the impact on the motion of spherical fluid particles at low Marangoni numbers and nonzero Reynolds
numbers, specifically analyzing the migration velocity of individual fluid particles. Chen et al. [10] utilized
a boundary collocation method to investigate the thermocapillary mobility of a spherical drop moving
along the central axis of an insulated circular tube. They observed a steady decrease in mobility with
changes in the drop-to-tube radius ratio.

A spherical droplet moving within a spherical cavity serves as an idealized model for investigating
droplet migration in media or microchannels composed of interconnected spherical pores. Lee and Keh [11]
recently explored the thermocapillary migration of a fluid sphere within a spherical cavity, aligned along
the line connecting their centers. They employed a hybrid analytical–numerical approach, which integrated



ZAMP Thermocapillary migration of a compound drop... Page 3 of 21 141

a boundary collocation technique to obtain numerical results concerning droplet mobility. In an extension
of their research, Lee and Keh [12] employed a semi-analytical method with boundary collocation to
address the hydrodynamic drag force acting on the spherical droplet. Their findings indicated that,
in specific droplet positions, the wall-corrected drag force typically increases with the viscosity ratio
between the internal and external fluids. Furthermore, researchers [13] performed computations to solve
for the thermocapillary migration of a fluid sphere within a spherical cavity, situated perpendicular to
the line connecting their centers. This thorough investigation provided valuable insights into the intricate
dynamics of droplet migration within such confined geometries, thereby advancing our understanding of
thermocapillary phenomena in these settings.

The focus of this study is on the migration of a compound drop under the influence of a temperature
gradient in a spherical cavity filled with viscous incompressible fluid. Compound drops, often referred
to as double emulsions, are multi-component liquid systems comprising one or more droplets enclosed
within another immiscible drop. Simulation and analysis done by Nguyen et al. [14] explained that during
thermocapillary migration the inner droplet initially moves faster than the outer droplet. Both eventually
reach the same speed, but their velocity patterns differ. Even though numerous studies have been per-
formed on the thermocapillary migration of compound drops or bubbles, the thermocapillary migration
of a compound drop in a concentric spherical cavity has not been investigated to date. Therefore, the
proposed study aims to address this gap in the literature by investigating the thermocapillary migration
of a compound drop placed concentrically in a spherical cavity with a uniform temperature gradient along
the z-axis.

It also examines the influence of the thermal conductivity of the surrounding medium on the axi-
ally symmetric thermocapillary motion of the compound drop in the concentric cavity. We evaluate the
migration velocity of the compound drop within the spherical cavity under the effect of a temperature
gradient, noting that the boundary’s impact is slightly more pronounced in this axially symmetric migra-
tion. The presence of a rigid spherical boundary which is termed as a spherical cavity significantly affects
the migration of the compound drop. By employing a complete general solution to Stokes equations,
we provide closed-form expressions for velocity and pressure along with insights into the hydrodynamic
forces experienced by the compound drop. The research explores normalized thermocapillary migration
velocities relative to those in unbounded media and reveals that the migration velocity decreases as the
ratio of the compound drop’s radius to the cavity radius grows. This study offers essential insights into
confined fluid dynamics and heat transfer, with applications in various scientific and engineering domains.

2. Analysis

We consider a compound drop consisting of an inner drop referred to as droplet hereon, of radius εa
surrounded by an immiscible fluid envelope of radius a placed concentrically in a spherical cavity of
radius b. For reference, the three phases involved in the problem are labeled in Fig. 1. The continuous
phase in the cavity is denoted by Phase 1, the fluid envelope phase by Phase 2 and the droplet phase
by Phase 3. The viscosities and thermal conductivities in the continuous phase in the spherical cavity
and in each phase of compound drop are μ1, μ2 and μ3 and k1, k2 and k3, respectively. We use the
spherical coordinate system (r, θ, φ) with the origin attached at the center of the cavity. The capillary
number μ1Uc/σ21 at the interface between Phase 2 and Phase 1 and the capillary number μ2Uc/σ32

between Phase 3 and Phase 2 are assumed to be very small so that the interfacial tensions σ21 and σ32

are sufficiently large to maintain the spherical shape of the compound drop, where Uc is the characteristic
velocity defined later in section 2.2. A linear temperature field T∞(z) with uniform gradient E∞ez = ∇T∞
is imposed in the cavity surroundings far away from the compound drop, where ez is the unit vector in the
z direction and E∞ is taken to be positive. Before deriving the thermocapillary migration it is necessary
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Fig. 1. A geometric representation of the problem

to obtain temperature and velocity distributions which are axisymmetric in all the phases within the
cavity.

2.1. Thermal distribution

The equation describing the heat transfer in a steady fluid flow is governed by the conduction–convection
equation which in dimensionless form is given as follows

Pe(vj · ∇Tj) = ∇2Tj , j = 1, 2, 3, (1)

where Pe = Uca
α is the dimensionless Péclet number which provides a measure of the relative magnitude

of the convection term in Eq. (1) compared with conduction, α is the thermal diffusivity, vj is the
dimensionless fluid velocity, and Tj is the dimensionless temperature. We have used the dimensionless
variables ṽj = vj/Uc T̃j = Tj/E∞a, ∇̃ = a∇, r̃ = r/a, with a being the radius of the compound drop
and Uc being the characteristic velocity defined in Sec. 2.2, to nondimensionalize Eq. (1). The symbol
tilde has been dropped from Eq. (1) for convenience. Under the assumption of a negligibly small, Eq.
(1) reduces to ∇2Tj = 0. In the present investigation; we assume that the heat transfer in the system
of thermocapillary migration is governed by the conduction equation in each phase j = 1, 2, 3 and the
cavity surroundings. Thus, the temperature field in each phase j is governed by the following equations:

∇2T1 = 0, 1 ≤ r ≤ l, (2)
∇2T2 = 0, ε ≤ r ≤ 1, (3)
∇2T3 = 0, 0 < r ≤ ε, (4)

and for the cavity surroundings

∇2Tw = 0, r ≥ l, (5)
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where l = b/a is the radii ratio of cavity-to-compound drop and

∇2 =
1
r2

∂

∂r

(
r2

∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂φ2

is the Laplacian in spherical coordinate system.
The requirement of continuity of temperature and the normal heat flux on the liquid–liquid interfaces

between the phases present in compound drop and the cavity wall imposes the following boundary con-
ditions in addition to the requirement of the temperature in the cavity phase to agree with the imposed
linear temperature field far from the compound drop. Thus, the boundary conditions can be expressed
mathematically as follows:

Tw = T1, ∇Tw . n̂ = k10∇T1 . n̂, on r = l, (6)

T1 = T2, ∇T1 . n̂ = k21∇T2 . n̂, on r = 1, (7)

T2 = T3, ∇T2 . n̂ = k32∇T3 . n̂, on r = ε, (8)

r → ∞, Tw → T∞ = T0 + z = T0 + r cos θ, (9)
where k10 = k1/kw, k21 = k2/k1 and k32 = k3/k2 are the ratio of thermal conductivities in the cavity
surroundings and each phase of the compound drop, respectively, and T0 represents the undisturbed
temperature at the center of the cavity. Since the temperature fields in each phase satisfy Laplace’s
equation, the general expression for the thermal distribution in each phase can be expressed as the
general solution of Laplace’s equations ensuring the regularity of the solution in each phase, as follows

Tw = T0 + r cos θ +
∞∑

n=1

anr−(n+1)Pn(cos θ), for r > l, (10)

T1 = T0 +
∞∑

n=1

(bnrn + b′
nr−(n+1))Pn(cos θ), for 1 < r < l, (11)

T2 = T0 +
∞∑

n=1

(cnrn + c′
nr−(n+1))Pn(cos θ), for ε < r < l, (12)

T3 = T0 +
∞∑

n=1

dnrnPn(cos θ), for r < ε, (13)

where Pn is the Legendre polynomial of degree n. The unknown coefficients an, bn, b′
n, cn, c′

n, dn

appearing in Eq. (10)–(13) are obtained using the boundary conditions at the surface of droplet, drop
and the cavity wall. It is important to note that due to the axial symmetry of the sphere, we exclusively
consider solutions in (10)–(13) with only cos θ and sin θ terms and not the higher-order harmonics. The
expressions of unknown coefficients are defined in Appendix (A.1).

2.2. Hydrodynamic distributions

In this subsection, we formulate the hydrodynamic problem in each phase where the flow fields are
influenced by the temperature field obtained in the previous subsection. The steady fluid motion is
governed by steady Navier–Stokes equation which is a nonlinear equation and in the absence of any body
force, it is represented in dimensionless form as follows

Re(vj · ∇vj) = −∇pj + ∇2vj , ∇ · vj = 0, j = 1, 2, 3, (14)

where vj , pj are the fluid velocity, and pressure, respectively, in Phase j and j = 1, 2, 3 corresponds
to Phase 1, 2 and 3, respectively. We have used the dimensionless variables ṽj = vj/Uc, ∇̃ = a∇,
r̃ = r/a, (p̃j , τ̃j) = a(pj , τj)/(μjUc), to nondimensionalize the governing equations in Phase j, μj is the
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coefficient of viscosity in phase j. The characteristic velocity is defined as Uc =
−(dσ21/dT1)|∇T∞|a

μ1
and

dσ21/dT1 is the rate of change of interfacial tension with temperature in Phase 1 and Phase 2. We have
dropped the symbol tilde from Eqs. (14) for convenience. In Eq. (14), Re denotes the Reynolds number
that characterizes the ratio of inertial to viscous force. In case of creeping flow, the viscous force dominates
the inertial force and the Reynolds number is vanishingly small. Under this condition, i.e., Re → 0, the
Navier–Stokes equation given in Eq. (14) reduces to Stokes equation which is a linear equation. In the
present study, the fluid flow corresponding to the hydrodynamic problem in each phase is governed by
the Stokes equations and is given as follows

∇2vj = ∇pj , ∇ · vj = 0, j = 1, 2, 3. (15)

In general, the normal stress balance condition is used to determine the shape of a drop if the surface of
the drop is deformed. This normal stress balance condition at a liquid–liquid interface in dimensionless
form is given as

[(τ − λτ̂) · n̂] · n̂ =
1

Ca
(∇ · n̂), (16)

where λ is the internal-to-external viscosity ratio and Ca is the capillary number which represents the
ratio of viscous forces, aim to deform the drop, to capillary forces, which aim to maintain its spherical
shape. Equation (16) predicts the influence of the capillary number on drop deformation. When the
drop’s shape is spherical, the capillary term on the right-hand side becomes a constant. Consequently,
the left-hand side should also yield the same constant if the normal stress balance is to hold. However,
in reality, the stress distribution across the surface of the drop is nonuniform, resulting in the stress
difference being a function of position on the surface. For very small capillary numbers (Ca << 1), even
a slight deviation from a spherical shape can lead to a significant variation in (1/Ca)(∇ · n̂), which can
counterbalance the stress variation across the drop’s surface. Thus, under such conditions, the drop tends
to remain nearly spherical. The limit Ca << 1 indicates the dominance of interfacial tension effects,
explaining the drop’s tendency to retain its spherical form. For more details, one may refer to [15]. Thus,
for a spherical drop in the absence of thermal considerations the typical boundary conditions used at
the liquid–liquid interface are : the no-penetration condition, continuity of tangential velocity and the
continuity of tangential stress. These simplified conditions provide a clear framework for understanding
the behavior of the fluids at the compound drop’s surface and the cavity wall. However, consideration of
thermal gradient in the present investigation leads to an imbalance in the tangential stress due to variation
in the surface tension, therefore, the following hydrodynamic boundary conditions are considered in the
present study:
On r = l :

v1 · n̂ = 0, v1 · t̂ = 0, (17)
On r = 1 :

v1 = v2, v1 · n̂ = v2 · n̂ = U · n̂ (18a)

τ1n̂t̂ − τ2n̂t̂ = −∇̄sσ21 · t̂, (18b)

On r = ε :

v2 = v3, v2 · n̂ = v3 · n̂ = V · n̂, (19a)

τ2n̂t̂ − τ3n̂t̂ = −∇̄sσ32 · t̂, (19b)

where n̂, t̂ are the unit normal and the unit tangential vectors, respectively, and τj = μj

[
(∇vj) + (∇vj)T

]
,

j = 1, 2, 3 are the viscous stress tensors in Phase j, σ21 and σ32 are the surface tensions at the interface
between Phase 2–Phase 1 and Phase 3–Phase 2, respectively, U = Uez is the migration velocity of the
compound drop and V = V ez is the migration velocity of the droplet to be determined. We assume that
the surface tensions at the interfaces depend linearly on the temperature, i.e., σ21 = x1 − y1T1 and σ32 =
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x2 −y2T2, where xi, yi ≥ 0 for i = 1, 2 and hence σ′
21 = dσ21/dT1 = −y1 < 0, σ′

32 = dσ32/dT2 = −y2 < 0,
this shows the surface tension as a decreasing function of temperature, ∇̄s = ∇̄ − n̂(n̂ · ∇̄) is the surface
gradient operator, and n̂ is the unit normal. Thus, the jump in the shear stress takes the following form

τ1n̂t̂ − τ2n̂t̂ = y1∇̄sT1 · t̂, On r = 1,

τ2n̂t̂ − τ3n̂t̂ = y2∇̄sT2 · t̂, On r = ε.

Here T1, T2 are the temperatures in Phase 1 and 2, respectively. We introduce the following dimensionless
parameters

Ma1 =
y1Tsa

μ1Uc
, Ma2 =

y2Tsa

μ2Uc
Marangoni numbers

λ21 =
μ2

μ1
, λ32 =

μ3

μ2
viscosity ratio

where Ts = a|∇T∞| is the space scale of the temperature, which transforms the jump in shear stress at
the interface between Phase 1–Phase 2 and Phase 2–Phase 3 in the following form :

τ1n̂t̂ − λ21τ2n̂t̂ = Ma1∇̄sT1 · t̂, On r = 1, (20)

τ2n̂t̂ − λ32τ3n̂t̂ = Ma2∇̄sT2 · t̂, On r = ε. (21)

2.2.1. Methodology : The governing equations (15) with the help of boundary conditions (17), (18a),
(19a) and (20)–(21) are solved in each phase. The boundary conditions (20) and (21) are satisfied since
the temperature fields are known already due to the thermal distribution. We adopt a representation
proposed by Palaniappan et al. [16] to express the velocity and pressure satisfying the Stokes equations,
in terms of two scalars that are biharmonic and harmonic, respectively. This representation was later
shown to be a complete general solution of the Stokes equations by Padmavathi et al. [17]. The notable
advantage of employing this representation lies in its ability to transform the boundary value problem
originally in vector form into a system of linear algebraic equations following the implementation of
boundary conditions. Accordingly, the velocity and pressure fields in each phase can be represented as

vj = ∇ × ∇ × (r̄χj) + ∇ × (r̄ηj), (22)

pj = p0 +
∂

∂r
(r̄∇2χj), (23)

where ∇4χj = 0,∇2ηj = 0 and p0 is a constant. It is worth noting that the far field representing the
undisturbed flow can be characterized using the scalars χ, η denoted as χ0 and η0, respectively. These
scalars χ0, η0 in the current problem can be represented in series form as follows

χ0 =
∞∑

n=1

(
A′

n1r
n + B′

n1r
n+2

)
sn(θ, φ), η0 = 0. (24)

where

sn(θ, φ) =
n∑

m=0

Pm
n (cos θ)

(
Anm cos mφ + Bnm sin mφ

)

are the spherical harmonics and Anm and Bnm are the known constants; Pm
n is the associated Legendre

polynomial of degree n and order m, respectively. The axisymmetric nature of the problem enables us to
write the perturbed flow field in each phase due to the presence of the compound drop in terms of scalars
in series form as follows :

χj =
∞∑

n=1

(
A′

njr
n + B′

njr
n+2 + C ′

njr
−(n+1) + D′

njr
−(n−1)

)
sn(θ, φ), (25)

ηj = 0, (26)
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where A′
nj , B′

nj , C ′
nj , D′

nj for j = 1, 2, 3 are the unknown coefficients with C ′
n3 = D′

n3 = 0 due to
regularity condition inside the smaller drop (r < ε). These unknowns are determined by applying the
hydrodynamic boundary conditions (17), (18a), (19a) and (20)–(21) along the surface of the drop and the
cavity wall, respectively. Our objective is to compute the hydrodynamic drag exerted on the compound
drop within the cavity and the droplet. It is found that only the coefficients D′

11 and D′
12 contribute to

the evaluation of hydrodynamic drag on the compound drop and the droplet, respectively. Therefore, for
brevity we provide only the coefficients D′

11 and D′
12 in Appendix (A.2).

2.3. Evaluation of hydrodynamic force

The hydrodynamic force experienced by the compound drop and the droplet can be obtained by
evaluating the following integral

D̄j =
∫ ∫

Sj

(τj · n̂) dSj , j = 1, 2, (27)

where Sj , j = 1, 2 represents the surface of compound drop and the droplet, respectively, τj is the viscous
stress tensor and dSj = r2 sin θdθdφ is the surface element. Evaluation of the integral given in Eq.(27)
yields the following expression for drag force experienced by the compound drop and the droplet :

D̄1 = −8π D′
11 ez, (28)

D̄2 = −8π D′
12 ez, (29)

where the unknown coefficients D′
11 and D′

12 survive for n = 1 and are presented in Appendix (A.2).

3. Results and discussion

3.1. Migration velocity

The migration velocity in the absence of gravity can be calculated by equating the net drag force on
the compound drop and the droplet to zero when the flow is steady [18]. The use of the expressions for
drag obtained in Eqs. (28)–(29) enable us to obtain the expression for the migration velocity under the
assumption that the drop is freely suspended. Thus, equating Eqs.(28),(29) to zero yields the following
expressions for the migration velocity of the drop and the droplet

U =

(
Ma1X(Y3Z3 − Y4Z2) + Ma2Y (Z4Y3 − Y5Z2)

Z2Y2 − Z1Y3

)
ez, (30)

V =

(
−1
Z2

(Z1U + Ma1XZ3 + Ma2Y Z4)

)
ez, (31)

where X, Y, Ys, s = 2, .., 5, Zm, m = 1, .., 4 are the functions of the physical parameters such as viscosity
ratio, thermal conductivity ratio, Marangoni number, radius ratio, etc., and are presented in appendix.
All the parameters involved in X,Y, Ys and Zm, together affect the thermocapillary migration of the
compound drop in a complicated way; we just provide a brief physical analysis with the aid of graphs.
The migration velocities presented in Eqs. (30)–(31) are new to the literature. One may note that in
the limiting case of ε → 0 the compound drop behaves like an isolated drop in a concentric spherical
cavity and the normalized mobility of the compound drop due to the thermocapillary effect reduces to
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the following expression

U

U0
=

3l3(2 + k21)(2 + 3λ21)(l − 1)2(2l3 + 4l2 + 6l + 3)

2
(
2l5 + 3λ21l5 + 3(l5 − λ21)

)(
(2 + k21)(2 + k10)l3 + 2(1 − k21)(1 − k10)

) , (32)

where U0 is the migration velocity of an isolated drop due to thermocapillary effect in an unbounded
medium. This result agrees with the expression for mobility obtained for a drop in a spherical cavity in
the literature, under consideration of l = 1/λ (please see the equation on page 777 in [11] and Eq. (29) in
[13]). It is worth mentioning here that as ε → 1 the droplet starts to migrate with the migration velocity
of the compound drop, i.e., in the limiting case of ε → 1, U = V and it reduces to

U = V =
3Pl3

(
6l2 + 4l3 + 6l + 4 + λ21λ32(4l3 + 3l2 − 3l − 4)

)

Q
(
(l3 − 1)(2k10 + 2k21k32) + k10k21k32(2 + l3) + 4l3 + 2

) , (33)

where

P = Ma1

(
9 − 25l2 + 16l5 + λ32(15l2 + 3l5 − 18)

)
+ Ma2

(
− 9 − 6l5 + λ21(9 − 25l2 + 16l5)

)
,

Q = λ21λ32

(
150l4 − 12l8 + 76l8 + 72l7 − 12l6 + 64l5 + 150l4 − 243l − 17l2 − 204 + λ32(108l

− 18l7 − 18l6 − 72l5 − 90l4 − 18l3 + 48l2 + 72) + λ21λ32(28l8 + 21l7 − 21l6 + 112l5 + 105l4

− 273l3 + 114l3 − 266l2 + 126l + 168)
)

− λ32(54l + 36 + 24l5 + 54l2 + 24l8 + 36l7 + 36l3 + 36l6)

+ 60l3 + 90l2 + 90l + 60l6 + 60l7 + 40l8 + 40l5 + 60.

The variation of migration velocity of the compound drop obtained in Eq. (30) is presented in Fig. 2. As
expected, the migration velocity decreases as the gap between the compound drop surface and the cavity
wall, which is the ratio a/b, increases. It can be further stated from Fig. 2A that an increase in the viscosity
ratio between Phase 3 and Phase 2 causes a dip in the migration velocity. A higher value of viscosity ratio
between Phase 3 and Phase 2 retards the motion of compound drop leading to a decay in the migration
velocity. Figure 2B demonstrates the migration velocity versus k10 at different values of a/b. It is found
that the migration velocity decreases monotonically with an increase in k10 or a decrease in the cavity wall
conductivity kw. This can be attributed to the fact that the applied constant temperature gradient ∇T∞ in
a drop-in cavity system increases with a decrease in kw. An increase in the constant temperature gradient
causes the temperature difference across the drop’s surface to decrease. This reduction in the surface
temperature difference weakens the force that drives the drop’s movement due to temperature differences,
leading to a decrease in the speed at which the drop moves. Variation of migration velocity versus Ma1

for different values of viscosity ratio between Phase 2 and Phase 1, λ21 is presented in Fig. 2C by keeping
the other parameters fixed at a/b = 0.5, ε = 0.2, λ32 = 1.1, k10 = 1, k21 = 0.5, k32 = 1.2, Ma2 = 20. It
is found that at a fixed value of λ21 the migration velocity increases monotonically with the Marangoni
number Ma1. An increase in Ma1 causes the dominance of thermocapillary effect over the viscous force.
Viscous force retards the motion of the drop but dominance of thermocapillary effect as Ma1 increases,
overcomes the retardation and thus an increase in the migration velocity is observed. Note that it has
been shown experimentally that the Marangoni number can be in the range of 5.4 − 810 [19], and it has
been further shown that the Marangoni number can be as high as 104 and the experimental results agree
with theoretical prediction of migration velocity for Marangoni number values up to 9600 [20]. In the
present investigation, the Marangoni number values are taken up to 100. Figure 2D depicts the variation
in migration velocity versus Ma2 at different values of radius ratio a/b by keeping the other parameters
fixed at ε = 0.4, k10 = 1, k21 = 0.5, k32 = 1.9, Ma1 = 2, λ32 = 6, λ21 = 1.5. It is found that at Ma2 = 0,
which is the Marangoni number at the interface between Phase 2 and Phase 3, the drop has a nonzero
migration velocity at all values of a/b. This is due to consideration of a nonzero value of Ma1 = 2
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Fig. 2. Variation of migration velocity of a compound drop inside a spherical cavity, (A) versus a/b for various values of λ32

by fixing other parameters as ε = 0.2, k10 = 1, k32 = 1.9, k21 = 0.5, λ21 = 1.5, Ma1 = 2, Ma2 = 10. (B) versus k10 for
arbitrary a/b at fixed values of ε = 0.3, λ21 = 1.2, λ32 = 0.4, Ma1 = 5, Ma2 = 15, k32 = 0.3, k21 = 1.6. (C) versus Ma1

for different values of λ21 and fixed parameters a/b = 0.5, ε = 0.2, λ32 = 1.1, k10 = 1, k21 = 0.5, k32 = 1.2, Ma2 = 20.
(D) versus Ma2 at different vales of a/b and fixed parameters ε = 0.4, k10 = 1, k21 = 0.5, k32 = 1.9, Ma1 = 2, λ32 =
6, λ21 = 1.5. (E) versus ε at different values of k10 and fixed parameters a/b = 0.6, Ma1 = 10, Ma2 = 20, λ21 = 1.3, λ32 =

5, k21 = 0.5, k32 = 1
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which assists in the migration of compound drop. As Ma2 increases, the migration velocity decreases
monotonically at all values of a/b and the compound drop slows down. Variation of the migration velocity
of compound drop versus the radius ε of the droplet is presented in Fig. 2E for different values of k10 by
keeping the other parameters a/b = 0.6, Ma1 = 10, Ma2 = 20, λ21 = 1.3, λ32 = 5, k21 = 0.5, k32 = 1
fixed. It may be observed that the droplet radius ε influences the migration velocity of compound drop
significantly. A smaller ε value implies a higher migration velocity compared to a higher ε value. The
migration velocity was further found to be a nonmonotonic function of ε. This behavior may be attributed
to the fact that migration velocity of compound drop decreases monotonically for ε < 0.85 and for ε > 0.85,
the compound drop migrates with a higher velocity as compared to that of the droplet (please see Table
3 and 4 for comparison) and as ε → 1, the compound drop and the droplet move with the same velocity.

Figure 3A depicts the variation of migration velocity of the droplet versus its radius ε for different
values of k10 at fixed values of the parameters a/b = 0.6, Ma1 = 10, Ma2 = 20, λ21 = 1.3, λ32 =
5, k21 = 0.5, k32 = 1.1; the fixed parameters are the same as considered for compound drop in Fig. 2E.
Similar to the behavior of the migration velocity of compound drop, the migration velocity of droplet
is found to be a nonmonotonic function of ε at all values of k10, but the droplet moves faster than the
compound drop. As ε increases, the migration velocity of the droplet decreases and reaches a minimum
(as can be seen from Table 4 as well) which further starts to increase for ε > 0.8 in order to match with
the migration velocity of the compound drop, since in the limiting case of ε → 1, the droplet migrates
with a velocity equal to that of compound drop (see Eq. (33)). Figure 3B demonstrates the effects of
variation in ε on the migration velocity of droplet for various values of k32 and the fixed parameters
a/b = 0.6, Ma1 = 20, Ma2 = 10, λ21 = 3, λ32 = 4.5, k21 = 1.5, k32 = 8. In general the migration
velocity decreases with ε at any value of k32 and for ε values smaller than 0.85, the droplet with smaller
k32 values has higher migration velocity. However, this trend reverses as ε becomes greater than about
0.85 and the drop with a smaller k32 value may move with a lower velocity. Figure 3C presents the effect
of variation in Ma2 on the migration velocity of droplet for different values of ε at fixed values of the
parameters a/b = 0.4, k10 = 1, k21 = 0.5, k32 = 1.9, λ21 = 1.5, λ32 = 6, Ma1 = 20. It is found that the
droplet’s migration velocity is monotonic increasing function of Ma2, and a higher value of Ma2 signifies
the dominance of thermocapillary effect which assists the migration of droplet. It can be further observed
that a smaller droplet migrates with ease than a droplet with higher radius ε.

The numerical values of the migration velocity of compound drop in a spherical cavity are presented
in Table 1 for various values of k10 and a/b with fixed values of the parameters λ21 = 0.8, λ32 = 1.2, ε =
0.4, Ma1 = 10, Ma2 = 5, k32 = 0.6, k21 = 0.5. The migration velocity is observed to be a monotonic
decreasing function of a/b which is expected since a smaller value of a/b represents the drop being away
from the cavity wall which leads to a higher migration velocity compared to a higher value of a/b which
reflects the drop being in the vicinity of the cavity wall. Table 2 presents the numerical values of the
migration velocity of a compound drop for various values of Ma1 and a/b at fixed values of the parameters
λ21 = 1.8, λ32 = 0.6, ε = 0.2, k10 = 1, Ma2 = 20, k32 = 5, k21 = 0.5. In general, the migration velocity
is found to be a monotonic decreasing function of a/b.

Tables 3 and 4 present a comparison of the numerical values of the migration velocity U of compound
drop with that of the droplet at various ε and Ma2 and fixed parameters a/b = 0.7, k10 = 1.2, k21 =
0.5, k32 = 1.7, λ21 = 0.3, λ32 = 0.6, Ma1 = 100. It can be seen from both the tables that the droplet
migrates with a higher velocity than the compound drop. This trend continues till ε < 0.6, but for values
ε ≥ 0.6, the compound drop migrates with a higher velocity than the droplet and it can be seen that as
ε → 1, the compound drop and the droplet both move with the same migration velocity. In general, the
migration velocity is found to be a nonmonotonic function of the droplet radius ε whereas a monotonic
increasing function of Ma2.
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Fig. 3. Variation of migration velocity of a droplet within a drop placed concentrically in a spherical cavity (A) versus ε
at different values of k10 and fixed parameters a/b = 0.6, Ma1 = 10, Ma2 = 20, λ21 = 1.3, λ32 = 5, k21 = 0.5, k32 = 1.1.
(B) versus ε at different values of k32 and other parameters a/b = 0.6, Ma1 = 20, Ma2 = 10, λ21 = 3, λ32 = 4.5, k21 = 1.5,
k10 = 1 fixed (C) versus Ma2 at different values of ε and other parameters a/b = 0.4, k10 = 1, k21 = 0.5, k32 = 1.9,
λ21 = 1.5, λ32 = 6, Ma1 = 20 fixed

3.2. Heat source

Consider a heat source of strength ξ located at r0 = (0, 0, h) placed in the thermal field where h > a and
the undisturbed uniform flow is along the z-axis. We can express the ambient temperature representing
the undisturbed thermal field using the following equation

T∞(r, θ, φ) = T0 +
ξ

|r − r0| . (34)
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Fig. 4. Variation of migration velocity of a compound drop inside a cavity versus h (A) at arbitrary λ21 by fixing ξ = 1,
ε = 0.2, a/b = 0.5, Ma1 = 1, Ma2 = 2, λ32 = 0.7, k10 = 3.5, k21 = 0.4, k32 = 0.7. (B) at different Ma1 by fixing ξ = 1,
a/b = 0.5, ε = 0.4, Ma2 = 4, λ21 = 1.4, λ32 = 0.9, k10 = 3, k21 = 0.2, k32 = 0.3

In order to compare the above-mentioned temperature with the ambient temperature T∞ = T0 + r cos θ,
we expand the ambient temperature T∞ given in Eq. (34) in positive powers of r to yield the following
expression :

T∞(r, θ, φ) = T0 +
ξ

h

∞∑
n=1

( r

h

)n

Pn(cos θ). (35)

The above series converges in the domain a < h, and for the hydrodynamic problem, we choose the scalars
χ0, η0 as given in Eq. (24). The hydrodynamic force in this case is obtained in the following form:

D̄hs =
8π

Z2Y1(l2 − 2l + 1)

(
Uhs(Y2Z2 − Y3Z1) − Ma1ξX(Y3Z3 − Y4Z2)

h2

−Ma2ξY (Y3Z4 − Y5Z2)
h2

)
ez. (36)

The migration velocity of the compound drop in a cavity due to presence of a heat source is obtained as

Uhs =
ξ

h2

(
Ma1X(Y3Z3 − Y4Z2) + Ma2Y (Z4Y3 − Y5Z2)

Z2Y2 − Z1Y3

)
ez, (37)

where Ys, s = 1.., 5 and Zi, i = 1, 2, 3 are the constants given in Appendix (A.2).
It can be inferred from Eq. (37) that the migration velocity is sensitive to the position h of the heat

source. Figure 4A depicts the variation of migration velocity of compound drop versus h at different
values of λ21 by keeping the other parameters fixed at ξ = 1, ε = 0.2, a/b = 0.5, Ma1 = 1, Ma2 =
2, λ32 = 0.7, k10 = 3.5, k21 = 0.4, k32 = 0.7. It may be observed from the figure that the migration
velocity decreases monotonically with h at all values of λ21; increase in λ21 slows down the compound
drop due to dominant viscous force. Effect of variation in h on the migration velocity of compound drop
at different values of Ma1 is presented in Fig. 4B at fixed values of the parameters ξ = 1, a/b = 0.5, ε =
0.4, Ma2 = 4, λ21 = 1.4, λ32 = 0.9, k10 = 3, k21 = 0.2, k32 = 0.3. The migration velocity is found to
be a monotonic decreasing function of h at all values of Ma1. Presence of heat source near the surface of
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compound drop affects the migration velocity, and as the position of heat source is changed to a position
near the cavity wall, the migration velocity reduces by a considerable amount.

4. Conclusion

In this study, we have investigated the thermocapillary migration of a compound drop within a spherical
cavity under the creeping flow conditions. The migration was driven by a constant temperature gradient
along the centerline of the drop and cavity. The compound drop remained spherical due to the consid-
eration of a very small capillary number, and its translation velocity was determined under force-free
conditions. This study integrated the hydrodynamic and thermal aspects of a compound drop by us-
ing the Stokes equations for flow fields and the conduction equation for temperature fields, and derived
closed-form expressions for velocity and pressure, allowing us to determine the hydrodynamic force acting
on the compound drop. The key finding of the study was the migration velocity and its dependence over
the various parameters involved. The migration velocity was found to be a decreasing function of the ratio
of the compound drop’s radius to the cavity radius, and it increased with an increase in the Marangoni
number Ma1. It was also found that the radius ε of the droplet influences the migration velocity. The
migration velocity was obtained in a particular case of presence of heat source in the fluid envelope, and
it was found to be a monotonic decreasing function of the position h of the heat source. This research
provided a closed-form expression for the migration velocity of the confined compound drop. Additionally,
the study explained the effect of the presence of a heat source on the motion of a compound drop within
the cavity in the context of uniform far field.
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A. Appendix

A.1. Thermal distribution

a1 =
X2l

3

X1
, b1 =

3
X1

(
2k21l

3 + 2k32l
3 + 4l3 + 2ε3l3 + k21k32l

3 − 2ε3k21l
3 − 2ε3k32l

3 + 2ε3k21k32l
3
)
,

b′
1 =

−3
X1

(
2k21l

3 − k32l
3 − 2l3 − ε3l3 + k21k32l

3 − 2ε3k21l
3 + ε3k32l

3 + 2ε3k21k32l
3
)
,

c1 =
9l3(k32 + 2)

X1
, c′

1 =
−9ε3l3(k32 − 1)

X1
, d1 =

27l3

X1
.

X1 = 2k32 − 4k21 − 4k10 + 4k10k21 − 2k10k32 − 2k21k32 − 2ε3k10 + 4ε3k21 − 2ε3k32 + 4k10l
3 + 4k21l

3

+ 4k32l
3 + 2ε3 + 8l3 + 4ε3l3 + 2k10k21l

3 + 2k10k32l
3 + 2k21k32l

3 + 2ε3k10l
3 − 4ε3k21l

3

− 4ε3k32l
3 + 2k10k21k32 − 4ε3k10k21 + 2ε3k10k32 − 4ε3k21k32 + 4ε3k10k21k32 + k10k21k32l

3

− 2ε3k10k21l
3 − 2ε3k10k32l

3 + 4ε3k21k32l
3 + 2ε3k10k21k32l

3 + 4,

X2 = 4k10 − 2k21 + k32 + 2l3ε3 − 4k10k21 + 2k10k32 − k21k32 − 4k10l
3 + 2k21l

3 + 2k32l
3

+ 2k10ε
3 + 2k21ε

3 − k32ε
3 + 4l3 + ε3 − 2k10k21l

3 − 2k10k32l
3 + k21k32l

3 + 4k10k21ε
3

− 2k10k32ε
3 − 2k21k32ε

3 − 2k10l
3ε3 − 2k21l

3ε3 − 2k32l
3ε3 − 2k10k21k32 − k10k21k32l

3

− 4k10k21k32ε
3 + 2k10k21l

3ε3 + 2k10k32l
3ε3 + 2k21k32l

3ε3 − 2k10k21k32l
3ε3 + 2,

X =
9l3(k32 − ε3k32 + ε3 + 2)

X1
, Y =

27ε4l3

X1
.

A.2. Hydrodynamics distribution

D′
11 =

−(UY2 + V Y3 + Ma1XY4 + Ma2Y Y5)
Y1(l2 − 2l + 1)

,

D′
12 =

1
Y1

(UZ1 + Z2V + Ma1XZ3 + Ma2Y Z4).

Y1 = 6(1 − l)(12l − 12ε − 8λ21 + 8λ32 − 18εl + 8ελ21 − 18ελ32 − 6lλ21 + 12lλ32 − 8λ21λ32

− 18εl2 − 12εl3 + 6ε3l + 18ε5l − 12ε6l + 18ε8l − 8ε3λ21 + 8ε5λ21 − 8ε6λ21 + 8ε8λ21 + 22ε3λ32

− 24ε5λ32 + 36ε6λ32 − 24ε8λ32 + 6l2λ21 + 8l3λ21 + 12l2λ32 + 8l3λ32 + 4ε3 + 12ε58ε6 + 12ε8

+ 12l2 + 8l3 + 6ε3l2 + 4ε3l3 + 18ε5l2 + 12ε5l3 − 12ε6l2 − 8ε6l3 + 18ε8l2 + 12ε8l3

+ 6l2λ21λ32 + 8l3λ21λ32 + 6ε3l2λ21 + 8ε3l3λ21 − 6ε5l2λ21 − 8ε5l3λ21 + 6ε6l2λ21 + 8ε6l3λ21

− 6ε8l2λ21 − 8ε8l3λ21 + 33ε3l2λ32 + 22ε3l3λ32 − 36ε5l2λ32 − 24ε5l3λ32 + 54ε6l2λ32 + 36ε6l3λ32

− 36ε8l2λ32 − 24ε8l3λ32 + 6εlλ21 − 27εlλ32 + 12ελ21λ32 − 6lλ21λ32 − 6εl2λ21 − 8εl3λ21

− 6ε3lλ21 + 6ε5lλ21 − 6ε6lλ21 + 6ε8lλ21 − 27εl2λ32 − 18εl3λ32 + 33ε3lλ32 − 36ε5lλ32 + 54ε6lλ32

− 36ε8lλ32 − 4ε3λ21λ32 − 16ε5λ21λ32 + 16ε6λ21λ32 − 16ε8λ21λ32 + 9εlλ21λ32 − 9εl2λ21λ32

− 12εl3λ21λ32 − 3ε3lλ21λ32 − 12ε5lλ21λ32 + 12ε6lλ21λ32 − 12ε8lλ21λ32 + 3ε3l2λ21λ32

+ 4ε3l3λ21λ32 + 12ε5l2λ21λ32 + 16ε5l3λ21λ32 − 12ε6l2λ21λ32 − 16ε6l3λ21λ32 + 12ε8l2λ21λ32

+ 16ε8l3λ21λ32 + 8)
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Y2 = 3l(12λ32 − 12λ21 − 18ε + 18ελ21 − 27ελ32 − 12λ21λ32 − 12εl5 − 12ε3λ21 + 12ε5λ21 − 18ε6λ21

+ 12ε8λ21 + 33ε3λ32 − 36ε5λ32 + 54ε6λ32 − 36ε8λ32 + 12l5λ21 + 8l5λ32 + 6ε3 + 18ε5

− 12ε6 + 18ε8 + 8l5 + 4ε3l5 + 12ε5l5 − 8ε6l5 + 12ε8l5 + 12l5λ21λ32 + 12ε3l5λ21 + 10ε6l2λ21

− 12ε5l5λ21 + 8ε6l5λ21 − 12ε8l5λ21 + 22ε3l5λ32 − 24ε5l5λ32 + 36ε6l5λ32 − 24ε8l5λ32

+ 27ελ21λ32 − 10εl2λ21 − 8εl5λ21 − 18εl5λ32 − 21ε3λ21λ32 − 24ε5λ21λ32 + 6ε6λ21λ32

− 24ε8λ21λ32 − 15εl2λ21λ32 − 12εl5λ21λ32 + 25ε3l2λ21λ32 − 4ε3l5λ21λ32 + 30ε6l2λ21λ32

+ 24ε5l5λ21λ32 − 36ε6l5λ21λ32 + 24ε8l5λ21λ32 + 12),

Y3 = 3lελ21(l − 1)2(2l3 + 4l2 + 6l + 3)(5ε2λ32 − 3λ32 + 6ε5λ32 + 2ε5 − 2),

Y4 = −l(l − 1)2(2l3 + 4l2 + 6l + 3)(4λ32 − 6ε − 9ελ32 + 11ε3λ32 − 12ε5λ32 + 18ε6λ32

− 12ε8λ32 + 2ε3 + 6ε5 − 4ε6 + 6ε8 + 4),

Y5 = −2lελ21(l − 1)2(2l3 + 4l2 + 6l + 3)(5ε5 − 5ε3 + 5ε2 − 1),

Z1 = 3ε(2l + 8λ21 − 12λ32 − 2lλ21 + 3lλ32 + 12λ21λ32 + 6ε2l − 12ε5l − 8ε5λ21 + 24ε5λ32

12l2λ21 − 2l3λ21 + 8l4λ21 + 18l2λ32 + 18l3λ32 + 18l4λ32 − 12ε5 + 12l2 + 12l3 + 12l4

+ 12ε2l2 + 8ε2l3 + 4ε2l4 − 12ε5l2 − 2ε5l3 + 8ε5l4 − 18l2λ21λ32 − 3l3λ21λ32 + 12l4λ21λ32

+ 12ε5l2λ21 + 2ε5l3λ21 − 8ε5l4λ21 − 24ε2l2λ32 − 16ε2l3λ32 − 8ε2l4λ32 + 24ε5l2λ32 + 4ε5l3λ32

− 16ε5l4λ32 − 3lλ21λ32 + 2ε5lλ21 − 12ε2lλ32 + 24ε5lλ32 + 16ε5λ21λ32 − 4ε5lλ21λ32

− 24ε5l2λ21λ32 − 4ε5l3λ21λ32 + 16ε5l4λ21λ32 − 8),

Z2 = 3ε(1 − l)(12l − 8λ21 + 12λ32 − 6lλ21 + 18lλ32 − 12λ21λ32 + 18ε5l + 8ε5λ21 − 24ε5λ32 + 6l2λ21

+ 8l3λ21 + 18l2λ32 + 12l3λ32 + 12ε5 + 12l2 + 8l3 + 18ε5l2 + 12ε5l3 + 9l2λ21λ32 + 12l3λ21λ32

− 6ε5l2λ21 − 8ε5l3λ21 − 36ε5l2λ32 − 24ε5l3λ32 − 9lλ21λ32 + 6ε5lλ21 − 36ε5lλ32 − 16ε5λ21λ32

− 12ε5lλ21λ32 + 12ε5l2λ21λ32 + 16ε5l3λ21λ32 + 8),

Z3 = ε(l − 1)2(4l2 + 7l + 4)(3λ32 − 4ε2λ32 + 4ε5λ32 + 2ε2 − 2ε5 + 2),

Z4 = 2ε(l − 1)(6l − 4λ21 − 3lλ21 − 15lε3 + 3l2λ21 + 4l3λ21 − 10ε3 + 6l2 + 4l3 − 15ε3l2 − 10ε3l3 + 4).
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