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Abstract. This paper studies an impact of media epidemic system with diffusion and linear source. We first derive the uniform
bounds of solutions to impact on media reaction diffusion system. Then, the basic reproduction number is calculated and
the threshold dynamics of impact media reaction diffusion system is also given and the Kuratowski measure κ of non-
compactness is also considered. In addition, assume the spatial environment is homogeneous, it is shown that the unique
endemic equilibrium of the system is global stability by constructing suitable Lyapunov function. Finally, we discuss the
asymptotic profile of the system when the diffusion rate of the susceptible (infected) individuals for the system tends to
zero or infinity. The main results show that the activities of infected individuals can only be at low risk, and then the virus
eventually will be extinct, that is, to control the entry of viruses from abroad and increase the detection of domestic viruses.
Finally, some numerical simulations are worked out to confirm the results obtained in this paper.
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1. Introduction

In recent decades, environmental heterogeneity and individual mobility have played an important role
in our lives. More and more scholars have interest considered the dynamical behaviors of the epidemic
model with diffusion process because it is more practical than the traditional ordinary differential epidemic
model. Research shows that the expansion of the reactive diffusion system as an infectious disease model
and environmental heterogeneity have an important impact on the process of disease transmission [1–7].

The main contributions of [8] concern the existence, uniqueness and asymptotic dynamical behaviors
of equilibrium of reaction–diffusion SIS epidemic system as the diffusion rate of the susceptible (infected)
individuals tends to zero or infinity. In 2007, Allen et al. also studied a discrete reaction–diffusion SIS
epidemic system in [9]. In 2008, in order to understand the spatial heterogeneity of the environment and
the influence of individual movement on the persistence and extinction of the disease, the spatial SIS
reaction diffusion system was studied in [8], in the subsequent works [10–12]. In 2012, when considering
the spread and recovery rate of the disease is assumed to be spatial heterogeneity, temporally periodic,
and the total population is constant, Peng et al. [13] studied the global stability and the asymptotic
dynamical behaviors of the positive steady state. Method based on [8], Refs. [14,15] investigated the
dynamical behaviors and asymptotic profiles of steady states of the reaction diffusion SIS epidemic sys-
tem. These main results showed that advection can help speed up the elimination of disease. In 2016,
when considering population activity and standard morbidity are the two main infection mechanisms that
simulate the spread of infectious diseases. Spatial heterogeneity plays an important role in the spread of
infectious diseases. Wu and Zou [16] established a spread model that stimulates and promotes disease
dynamics. In addition, Deng and Wu [17] studied a susceptible–infected–susceptible reaction–diffusion
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system with spatially heterogeneous disease transmission and recovery rates. In 2017, Kuto and cowork-
ers [18] showed that the concentration profile of endemic equilibrium of a reaction–diffusion–advection
susceptible–infected–susceptible epidemic system. Meanwhile, Ref. [19] considered the asymptotic profiles
of the endemic equilibrium to a mass action infection mechanism diffusive SIS epidemic model. In [20,21],
spontaneous factors were mentioned by Hill et al., which can also have influence on the disease transmis-
sion. Therefore, in 2018, Tong and Lei in [22] extended the reaction–diffusion SIS epidemic system [8] to
incorporate the effect of spontaneous infection by adding a term whereby uninfected individuals become
infected at a rate. When considering the disease transmission and recovery rates is spatially heteroge-
neous, in 2019, Song et al. [23] proposed a susceptible-exposed-infected-recovered-susceptible (SEIRS)
reaction–diffusion system. The main results reveal the importance of the movement of the exposed and
recovered individuals in disease dynamics. In 2020, a diffusive susceptible–infected–susceptible epidemic
system with logistic source and spontaneous infection in a heterogeneous environment was considered in
[24]. The results show that varying total individuals and spontaneous infection can enhance persistence
of infectious disease.

In fact, media coverage of health related events has become so important that several surveillance
systems now rely on active trolling of Internet news media and blogs to detect emerging disease threats.
The effect of media in infectious disease spread has long been under investigation. Therefore, in 2007, Liu
and coworkers have been studied a media/psychological impact of epidemic system [25]. Subsequently, in
2008, a three-dimensional compartmental model with impact of media was gave in [26] and under a certain
threshold quantity and then discussed the disease-free equilibrium of the model is globally asymptotically
stable. Further, it is shown that a unique endemic equilibrium appears and a Hopf bifurcation can occur
which causes oscillatory phenomena. Meanwhile, when considering the impact of media coverage on the
control of spreading of emerging or reemerging infectious diseases in a given population, Cui et al. [27]
considered a SIS infection model incorporating media coverage and it also gave the dynamic results
of the system. When considering an effect of media-induced social distancing on disease transmission,
in 2011, Cui et al. [28] studied an impact of epidemic system. They carried out a global qualitative
analysis of system, it is shown that the typical threshold behavior holds, with solutions either tending to
an equilibrium without disease, or the system being persistent and solutions converging to an endemic
equilibrium.

Recently, Sun and Cui [29] introduced a saturated incidence rate of reaction–diffusion SIS epidemic
model with linear source in spatially heterogeneous environments. Furthermore, when considering the
heterogeneous environment, Suo and Li studied a linear source of diffusive SIS epidemic system with
incidence function SI

c+S+I in [30]. On the other hand, the work in [8,9,14,24,29–32] has shown that, in
certain circumstances, the incidence functions SI

S+I , SI
1+I and SI

c+S+I used in models [24,29,30] may not be
appropriate to describe the transmission process of disease, instead an alternate incidence function should
be e−αI(see [26,33]), where the positive number α stands for reflecting the impact of media coverage to
the rate of contact transmission. Motivated by these works, in 2014, the authors [33] took the media
coverage factors in a Filippov epidemics system. They extend the existing systems by incorporating
a piecewise continuous transmission rate to describe that the media coverage exhibits its effect once
the number of infected individuals exceeds a certain critical level. In 2015, a media impact of SIHR
epidemic system has been investigated [34]. This system also describes the dynamics of media reports
by considering how media is influenced by the disease statistics. Meanwhile, Xiao et al. [35] proposed a
media impact switched off almost as the epidemic peaked, and then the authors given media coverage
significantly delayed the epidemic’s peak and decreased the severity of the outbreak. In 2016, Yan et
al. [39] studied a novel system to examine the implication for transmission dynamic behaviors of these
correlations. The system incorporated the media impact function into the intensity of infection, and
enhanced the traditional epidemic SEIR system with the addition of media dynamics. In 2020, Ding et al.
[40] proposed a stochastic SIQR epidemic system incorporating media coverage. In 2021, the authors [41]
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asked the following questions: How do social media and individual behaviors affect epidemic transmission
and control?

Although the news report is not the most important factor for the transmission of the infectious
disease [36–38,44,45], it still is a very important topic and leads to many researchers that can be taken
care of seriously. When there are a large number of infected populations cases, the news report may be
bringing about cause the panic of the society. And then, it can to certain extent reduce the chance and
possibility of contact and transmission between healthy and susceptible populations each other, and to
better control and quickly prevent the transmission of the infectious disease. Motivated by the above
discussions, the main purpose of this manuscript is to perform the dynamic analysis of an impact of
media reaction diffusion SIS epidemic system with linear source in spatially heterogeneous environment.
In the current work, many reaction diffusion epidemic models have been developed, including [3,8,9,12–
14,29–32,32]. Nevertheless, in this paper, we design an impact of media diffusion epidemic system with
linear source and the incidence rate is assumed to be in the form e−α(x)I . The main contributions of this
manuscript include three points:

1. We first study an impact of media diffusion epidemic system. The overall solution for the existence
of the model and the uniformly boundedness of the solution are studied.

2. We calculate the basic reproduction number by [8] and the threshold dynamics of impact media
reaction–diffusion system is also given and the Kuratowski measure κ of non-compactness is con-
sidered. In addition, assume the spatial environment is homogeneous, it is shown that the unique
endemic equilibrium of impact media SIS epidemic reaction–diffusion system is global stability by
constructing suitable Lyapunov function.

3. We discuss the asymptotic profile property of system if the diffusion rate of system tends to zero or
infinity. The main results show that if the ratio Λ(x)

m(x) is smaller, the activities of infected individuals
can only be at low risk, and then the virus eventually will be extinct, that is, to control the entry
of viruses from abroad and increase the detection of domestic viruses.

We briefly outline the structure of this paper. The model description and uniform bounds of system
(2.1) are derived in Sect. 2. After that, the threshold dynamics of system and the existence of the
equilibriums for system are considered and the Kuratowski measure κ of non-compactness is investigated
in Sect. 3. Section 4 is devoted to the global asymptotic stability of the equilibrium for (2.1) when functions
Λ(x),m(x), β(x), α(x) and γ(x) are constants. Then, the asymptotic profile of system is also analyzed
when d1 or d2 tends to zero or infinity in Sect. 5. Some numerical simulations are worked out to confirm
the results obtained in Sect. 6. At last, a brief discussion of the obtained results and further research
directions are given in Sect. 7.

2. Model description and uniform boundedness

2.1. Model description

With the rapid development of information, in the early days of disease outbreaks, more people can
understand the transmission mechanism of infectious diseases and relevant disease prevention knowledge
through TV, the Internet and other media, which can effectively control diseases. The higher the efficiency
of media dissemination, the faster people can access various aspects of information. For example, in areas
where infectious diseases are prevalent, the faster prevention and control measures can be taken through
media dissemination and the more effective it is to reduce the contact between viruses and humans.
Therefore, in-depth research on disease transmission models related to media coverage is of great practical
significance for infectious disease prevention and control. Media communication plays a very important
role in the outbreak of novel coronavirus. The main strategy for preventing virus outbreaks is to isolate
individuals from items and individuals carrying the virus. During the quarantine period, the information
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reported and disseminated on online platforms is almost the only information available to the isolated
population. If people can learn about the virus without leaving their homes, it can help them control their
behavior and actively participate in prevention and control during the epidemic. Simply put, thanks to
media communication, people can have a good understanding and perception of infectious diseases, which
enables them to control their behavior, actively take protective measures, greatly reduce the number of
infections and thus improve the effectiveness of disease prevention and control. In this paper, we consider
the following an impact of media reaction diffusive SIS system with linear source

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

St = d1ΔS + Λ(x) − m(x)S − β(x)SIe−α(x)I + γ(x)I, (x, t) ∈ Ω × (0,+∞),

It = d2ΔI + β(x)SIe−α(x)I − γ(x)I, (x, t) ∈ Ω × (0,+∞),
∂S

∂n
=

∂I

∂n
= 0, x ∈ ∂Ω,

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ Ω,

(2.1)

where S(x, t) is the density of susceptible individuals and I(x, t) represents the density of infected indi-
viduals. d1 is positive constant measuring the motility of susceptible individuals and d2 stands for positive
constant measuring the motility of infected individuals. β(x) stands for the rate of disease transmission.
Λ(x) − m(x)S is linear source function. Λ(x) represents the input rate function of susceptible individu-
als abroad. γ(x) represents the rates of disease recovery. m(x) is the input rate function of susceptible
individuals in the territory. The continuous functions β(x) and γ(x) stand for positive Hölder functions
on habitat region Ω. The region Ω ⊂ R

N (N > 1) is bounded with smooth ∂Ω, and the homogeneous
Neumann boundary conditions mean that no individual flux crosses ∂Ω. Here, we use the function α(x)
stands for the reflect the impact of media coverage to the contact transmission rate. One may refer to
[27,29] and the references therein. We are assumed that the positive functions Λ(x), β(x), γ(x),m(x), α(x)
are Hölder continuous over region Ω.

Obviously, the SIe−α(x)I is a Lipschitz function. The solution S(x, t) and the solution I(x, t) are
continuous in R+×R+. In our manuscript, we assumed that initial values S0(x) and I0(x) are nonnegative
continuous functions on region Ω. More detailed explanations on the parameters can be found in [3,11,12],
and the references therein.

2.2. Uniform boundedness

Observe that, the standard theory for parabolic equations, and the initial value (S0(x), I0(x)), guarantees
that diffusive SIS system (2.1) has a unique classical solution such that (S, I) ∈ C2,1(x, t)). Further, using
the strong maximum principle and combining with the Hopf boundary lemma, we know that the system
still maintains the positiveness with the positive initial value (S0, I0) for all t > 0 and variable x ∈ Ω.

Next, the uniform bound of diffusive SIS model (2.1) is discussed. To this end, our analysis has two
cases: in one case, some special cases are obtained by using explicit L-estimates. In the other case, the
general case is also derived by using the implicit L∞-estimates. In the future, suppose any given function
G is continuous, and for notational convenience, we set

G∗ = max
x∈Ω

G (x) and G ∗ = min
x∈Ω

G (x) (2.2)

for function G (x) = Λ(x),m(x), β(x), γ(x), α(x).

Proposition 2.1. Suppose that d1 = d2, (S0(x), I0(x)) is initial value, for any solution (S, I) of Eq. (2.1),
then there is

S + I ≤ max
{

Λ
B

, S0(x) + (1 + ε0)I0(x)
}

,∀x ∈ Ω, for t ≥ 0, (2.3)
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where B = ε0γ(x)
1+ε0

, ε0 =
m(x)−γ(x)− β(x)

α(x)e +
√

Δ
2β(x)
α(x)e

,Δ = (γ(x) − α(x))2 + ( 2β(x)
α(x)e )2 + 2β(x)

α(x)e (γ(x) + m(x)).

Proof. For calculation convenience, we assume that diffusion rate d1 = d2 = 1. Set

u = S + (1 + ε0)I. (2.4)

From (2.4), S and I are equations of system (2.1), then

ut − Δu = Λ(x) − m(x)S + ε0β(x)SIe−α(x)I − ε0γ(x)I. (2.5)

Observe that Eq. (2.5) contains a inhomogeneous term ε0β(x)Ie−α(x)I , in order to better study the
maximum value of this inhomogeneous term, we set

F (I) := ε0β(x)Ie−α(x)I . (2.6)

Simultaneously taking the derivative of I on both sides of the formula (2.6), we arrive at

∂F

∂I
= ε0β(x)e−α(x)I − Iε0β(x)α(x)e−α(x)I . (2.7)

Let F ′
I(I) = 0, as it is easily seen, I = 1

α(x) . Further, for I ∈ [0, 1
α(x) ] we have F ′

I(I) > 0, which
implies that the function F is monotonically increasing depending I > 0 in I ∈ [0, 1

α(x) ]. In addition,
for I ∈ [ 1

α(x) ,+∞) we have F ′(I) < 0, which implies that the function F is monotonically decreasing
depending I > 0 in [ 1

α(x) ,+∞).
Recall that Eq. (2.5), based on the above property of inhomogeneous terms ε0β(x)Ie−α(x)I , we have

the following inequality

ut − Δu � Λ(x) − B(S + (1 + ε0)I), (2.8)

where B = ε0γ(x)
1+ε0

. Then, from (1 + ε0)(m(x) − β(x) ε0
α(x)e

−1) = ε0γ(x), we have

ε0 =
m(x) − γ(x) − β(x)

α(x)e +
√

Δ
2β(x)
α(x)e

,Δ = (γ(x) − α(x))2 + (
2β(x)
α(x)e

)2 +
2β(x)
α(x)e

(γ(x) + m(x)). (2.9)

Therefore, we need the preset of ε0 to be greater than zero. According to our notation, that is, there
exists positive number ε0 if and only if

ε0 > min
x∈Ω

ε0 :=
m∗ − γ∗ − β∗

α∗e +
√

Δ∗
2β∗
α∗e

> 0,Δ∗ = (
2β∗

α∗e
)2 +

2β∗

α∗e
(γ∗ + m∗). (2.10)

Observe that u = S+(1+ε0)I is sub-solution of system (2.1) and max
{

Λ
B , S0 + (1 + ε0)I0

}
is sub-solution

of system (2.1), and then the initial boundary value problem is given as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

St = d1ΔS + Λ(x) − m(x)S − β(x)SI

eα(x)I
+ γ(x)I, (x, t) ∈ Ω × (0,+∞),

It = d2ΔI +
β(x)SI

eα(x)I
− γ(x)I, (x, t) ∈ Ω × (0,+∞),

∂S

∂n
=

∂I

∂n
= 0, x ∈ ∂Ω,

u0(x) = S0(x) + (1 + ε0)I0(x), x ∈ Ω.

(2.11)

Consequently, using the comparison principle, for t ≥ 0, we give the following estimate

S + I ≤ max
{

Λ
B

, S0(x) + (1 + ε0)I0(x)
}

,∀x ∈ Ω.

The proof is complete. �
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Next, we derive some basic facts of positively invariant set for system (2.1) by using invariant region.

Proposition 2.2. Suppose that m∗C − Λ∗ − β∗C 1
α∗e > 0, for ∀k > 0 such that 1

α∗C
ln

(
β∗C
γ∗

)
< k <

m∗C −Λ∗−β∗C 1
α∗ e−1

γ∗C , then (S, I) of Eq. (2.1) satisfies S < C , I < kC , where C = max
{
S0,

I0
k , Λ∗

m∗ + 1
}
.

Proof. To establish Proposition 2.2, based on the choice of k, since [42] (or refer to [43] ), we employ the
invariant region theory to build the upper bounds of solutions. Then, a region has been assumed as

X+ = (S1, I1) × (S2, I2)

such that (S, I) of system (2.1) for all variable x belongs to region Ω and time t ∈ [0,+∞) locates to
region X+. In other words, the vector field of system (2.1)

(

Λ(x) − m(x)S − β(x)SI

eα(x)I
+ γ(x)I,

β(x)SI

eα(x)I
− γ(x)I

)

points inward on the region X+. Thus, there exists a invariant rectangle, or equivalently, the boundary
of region X+, which implies that (S, I) of system (2.1) will stay in X+. For convenience, set

⎧
⎪⎨

⎪⎩

F1(S, I) = Λ(x) − m(x)S − β(x)SI

eα(x)I
+ γ(x)I,

F2(S, I) =
β(x)SI

eα(x)I
− γ(x)I.

(2.12)

We choose S1 = I1 = 0, S2 = C and I2 = kC . Obviously, the positive initial value S0(x) � C and
I0(x) � kC for all variable x ∈ X+. Thus, from (2.12), we show that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F1(0, I) ≥ 0, ∀I ∈ [0, kC ],

F1(C , I) ≤ 0, ∀I ∈ [0, kC ],

F2(S, 0) ≥ 0, ∀S ∈ [0,C ],

F2(S, kC ) ≤ 0, ∀S ∈ [0,C ],

(2.13)

where F1(0, I) = Λ(x) + γ(x)I,F1(C , I) = Λ(x) − m(x)C − β(x)C I
eα(x)I + γ(x)I,F2(S, 0) = 0,F2(S, kC ) =

β(x)SkC e−α(x)kC − γ(x)kC .
In order to obtain (2.13), observe that the first and third of (2.13) are held. Next, we can check that

the other two inequalities are met.
According to the solution S, for all the solution S ∈ [0,C ], and for all the solution I ∈ [0, kC ], we

obtain

F1(0, I) = Λ(x) + γ(x)I � 0. (2.14)

From (2.13), we need to verify that the following conditions are true, that is,

F1(C , I) = Λ(x) − m(x)C − β(x)C
eα(x)I

I + γ(x)I ≤ 0. (2.15)

Take the derivative of the above formula (2.15), which is written as
∂

∂I
F1(C , I) = −β(x)C e−α(x)I + α(x)β(x)IC e−α(x)I + γ(x). (2.16)

For convenience, let

H0(I) :=
∂

∂I
F1(C , I) =

−β(x)C + α(x)β(x)IC + γ(x)eα(x)I

eα(x)I
, (2.17)

observe that the polynomial of (2.17) can be represented by

H (I) := α(x)β(x)C I + eα(x)Iγ(x) − β(x)C . (2.18)
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Take the derivative of I on both sides of (2.18), which is written as
∂H

∂I
:= α(x)β(x)C + α(x)γ(x)eα(x)I > 0.

If exist, based on the definition of the Lambert W function and solving the above equation with respect
to I (refer to [33]), there exists I1 = ζ, such that H (ζ) = 0, we have

H (0) < 0 and H (kC ) > 0. (2.19)

We know that if I ∈ (0, ζ), we have F ′
1(C , I) < 0. If I > ζ, we have F ′

1(C , I) > 0. That is, there exists
I = ζ such that function F1(C , ζ) is min value.

If not, we know that H ≥ 0 holds. To sum up, we only need to meet the following conditions

F1(C , kC ) ≤ 0 and F1(C , 0) ≤ 0,

then, we have

F1(C , 0) = Λ(x) − m(x)C ≤ 0, (2.20)

F1(C , kC ) = Λ(x) − m(x)C − β(x)C kC e−α(x)kC + γ(x)kC < 0 (2.21)

and

F1(C , ζ) = Λ(x) − m(x)C − β(x)C ζe−α(x)ζ + γ(x)ζ < 0. (2.22)

From Eq. (2.22), we obtain the following inequality

Λ(x) − Cm(x) − β(x)C
eα(x)ζ

ζ + γ(x)ζ < Λ(x) − Cm(x) + e−1 β(x)C
α(x)

+ γ(x)kC .

By Eq. (2.13), we claim that

Λ(x) − Cm(x) + e−1 β(x)C
α(x)

+ C kγ(x) < 0.

Combining Eq. (2.20) with Eq. (2.22), we lead to the following conditions

Λ(x) < m(x)C

and

k ≤
Cm(x) − β(x)C

α(x) e−1 − Λ(x)

γ(x)C
≤ Cm∗ − Λ∗ − β∗C

α∗
e−1

γ∗C
.

Thus, the second equation of system (2.13) holds.
Next, observe that the third and fourth equations of system (2.13) can be written as we claim that

F2(S, 0) = β(x)Se−α(x)II − γ(x)I ≥ 0

and

F2(S, kC ) =
β(x)SkC

eα(x)kC
− γ(x)kC ≤ 0.

Observe that

F2(S, kC ) ≤ F2(C , kC ) = β(x)C 2ke−α(x)kC − γ(x)kC ≤ 0,

thus it gives us k ≥ 1
α(x)C ln

(
β(x)C
γ(x)

)
.

Overall, if the following inequality

k ≥ 1
α(x)C

ln
(

β(x)C
γ(x)

)

>
1

α∗C
ln

(
β∗C
γ∗

)

,C >
Λ(x)
m(x)

>
Λ∗

m∗
, (2.23)

which implies that X+ is a rectangle of system (2.1) in the first quadrant R+. The proof is completed. �
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2.3. Implicit bounds of system (2.1)

We now study the uniform bounds of system (2.1) by using Lp theorem, then the following Lemma is
given.

Lemma 2.1. There exists M ∗∗ > 0 independent of the positive initial value (S0, I0), and there is some
large time T such that

||S(x, t)||L∞(Ω) + ||I(x, t)||L∞(Ω) < M ∗∗,∀t > T . (2.24)

Proof. To establish this Lemma 2.1, the following assertion needs to be proven.
For ∀k > 0, there exists a M ∗∗ = M (k) > 0 independent of the positive initial value (S0, I0) and

there is some large time T such that

||S(x, t)||L∞(Ω) + ||I(x, t)||L∞(Ω) < M ∗∗,∀t > T . (2.25)

We can prove that system (2.24) is true by using mathematical induction method.
(i). For convenience, we first define

v(t) =
∫

Ω

[S + (1 + ε0)I]dt. (2.26)

The mathematical induction method will be used to derive Eq. (2.26).
Taking k = 1, from (2.1), we have

dv(t)
dt

=
∫

Ω

Λ(x)dx −
∫

Ω

m(x)Sdx +
∫

Ω

ε0β(x)Se−α(x)IIdx −
∫

Ω

ε0γ(x)Idx,

then we have Ie−α(x)I ≤ 1
α(x)e

−1 using inequality and

dv(t)
dt

≤
∫

Ω

Λ(x)dx −
∫

Ω

[
m(x)Sα(x) − ε0β(x)Se−1 − ε0γ(x)Iα(x)

α(x)

]

dx

≤ Λ(x)|Ω| −
∫

Ω

m∗Sdx + ε0

∫

Ω

(
β∗Se−1

α∗

)

dx − ε0

∫

Ω

γ∗Idx

≤ Λ(x)|Ω| − (m∗ − ε0β∗
α∗ e−1)

∫

Ω

Sdx − ε0γ
∗
∫

Ω

Idx

= Λ(x)|Ω| − (m∗ − ε0β∗
α∗ e−1)

∫

Ω

Sdx − ε0γ
∗

1 + ε0
(1 + ε0)

∫

Ω

Idx

= Λ(x)|Ω| − D

∫

Ω

Sdx − D(1 + ε0)
∫

Ω

Idx.

We setD := ε0γ∗

1+ε0
=

(
m∗ − ε0β∗

α∗ e−1
)

, where ε0 = α∗m∗e−β∗−γ∗α∗e+
√

Δ
2β∗

. Δ = (β∗ + γ∗α∗e − m∗α∗e)2 +
4α∗β∗me. Then, we finally obtain

v(t) ≤ |Ω|Λ∗(1 − e−D t)
D

+ v(0)e−D t. (2.27)

Employing Lemma 2.1 of [9], combining the positiveness of the solution S with the solution I of (2.25),
further, from (2.27), we obtain

lim sup
t→+∞

v(t) ≤ Λ∗|Ω|
D

,
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which is independent of the positive initial value (S0(x), I0(x)).
(ii) For k − 1, assume that the inequality (2.24) is valid.
So it is next shown that (2.24) holds for the integer k. Multiplying both ends of the first equation of

S in (2.1) by the variable Sk−1 and integrating from region Ω, then we immediately obtain

1
k

d
dt

∫

Ω

Skdx = −d1(k − 1)
∫

Ω

Sk−2|∇S|2dx

+
∫

Ω

[Λ(x) − m(x)S)Sk−1 − β(x)e−α(x)IISk + γ(x)ISk−1]dx.

Similarly, multiply both ends of the solution I-equation in (2.1) by the variable Ik−1 and integrate
from region Ω

1
k

d
dt

∫

Ω

Ikdx = −d2(k − 1)
∫

Ω

Ik−2|∇I|2dx +
∫

Ω

β(x)Se−α(x)IIkdx −
∫

Ω

γ(x)Ikdx.

On account of the above two equalities, we can get from (2.24) with the integer k replaced by the integer
k − 1 that

1
k

d
dt

∫

Ω

(Ik + Sk)dx + (k − 1)
∫

Ω

d2I
k−2|∇I|2 + d1S

k−2|∇S|2dx

=
∫

Ω

[Λ(x)Sk−1 − m(x)Sk + β(x)e−α(x)ISIk + γ(x)ISk−1 − γ(x)Ik − β(x)e−α(x)IISk]dx.

Recall that Ie−αI ≤ 1
αe−1, we have

1
k

d
dt

∫

Ω

(Ik + Sk)dx + (k − 1)
∫

Ω

d2I
k−2|∇I|2 + d1S

k−2|∇S|2dx

≤
∫

Ω

[Λ(x)Sk−1 − m(x)Sk + β(x)
1

α(x)
e−1SIk−1 + γ(x)ISk−1 − γ(x)Ik]dx.

Recall that Young’s inequality (see [3]) with ε will be used

ab � εap + C(ε)bq, (2.28)

where a, b, ε > 0, C(ε) = 1
q (εp)− q

p , 1 < p, q < ∞ and 1
p + 1

q = 1, then

1
k

d
dt

∫

Ω

(Ik + Sk)dx + (k − 1)
∫

Ω

d2I
k−2|∇I|2 + d1S

k−2|∇S|2dx

≤
∫

Ω

[(Λ(x)Sk−1 − m(x)Sk) + β(x)
1

α(x)
e−1(ε′Ik + C1(ε′, k)Sk)

+ γ(x)(ε′Ik + C2(ε′, k)Sk) − γ(x)Ik]dx

=
∫

Ω

Λ(x)Sk−1dx −
∫

Ω

[

m(x) − β(x)
1

α(x)
e−1C1(ε′, k) − γ(x)C2(ε′, k)

]

Skdx

−
∫

Ω

[

γ(x) − β(x)e−1ε′

α(x)
− γ(x)ε′

]

Ikdx
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≤
∫

Ω

Λ(x)Sk−1dx −
∫

Ω

[

m(x) − β(x)
1

α(x)
e−1 max{C1(ε′, k)} − γ(x)max{C2(ε′, k)}

]

Skdx

−
∫

Ω

[
γ(x)α(x) − β(x)e−1ε′

α(x)
− γ(x)ε′

]

Ikdx, (2.29)

where k, ε′ > 0, the positive constants C1(ε′, k) and C2(ε′, k) are determined by using Young’s inequality
with ε′ in (2.28).

Take ε′ > 0 such that

m(x) >
β(x)
α(x)

e−1 max{C1(ε′, k)} + γ(x)max{C2(ε′, k)}, γ(x) >
β(x)e−1

α(x)
ε′ + γ(x)ε′.

Thus, combining (2.29) with the induction hypothesis infers that

1
k

d
dt

∫

Ω

(Ik + Sk)dx ≤ −D

∫

Ω

(Ik + Sk)dx + M1,∀t ≥ 0,

where

D = min
{

m(x) − β(x)
α(x)

e−1 max{C1(ε′, k)} − γ(x)max{C2(ε′, k)},

(
γ(x)α(x) − β(x)e−1ε′

α(x)
− γ(x)ε′

)}

.

Then, we end up with
∫

Ω

(Ik + Sk)dx ≤ e−kDt

∫

Ω

(Ik
0 + Sk

0 )dx +
M1

D
(1 − e−kDt),∀t ≥ 0,

where M1 > 0 for large time t.
Thus, Eq. (2.24) holds. As we have seen, based on (i), (ii) and applying Lemma 2.1 of [3] to (2.1), we

have (2.24). The proof is complete. �

3. Threshold dynamics of system (2.1)

This part, our aim is to establish in an elementary manner the threshold dynamics of system (2.1) and
mainly properties of the basic reproduction number (B.R.N.). Based on the uniform bounds of system
(2.1), as in [3], the B.R.N. R of system (2.1) is defined by

R = sup
0 �=ϕ∈H1Ω

∫

Ω

β(x)Λ(x)
m(x) ϕ2dx

∫

Ω

d2|∇ϕ|2 + γ(x)ϕ2dx
. (3.1)

In fact, from [16], we also give the basic reproduction number of our paper, and is defined as R. It shows
that R is independent of d1.

In addition, we know that the elliptic problem

− d1ΔS = Λ(x) − m(x)S, variable x ∈ Ω;
∂S

∂n
= 0, variable x ∈ ∂Ω (3.2)

exists a unique solution S∗(x) > 0. Obviously, (2.1) admits a disease-free equilibrium (D.F.E.) (S∗(x), 0).
By the expression of R, and further discussion to similarity as [3], a proposition is given below.

Proposition 3.1. The following assertions hold.



ZAMP Dynamics of a linear source epidemic system Page 11 of 33 144

1. The function R of d2 is a monotone decreasing; we have R → max
{

β(x)Λ(x)
m(x) γ(x)−1 : x ∈ Ω

}
as

d2 → 0 and R →
∫

Ω

β(x)Λ(x)
m(x) dx

∫

Ω
γ(x)dx

as d2 → ∞.

2. If the inequality
∫

Ω

β(x)Λ(x)
m(x) dx <

∫

Ω

γ(x)dx holds. Then, there exists a d̂2 > 0 such that R > 1 if

d̂2 > d2; and R < 1 if d̂2 < d2.
3. If the inequality

∫

Ω

β(x)Λ(x)
m(x) dx >

∫

Ω

γ(x)dx holds. Then, R > 1 for all d2.

To study the global stability of the disease-free equilibrium in the cases when one of the diffusion
rates is positive and the other is zero, we introduce the Kuratowski measure κ of non-compactness.
Define κ(B̃) := inf{r > 0 : B̃ has a finite cover of diameter < r} for any bounded set B̃.

Let Φ(t) : Σ+ → Σ+ denote the semiflow generated by Eq. (2.1). The following result allows us to
deal with the non-compactness of Φ when the diffusion rate d2 = 0.

Lemma 3.1. If the diffusion rate d1 > 0 and d2 = 0, then Φ(t) : Σ+ → Σ+, t ≥ 0 is a κ-contraction on
Y +in the sense that κ(Φ(t)B̃) ≤ e−γ∗

tκ(B̃) for any bounded set B̃ ⊂ Y +, where 0 < e−γ∗t < 1.

Proof. First, we rewrite Eq. (2.1) with the diffusion rate d2 = 0 and E0 = (S∗(x), 0) as
(

St − d1ΔS
It

)

=
(−m(x) −β(x)S∗(x) + γ(x)

0 β(x)S∗(x) − γ(x)

)(
S
I

)

+
(
A1(x, S, I)
A2(x, S, I)

)

, (3.3)

where (A1(x, S, I),A2(x, S, I))T denote the nonlinear terms of Eq. (2.1). For any φ̂(x) =
(
φ̂1(x), φ̂2(x)

)
∈

Σ+, the semiflow associated with Eq. (3.3) with initial condition

S(x, 0) = φ̂1(x), I(x, 0) = φ̂2(x), x ∈ Ω

is defined by

Φ(t)φ̂ = (S(x, t, φ̂), I(x, t, φ̂)), ∀φ̂ ∈ Σ+, t ≥ 0.

We know that the solution I(x, t, φ̂) satisfies
{

It = [β(x)S∗(x) − γ(x)]I(x, t, φ̂) + A2(x, S, I), t > 0, x ∈ Ω,

I(x, 0) = φ̂2(x), x ∈ Ω.
(3.4)

Note that the second equation It also satisfies

It = β(x)SIe−α(x)I − γ(x)I ≤ −γ(x)I(x, t, φ̂) +
β∗S
α∗e

for t > 0, x ∈ Ω. Then, we have

I(x, t, φ̂) = T̆2(t)φ̂2 +

t∫

0

T̆2(t − s)A2(x, S(x, s, φ̂), I(x, s, φ̂))ds, (3.5)

where the map T̆2(t) : C(Ω̄,R) → C(Ω̄,R) is given by T̆2(t) = e[β(x)S∗(x)−γ(x)]t. Next, define the first
operator

L (t)φ̂ =
(
0, T̆2(t)φ̂2

)

and the second operator

N (t)φ̂ =

⎛

⎝S(x, t, φ̂),

t∫

0

T̆2(t − s)A2(x, S(x, s, φ̂), I(x, s, φ̂))ds

⎞

⎠ , ∀φ̂ ∈ Σ+.
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Note that

L (t)φ̂ ≤
(
0, e−γ∗tφ̂2

)
,

N (t)φ̂ ≤
⎛

⎝S(x, t, φ̂),

t∫

0

e−γ∗(t−s) β∗

α∗e
S(x, s, φ̂)ds

⎞

⎠ , ∀φ̂ ∈ Σ+.
(3.6)

Then, we have

Φ(t)φ̂ = L (t)φ̂ + N (t)φ̂, ∀φ̂ ∈ Σ+, t ≥ 0.

We define the map T̆1(t) : C(Ω̄,R) → C(Ω̄,R) as the C0 semigroup associated with d1Δ − γ. By the
compactness of T̆1(t), from Eqs. (3.5) and (3.6), we know that N (t) : Σ+ → Σ+ is compact for each time
t > 0 and thus κ(N (t)B̃) = 0 for any B̃ ⊂ Σ+ and time t > 0. In view of

‖L (t)φ̂‖ ≤
∥
∥
∥e−γ(x)tφ̂2

∥
∥
∥ ≤ e−γ∗t‖φ̂‖,

one obtains ‖L (t)‖ ≤ e−γ∗t, ∀t > 0.
Therefore, for any B ⊂ Σ+, one has

κ(Φ(t)B̃) ≤ κ(L (t)B̃) + κ(N (t)B̃) ≤ ‖L (t)‖κ(B̃) + 0 ≤ e−γ∗tκ(B̃), ∀t > 0, (3.7)

and 0 < e−γ∗t < 1. Thus, Φ(t) : Σ+ → Σ+, t ≥ 0 is a κ-contraction of order e−γ∗t on Σ+. �

Similarly, we can obtain the following result for the case when the diffusion rate d1 = 0.

Lemma 3.2. If the diffusion rate d1 = 0 and d2 > 0, then the map Φ(t) : Σ+ → Σ+, t ≥ 0 is a κ-
contraction on region Σ+ in the sense that κ(Φ(t)B̃) ≤ e−m∗tκ(B̃) for any B̃ ⊂ Σ+.

Proof. Let u := S − S∗(x), Eq. (2.1) is rewritten with the diffusion rate d1 = 0 as

ut = Λ(x) − m(x)(u + S∗(x)) − β(x)(u + S∗(x))Ie−α(x)I + γ(x)I

= Λ(x) − m(x)u − β(x)uIe−α(x)I + γ(x)I − m(x)S∗(x) − β(x)S∗(x)Ie−α(x)I ,

It − d2ΔI = β(x)(u + S∗(x))Ie−α(x)I − γ(x)I

with u(x, 0) ≥ −S∗(x), I(x, 0) ≥ 0, x ∈ Ω. We define T̆1(t) = e−m(x)t and T2(t) : C(Ω̄,R) → C(Ω̄,R) as
the C0 semigroup associated with the diffusion rate d2Δ−γ. Define a linear operator L(t)φ̂ =

(
T̆1(t)φ̂1, 0

)

and a nonlinear operator

N(t)φ̂ =

⎛

⎝

t∫

0

T̆1(t − s)M (x, u(x, s, φ̂), I(x, s, φ))ds, I(x, t, φ̂)

⎞

⎠ ,

where M (x, u, I) = Λ(x) − β(x)uIe−α(x)I + γ(x)I − m(x)S∗(x) − β(x)S∗(x)Ie−α(x)I ≤ Λ(x) + γ(x)I −
m(x)S∗(x) − β(x)S∗(x)Ie−α(x)I .

Note that

‖N(t)φ̂‖ ≤ max

⎛

⎝

t∫

0

β∗‖u(x, s, φ̂)‖‖I(x, s, φ̂)‖ds, ‖I(x, t, φ̂)‖
⎞

⎠ , (3.8)

then

u(x, t, φ̂) = T̆1(t)φ̂1 +

t∫

0

T̆1(t − s)M (x, u(x, s, φ̂), I(x, s, φ̂))ds (3.9)
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and

Φ(t)φ̂ = K(t)φ̂ + N(t)φ̂, ∀φ̂ ∈ Σ+, t ≥ 0.

By the compactness of T̆2(t), it follows from Eq. (3.8) and Eq. (3.9) that N(t) : Σ+ → Σ+ is compact
for each time t > 0, and thus κ(N(t)B̃) = 0 for any B̃ ⊂ Σ+ and time t > 0. In view of

‖K(t)φ̂‖ ≤
∥
∥
∥e−m(x)tφ̂1

∥
∥
∥ ≤ e−m∗t‖φ̂‖,

we get

‖K(t)‖ ≤ e−m(x)t, ∀t > 0.

Hence, for B̃ ⊂ Σ+ one gives

κ(Φ(t)B̃) ≤ κ(K(t)B̃) + κ(N(t)B̃) ≤ ‖K(t)‖κ(B̃) + 0 ≤ e−m∗tκ(B̃) < κ(B̃).

Therefore, Φ(t) : Σ+ → Σ+, t ≥ 0 is a κ-contraction of order e−m∗t on region Σ+. �

Next, we can consider the threshold type dynamical behaviors of system (2.1); it shows that if R < 1,
the disease of system is eliminated. If R > 1, then the disease of system is persists. One has Theorems 3.1
and 3.2.

Theorem 3.1. If R < 1, then the disease-free equilibrium of system (2.1) is globally asymptotically stable.

Proof. Observe that R < 1, then, by Lemma 2.3 in [3] and [8], we know that 1 − R has the same sign as
the principal eigenvalue λ̂. λ̂ satisfies the following the principal eigenvalue:

− d2Δψ + γ(x)ψ − β(x)Λ(x)
m(x)

ψ = λψ, for variable x ∈ Ω; and
∂ψ

∂n
= 0, for variable x ∈ ∂Ω. (3.10)

So λ̂ > 0. Meanwhile, employing the proof of [3] again, we obtain

the solution I(x, t) → 0,uniformly on region Ω as t → ∞.

Next, we will prove that the solution S(x, t) → S∗(x) uniformly on as t → +∞.
Considering any small positive number ε independent of initial values, there exists time t0 > 0 such

that the solution satisfies 0 � I � ε for all variable x belong to region Ω, t > t0.
Note that S-equation of (2.1), we can easily know that the solution S is a super-solution to

⎧
⎪⎪⎨

⎪⎪⎩

Bt − d1ΔB = −m∗B +
[

Λ(x) − β∗ε
α∗

]

, x ∈ Ω, t ∈ (t0,+∞),

B(x, t0) = S(x, t0), x ∈ Ω,
∂B

∂n
= 0, x ∈ ∂Ω,

(3.11)

and a sub-solution to
⎧
⎪⎪⎨

⎪⎪⎩

Bt − d1ΔB = −m∗B + [Λ(x) + γ∗ε], x ∈ Ω, t ∈ (t0,+∞),

B(x, t0) = S(x, t0), x ∈ Ω,

∂B

∂n
= 0, x ∈ ∂Ω.

(3.12)

Denote B1 by the solutions of Eq. (3.11) and B2 and by the solutions of Eq. (3.12), using comparison
principle, then gives

B2 ≤ S(x, t) ≤ B1, variable x ∈ ∂Ω.

In fact, we have

B1 → S∗
+(ε, x) and B2 → S∗

−(ε, x) uniformly on region Ω as time t → ∞,
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respectively. In addition, according to the unique solution of (3.11) and (3.12), we can easily obtain that
S∗

−(ε, x) tends to S∗(x) and S∗
+(ε, x) tends to S∗(x) uniformly on region Ω as ε → 0; hence, since the

arbitrariness ε, our analysis implies that

S(x, t) → S∗(x) uniformly on region Ω as time t → +∞.

In addition, we know by Lemma 3.2 that φ(t) is κ-contracting on Y +. Therefore, φ(t) : Y + →
Y +, t > 0 admits a connected global attractor that attracts each bounded set in Y + . Theorem 3.1 is
proved. �

Theorem 3.2. If R > 1, there exists a number δ∗, then (S, I) = (u1, u2) of system starting from positive
initial value (S0, I0) satisfies lim inft→∞ ui(x, t) ≥ δ∗ uniformly for all variable x belong to Ω, it shows
that the disease of (2.1) persists uniformly; furthermore, system (2.1) exists at least one E.E.

Proof. Let X0 := {φ = (φ1, φ2) ∈ X+ : φ2(x) �= 0}, and ∂X0 := X+\X0 = {φ = (φ1, φ2 ∈ X+ :
φ2(x) = 0}, with this setting, X+ = X0 ∪ ∂X0 with X0 being relatively open in X+. Let M∂ := {φ ∈
∂X0 : Φ(t)φ ∈ ∂X0, t > 0}, where φ(t) : X+ → X+ be the semiflow generated by (2.1). To establish
Theorem 3.2, we are concerned with the following three claims.

Claim 1. We claim that X0 is positively invariant with respect to Φ(t), that is, Φ(t)X0 ⊆ X0 for all
t > 0.

Let (S0, I0) ∈ X0, observe that the solution I0(x) �= 0. From the second equation of (2.1), we have
It > d2ΔI − γ(x)I, and then we consider the solution I of system is an upper solution of the problem

⎧
⎪⎪⎨

⎪⎪⎩

zt = d2Δz − γ(x)z, x ∈ Ω, t ∈ (0,+∞),
∂z

∂n
= 0,

ẑ(x, 0) = z(x, 0) = z0.

(3.13)

From (3.13), using the maximum principle, we note that I0(x) �= 0, then z(x, t) > 0 for all variable x ∈
Ω and time t > 0; furthermore, by using the comparison principle, one obtains

I(x, t) > z(x, t) for all variable x ∈ Ω and time t ∈ (0,+∞).

Hence, Φ(t)u0 ∈ X0.
Claim 2. We claim that the ω limit set ω(ϕ) of ϕ is the singleton {Q0} for every ϕ ∈ M∂. Suppose

I(x, t;ϕ) = 0, furthermore,

S(x, t;ϕ) → Λ(x)
m(x)

uniformly for x ∈ Ω.

But, based on the I-equation of (2.1), we know that there is a positive solution I(x, t) starting from the
positive initial value ϕ = (S0, I0), which contradicts with ϕ ∈ M∂. As easy seen, we have the solution
I(x, t;ϕ) = 0 for all time t > t0. Thus, S(x, t;ϕ) → Λ(x)

m(x) uniformly for variable x ∈ Ω.
Claim 3. We claim that Q0 of system (2.1) is a uniform weak repeller, or equivalent, there has been a

δ > 0 such that lim sup
t→∞

||Φ(t)φ − Q0|| > δ for all φ ∈ X0.

For the claim 3, to contrary, if not, then for any δ > 0, lim sup
t→∞

||Φ(t)φ−Q0|| < δ. In other words, there

exists a time t1 > 0 such that the solution S(x, t, ϕ) > −δ and I(x, t, ϕ) < δ for all time t ∈ (t1,+∞).
We consider the upper solution I(x, t;ϕ) of system (2.1) as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂y2

∂t
= d2Δy2 + β(x)

(
Λ(x)
m(x)

− δ

)

y2e
−α(x)y2 − γ(x)y2, x ∈ Ω, t ∈ (t1,+∞),

∂y2

∂n
= 0, x ∈ ∂Ω,

y2(x, t1) = ψ2(x) x ∈ Ω

(3.14)
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with ψ2 ≤ I(x, t1). Denote the principal eigenvalue by K 0
δ , and consider its eigenvalue problem as follows:

⎧
⎪⎪⎨

⎪⎪⎩

d2Δφ − γ(x)φ + β(x)
(

Λ(x)
m(x)

− δ

)

e−α(x)φφ = K 0φ, x ∈ Ω, t ∈ (t1,+∞),

∂φ

∂n
= 0, x ∈ ∂Ω.

(3.15)

Thus, we choose a sufficiently small positive number δ such that K 0
δ > 0 if R0 > 1, it is shown

that K 0
δ is continuous in δ. Using Lemma 2.3 of [3], furthermore, we can consider eigenvalue problem as

follows:
⎧
⎪⎪⎨

⎪⎪⎩

λψ2 = d2Δψ2 + β(x)
(

Λ(x)
m(x)

− δ

)

e−α(x)ψ2ψ2 − γ(x)ψ2, x ∈ Ω, t ∈ (t1,+∞),

∂ψ2

∂n
= 0, x ∈ ∂Ω,

(3.16)

which implies that the principal eigenvalue K 0
δ is associated with positive eigenvector ψ∗

2 . To this end,
we take a sufficiently small positive number α such that αψ∗

2 < I(x, t1;ϕ). Let I(x, t1) = αψ∗
2 be the

initial data of system (3.16), then a unique solution of the linear system (3.15) is given as

y2(x, t;ϕ) = αψ∗
2eK

0(t−t1).

Using the comparison principle, we can obtain I(x, t;ϕ) > y2(x, t;ϕ) on Ω × [t1,+∞), it implies that
when t → +∞, namely, I(x, t;ϕ) → +∞, which is a contradiction with Lemma 2.1. We can choose a
continuous function ρ : X+ → [0,+∞) by

ρ(ϕ) = min
x∈Ω

ϕ2(x), ϕ ∈ X+,

where ϕ2 = I, thus, ρ−1(0,+∞) ⊆ X0. We have two cases: one case ρ(ϕ) = 0 and ϕ ∈ X0, the other case
ρ(ϕ) > 0, and then ρ(Φ(t)φ) > 0.

Thus, by using semiflow definition, we know that the generalized distance function ρ is a semiflow
Φ(t) : X+ → X+. To this end, it shows that any forward orbit of Φ(t) in M∂ will tend to Q0 of system
(2.1), and then there exists the stable subset Ws(Q0) of Q0 such that Ws(Q0)

⋂
X0 = ∅.

Further, we consider that Q0 is an isolated invariant set in domain X+ and there are no sets of Q0

form in domain ∂X0. Recall that Theorem 3 in [20], we know that there is a positive number δ1 such
that {min{ρ(ψ)} : ψ ∈ ω(ϕ)} > δ1 for any ψ ∈ X0, that is, for ∀ϕ ∈ X0, we obtain

lim inf
t→∞ I(t, x, ϕ) > δ1.

Observe that Lemma 2.1, we can choose a M ∗∗ > 0 and time t2 such that I(t, x, ϕ) < M∗∗ for ∀ t >
t2, ∀x ∈ Ω. By S-equation of (2.1), for t > t2, x ∈ Ω, we have

St > d1ΔS + Λ∗ − (m∗ + β∗M ∗∗)S.

Using the comparison principle, we can obtain

lim inf
t→∞ S(x, t, ϕ) ≥ δ2 :=

Λ∗

m∗ + β∗M ∗∗ ,

where δ∗ = min{δ1, δ2}. To this end, the uniform persistence is proved. Based on Theorem 4.7 in [11], we
know that (2.1) admits at least a E.E. in X0. Theorem 3.1 is proved. �
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4. Global dynamics of the endemic equilibrium

We now explore the global dynamics of system (2.1), and consider that the coefficient functions Λ(x), β(x),
γ(x), α(x),m(x) are the positive constants Λ, β, γ, α,m, then we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

St − d1ΔS = Λ − mS − βS

eαI
I + γI, (x, t) ∈ Ω × (0,+∞),

It − d2ΔI =
βS

eαI
I − γI, (x, t) ∈ Ω × (0,+∞),

∂S

∂n
=

∂I

∂n
= 0, x ∈ ∂Ω,

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ Ω.

(4.1)

Thanks to Theorem 3.1, we know that system (4.1) does no endemic equilibrium (E.E.)if R < 1. Therefore,
we mainly consider the following case if R > 1 in this section.

And then, clearly, system (4.1) exists the unique disease-free equilibrium (D.F.E.)E0 :=
(

Λ
m , 0

)
, the

unique endemic equilibrium Ec := (S∗, I∗) if Λβ > mγ, (i,e., R = Λβ
mγ ), and its coordinates are given

by S∗ = Λ
m , I∗ = 1

α ln
(

Λβ
mγ

)
. To investigate the global dynamics of the E.E. of (4.1), constructing a

Lyapunov function, Theorem 4.1 is given as below.

Theorem 4.1. Assume that Λβ > mγ, then the endemic equilibrium (E.E.) is globally attractive.

Proof. Motivated by [22], a function is considered as

E(t) =
∫

Ω

[L(S, I)]dx,

where L(S, I) =
∫

Ω

(
S2−S2

∗
S2

)
dS +

∫

Ω

(
(eαI)2−(eαI∗ )2

(eαI)2

)
dI. Then, elementary computation yields

dE

dt
=

∫

Ω

[L(S, I)]′S
dS

dt
+ [L(S, I)]′I

dI

dt
dx

(

where L′
S =

dL

dS
,L′

I =
dL

dI

)

=
∫

Ω

(
S2 − S2

∗
S2

)

d1ΔS +
(

(eαI)2 − (eαI∗)2

(eαI)2

)

d2ΔIdx

+
∫

Ω

(
S2 − S2

∗
S2

)

(Λ − mS − βSIe−αI + γI) +
(

(eαI)2 − (eαI∗)2

(eαI)2

)

(βSIe−αI − γI)dx

= −
∫

Ω

2S2
∗

S2
d1|∇S|2 +

2α(eαI∗)2

(eαI)2
d2|∇I|2dx

+
∫

Ω

(
S2 − S2

∗
S2

)

(Λ − mS − βSIe−αI + γI) +
(

(eαI)2 − (eαI∗)2

(eαI)2

)

(βSIe−αI − γI)dx

= −
∫

Ω

2S2
∗

S3
d1|∇S|2 +

2α(eαI∗)2

(eαI)2
d2|∇I|2dx

+
∫

Ω

(
S2 − S2

∗
S2

)

((mS∗ − βS∗I∗e−αI∗ + γI∗) − mS − βSIe−αI + γI)

+
(

(eαI)2 − (eαI∗)2

(eαI)2

)

(βSIe−αI − γI)dx
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= −
∫

Ω

2S2
∗

S3
d1|∇S|2 +

2α(eαI∗)2

(eαI)2
d2|∇I|2dx

+
∫

Ω

(
S2 − S2

∗
S2

)

((mS∗) − mS − βSIe−αI + γI) +
(

(eαI)2 − (eαI∗)2

(eαI)2

)

(βSIe−αI − γI)dx

≤ −
∫

Ω

2S2
∗

S3
d1|∇S|2 +

2α(eαI∗)2

(eαI)2
d2|∇I|2dx

+
∫

Ω

(
S2 − S2

∗
S2

)

((mS∗) − mS)dx −
∫

Ω

(
S2 − S2

∗
S2

)

(βSIe−αI − γI)

−
(

(eαI)2 − (eαI∗)2

(eαI)2

)

(βSIe−αI − γI)dx

= −
∫

Ω

(
2S2

∗
S3

)d1|∇S|2 + (
2α(eαI∗)2

(eαI)2
)d2|∇I|2dx

+
∫

Ω

(
S2 − S2

∗
S2

)

((mS∗) − mS)dx −
∫

Ω

[

(
S2 − S2

∗
S2

) − (
(eαI)2 − (eαI∗)2

(eαI)2
)
]

(βSIe−αI − γI)dx

= −
∫

Ω

2S2
∗

S3
d1|∇S|2 +

2α(eαI∗)2

(eαI)2
d2|∇I|2dx +

∫

Ω

(
S2 − S2

∗
S2

)

((mS∗) − mS)dx

− βI
S

eαI∗

∫

Ω

[

(
S2 − S2

∗
S2

) − (
(eαI)2 − (eαI∗)2

(eαI)2
)
] (

eαI∗

eαI
− S∗

S

)

dx

= −
∫

Ω

2S2
∗

S3
d1|∇S|2 +

2α(eαI∗)2

(eαI)2
d2|∇I|2dx

− m

∫

Ω

(
S + S∗

S2

)

(S∗ − S)2dx − βI
S

eαI∗

∫

Ω

(
eαI∗

eαI
+

S∗
S

) (
eαI∗

eαI
− S∗

S

)2

dx � 0,

where we observe that γ = βS∗e−αI∗ . Notice that, for any positive time t, the continuously function E(t)
is a Lyapunov function.

Furthermore, we know that for any t > 0, the continuously function dE
dt < 0 along trajectories except

at point
(

Λ
m , 1

α ln
(

Λβ
mγ

))
where dE

dt = 0, then we have S(x, t) Λ
m , I(x, t) tends to 1

α ln
(

Λβ
mγ

)
, x ∈ ∂Ω.

In addition, using proposition 2.1 in [29], for some M > 0, we here obtain

||S(x, t)||L∞(Ω) + ||I(x, t)||L∞(Ω) < M ,∀t ∈ (0,+∞).

Utilizing Sobolev embedding theorem, we immediately obtain the following result

(S(x, t), I(x, t)) →
(

Λ
m

,
1
α

ln
(

Λβ

mγ

))

= (S∗, I∗), x ∈ ∂Ω.

Thus, it shows that point (S∗, I∗) attracts all solutions of system (2.1). Theorem 4.1 is proved. �
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5. Asymptotic profiles of the endemic equilibrium

We now investigate the asymptotic behavior of the E.E. of system (2.1), then the elliptic system is
described as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1ΔS + Λ(x) − m(x)S − β(x)SI

eα(x)I
+ γ(x)I = 0, x ∈ Ω, t ∈ (0,+∞),

d2ΔI +
β(x)SI

eα(x)I
− γ(x)I = 0, x ∈ Ω, t ∈ (0,+∞),

∂S

∂n
=

∂I

∂n
= 0, x ∈ ∂Ω,

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ Ω.

(5.1)

Observe that Theorem 3.1, when R > 1, then we know that system (5.1) exists at least one positive
solution. Next, denote (S, I) > 0 by the solutions of Eq. (5.1). Utilizing the L1-bounds of the solution
(S, I), and integrating both the S and I equations for (5.1) over region Ω, then we give

∫

Ω

[

m(x)S +
β(x)S
eα(x)I

I

]

dx =
∫

Ω

(Λ(x) + γ(x)I)dx (5.2)

and
∫

Ω

[

γ(x) − β(x)S
eα(x)

]

Idx = 0. (5.3)

Inserting (5.3) into (5.2), it then follows that
∫

Ω

m(x)Sdx =
∫

Ω

Λ(x)dx. (5.4)

From (5.4), it is clear that
∫

Ω

Sdx <
Λ(x)|Ω|
m(x)

<
Λ∗|Ω|
m∗ . (5.5)

Moreover, in view of Eqs. (5.3) and (5.5), by using eα(x)I ≥ α(x)I + 1, we have
∫

Ω

γ(x)Idx =
∫

Ω

β(x)SIe−αIdx ≤
∫

Ω

β(x)SI

α(x)I + 1
dx <

β(x)Λ(x)|Ω|
α(x)m(x)

� Ξ,

which in turn yields
∫

Ω

γ(x)Idx =
∫

Ω

β(x)SIe−α(x)Idx ≤ Ξ <
β∗Λ∗|Ω|
α∗m∗ . (5.6)

5.1. The case d1 → 0

Theorem 5.1. If R > 1, fixing d2 > 0, and let d1 → 0, then every (S, I) of system (5.1) starting from
positive initial value (S0, I0) satisfies S → Ŝ∗∗, and I → Î∗∗ uniformly on region Ω, where Ŝ∗∗ =

G(x, Î∗∗) = [Λ(x)+γ(x)Î∗∗]eα(x)Î∗∗

m(x)eα(x)Î∗∗+β(x)Î∗∗
, and Î∗∗ > 0 meets the following conditions

d2ΔÎ∗∗ + β(x)G(x, Î∗∗)Î∗∗e−α(x)Î∗∗ − γ(x)Î∗∗ = 0, variable x ∈ Ω,
∂Î∗∗
∂n

= 0, variable x ∈ ∂Ω. (5.7)
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Proof. To establish this, we prove this result in three steps.
Step 1. We prove that the solutions S and I of (2.1) are L2 estimates. Now, multiplying both of the

first equation for system (5.1) by S, we have

0 � d1

∫

Ω

|∇S|2dx =
∫

Ω

[
Λ(x)Seα(x)I − m(x)S2eα(x)I − β(x)IS2 + γ(x)ISeα(x)I

eα(x)I

]

dx.

Further, we obtain
∫

Ω

[
m(x)S2eα(x)I + β(x)IS2

eα(x)I

]

dx ≤
∫

Ω

(Λ(x)S + γ(x)IS)dx,

which implies that
∫

Ω

m(x)S2dx ≤
∫

Ω

[Λ(x)S + γ(x)IS]dx. (5.8)

Notice that the solution I meets

ΔI +
(

β(x)S − γ(x)eα(x)I

eα(x)Id2

)

I = 0, variable x ∈ Ω, and
∂I

∂n
= 0, variable x ∈ ∂Ω. (5.9)

Using Harnack-type inequality [42], then we can get

max
x∈Ω

I < M min
x∈Ω

I, (5.10)

where M > 0 does not depend on d1 > 0.
From Eqs. (5.6) and (5.10), we have

I ≤ M min
Ω

I <
M

|Ω|
∫

Ω

Idx < M . (5.11)

From Eqs. (5.11) and (5.8), using Hölder inequality, it follows that

∫

Ω

S2dx <
Λ∗ + γ∗M

m∗

∫

Ω

Sdx < M

⎛

⎝

∫

Ω

S2dx

⎞

⎠

1
2

.

Thus, we have
∫

Ω

S2dx < M . (5.12)

The L∞ bound of the solution I in system (5.11) implies that the L2 bound of the solution I is also held.
Step 2. We prove that the solution I of (2.1) is convergence. First, we noted that I of (2.1) satisfies

d2ΔI +
[
β(x)S − γ(x)eα(x)I

eα(x)I

]

I = 0, variable x ∈ Ω, and
∂I

∂n
= 0, variable x ∈ ∂Ω. (5.13)

From Eq. (5.12), we immediately obtain

||β(x)SIe−α(x)I ||Lp(Ω) < M ,∀p > 1.

Using Lp-estimate (see [3]), we have ||I||W 2,p(Ω) < M , for any given integer p > 1. Taking a sufficiently
large p and employing Embedding Theorem [3], one gives

||I||C1+θ(Ω) < M , for some 0 < θ < 1.

Thus, there exists a subsequence of diffusion rate d1,n → 0, as the integer n → +∞ that

dn := d1,n, satisfying dn → 0 ,
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and (5.1) exists a corresponding solution (Sn, In) := (Sd1,n
, Id1,n

) > 0 with d1 = dn, as the integer
n → +∞ such that In → Î∗∗ uniformly on region Ω, where the solution Î∗∗ ∈ C1(Ω) and the solution
Î∗∗ > 0.

According to Eq. (5.10),

either the solution Î∗∗ = 0 on region Ω, or the solution Î∗∗ > 0 on region Ω. (5.14)

Without loss of generality, if here the former of (5.14) holds, that is,

the solution In → 0 uniformly on region Ω, as n → +∞, (5.15)

then, for a small number ε with the inequality 0 < ε < min
x∈Ω

Λ(x)
m(x) , and for all large number n, we obtain

0 < In(x, t) < ε.
In addition, from S-equation of (5.1), we know that for all large number n, the solution (Sn, In) gives

−d1ΔSn � Λ(x) − m(x)Sn + γ∗ε, variable x ∈ Ω; and
∂Sn

∂n
= 0, variable x ∈ ∂Ω

and

−d1ΔSn � Λ(x) − m(x)Sn − εβ∗Sn, variable x ∈ Ω, and
∂Sn

∂n
= 0, variable x ∈ ∂Ω.

For any n > 0, two auxiliary systems are considered as follows:

− d1Δh = Λ(x) − m(x)h + γ∗ε, variable x ∈ Ω; and
∂h

∂n
= 0, variable x ∈ ∂Ω (5.16)

and

− d1Δy = Λ(x) − m(x)y − εβ∗y, variable x ∈ Ω; and
∂y

∂n
= 0, variable x ∈ ∂Ω. (5.17)

Suppose that Eqs. (5.16) and (5.17) exist the unique positive solutions hn and yn, respectively. A
simple discussion, for all large integer n, gives the following inequality

yn � Sn � hn on region Ω . (5.18)

By Lemma 2.4 in [3], it follows that

hn → Λ(x) + γ∗ε
m(x)

uniformly on region Ω, as the integer n → +∞

and

yn → Λ(x)
m(x) + εβ∗

uniformly on region Ω, as theinteger n → +∞.

Hence, setting n → ∞ in (5.18), we obtain

Λ(x)
m(x) + εβ∗

� lim inf
n→∞ Sn � lim sup

n→+∞
Sn � Λ(x) + γ∗ε

m(x)
. (5.19)

According to the arbitrary small ε in (5.19), namely

Sn → Λ(x)
m(x)

uniformly on region Ω, as the integer n → +∞. (5.20)

Now, we know that the I-equation of (5.1), then

−d2ΔIn = β(x)Sne−α(x)InIn − γ(x)In, variable x ∈ Ω, and
∂In

∂n
= 0, variable x ∈ ∂Ω.
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Define I∗
n = In

||I||L∞(Ω)
, then, we know that norm ||I∗||L∞(Ω) = 1 for the integer n > 1, and the solution ˜

I∗
n satisfies

− d2ΔI∗
n =

[
β(x)Sn − γ(x)eα(x)In

eα(x)In

]

I∗
n, variable x ∈ Ω, and

∂I∗
n

∂n
= 0, variable x ∈ ∂Ω. (5.21)

Using a standard compactness argument for (5.21), and if necessary we may assume that a further
subsequence is given as

the solution I∗
n → I∗ uniformly on region Ω, as the integer n → ∞,

where the solution I∗ ∈ C1(Ω), the solution I∗ is positive on region Ω, and the norm ||I∗||L∞(Ω) is equal
to one.

According to Eqs. (5.15), (5.20) and (5.21), we know that the solution I∗ satisfies

−d2ΔI∗
n =

[
β(x)Λ(x) − γ(x)m(x)

m(x)

]

I∗
n, variable x ∈ Ω, and

∂I∗
n

∂n
= 0, variable x ∈ ∂Ω.

Employing Harnack-type inequality [31], the solution ˜ I∗ is positive on region Ω.
In addition, based on the uniqueness of the principal eigenvalue λ̂ of (3.10), we know that λ̂ satisfies

λ̂ = 0, which is a contradiction with Λ(x)β(x)
m(x) > γ(x) (i,e, R > 1).

Therefore, (5.15) cannot hold, and so there exists the positive solution Î∗∗ of system on region Ω, as
n → ∞ and,

the solution In → Î∗∗ uniformly on region Ω. (5.22)

Step 3. We prove that the solution S is convergence. The S-equation of system (5.1) is satisfied by
the solution Sn, then, we have

⎧
⎪⎨

⎪⎩

− d1ΔSn = Λ(x) − m(x)Sn − β(x)SnIn

eα(x)In
+ γ(x)In, x ∈ Ω,

∂Sn

∂n
= 0, x ∈ ∂Ω.

(5.23)

From (5.23), for a small number ε > 0 and large n, we immediately have

Λ(x) − m(x)Sn − β(x)SnIne−α(x)In + γ(x)In � Λ(x) − m(x)Sn − β(x)Sn(Î∗∗ − ε)
eα(x)(Î∗∗+ε)

+ γ(x)(Î∗∗ + ε)

=
(g1,ε

+ − Sn)g1,ε
−

eα(x)(Î∗∗+ε)
,

where

g1,ε
− = m(x)eα(x)(Î∗∗+ε) + β(x)(Î∗∗ − ε), g1,ε

+ =
[Λ(x) + γ(x)(Î∗∗ + ε)]eα(x)(Î∗∗+ε)

m(x)eα(x)(Î∗∗+ε) + β(x)(Î∗∗ − ε)
.

For a fixing large positive number n, then, the following auxiliary problem is considered as

− d2ΔÎ∗∗ = β(x)g1,ε
+ Î∗∗e−αÎ∗∗ − γ(x)Î∗∗, variable x ∈ Ω,

∂Î∗∗
∂n

= 0, variable x ∈ ∂Ω. (5.24)

It shows that the solution Sn is a sub-solution of (5.24) and any sufficiently large number C > 0 satisfies
Sn < C , and then, Eq. (5.24) exists at least a solution (S, I) starting from this initial value (S0, I0).

Now, denoted by wn, and Sn � wn � C on region Ω. Applying maximum principle [29], it shows that

min
x∈Ω

g1,ε
+ � min

x∈Ω
wn � wn � max

x∈Ω
wn ≤ max

x∈Ω
g1,ε
+ .

Using singular perturbation theory [29], we can conclude that solution wn > 0 of (5.24) satisfies

wn → g1,ε
+ uniformly on region Ω, as n → +∞.
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Based on Sn ≤ wn ≤ C on region Ω, we obtain

lim sup
n→∞

Sn(x) � g1,ε
+ . (5.25)

In addition, for large number n > 0, we have

Λ(x)eα(x)In − eα(x)Inm(x)Sn − β(x)SnIn + eα(x)Inγ(x)In

eα(x)In
� Λ(x) − m(x)Sn

− β(x)Sn(Î∗∗ + ε)
eα(x)(Î∗∗−ε)

+ γ(x)(Î∗∗ − ε)

=
(g2,ε

+ − Sn)g2,ε
−

eα(x)(Î∗∗−ε)
,

where g2,ε
− = m(x)eα(x)(Î∗∗−ε) + β(x)(Î∗∗ + ε), g2,ε

+ = [Λ(x)+γ(x)(Î∗∗−ε)]eα(x)(Î∗∗−ε)

m(x)eα(x)(Î∗∗−ε)+β(x)(Î∗∗+ε)
.

Similarly, we have

lim inf
n→∞ Sn(x) � g2,ε

+ . (5.26)

Notice that g1,ε
+ = g2,ε

+ = G(x, Î∗∗). From Eqs.(5.25) and (5.26), we immediately obtain

Sn(x) tends to G(x, Î∗∗) = Ŝ∗∗ uniformly on region Ω, as n → +∞. (5.27)

Clearly, it shows that the solution Î∗∗ satisfies (5.7), which completes the proof. �

5.2. The case of d2 → 0

We now consider the asymptotic dynamics of endemic equilibrium as d2 → 0. Applying proposition 3.1
and Theorems 3.1 and 3.2, if the inequality Λ(x)β(x)

m(x) > γ(x) holds, i,e., R > 1, and then we know that
system (5.1) admits at least one E.E. for all small the diffusion rate d2 > 0. Thus, we have the result
below.

Theorem 5.2. If the inequality Λ(x)β(x)
m(x) > γ(x) holds. Fix the diffusion rate d1 > 0, and let the diffusion

rate d2 → 0, then every (S, I) of system (5.1) starting from positive initial value satisfies S → Ŝ∗∗,
and I → Î∗∗ uniformly on region Ω where

Î∗∗ =

⎧
⎪⎪⎨

⎪⎪⎩

(
Λ(x)β(x)
m(x)γ(x)

− 1
)

Ŝ∗∗,
Λ(x)β(x)

m(x)
> γ(x),

0,
Λ(x)β(x)

m(x)
< γ(x)

(5.28)

for x belong to region Ω and the solution Ŝ∗∗ satisfies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− d1ΔŜ∗∗ = Λ(x) −
[

m(x) − β(x)e−α(x)Î∗∗
Î∗∗ +

γ(x)Î∗∗

Ŝ∗∗

]

Ŝ∗∗, x ∈ Ω,

∂Ŝ∗∗

∂n
= 0, x ∈ ∂Ω.

(5.29)

Proof. To establish Theorem 5.2, for convenience, a positive constant C with respect to the positive
diffusion rate d2 is observed. In the following, we prove this result in four steps.

Step 1. We prove that the solution S has lower bound.
For any x ∈ Ω, let S(x0) = min

Ω
{S(x)}, using [21] and the first equation of system (5.1) that

Λ(x0) − m(x0)S(x0) − β(x0)S(x0)I(x0)e−α(x0)I(x0) + γ(x0)I(x0) < 0.
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From which we infer

Λ∗ ≤ Λ(x0) + γ(x0)I(x0) < m(x0)S(x0) + β(x0)S(x0)I(x0)e−α(x0)I(x0)

≤ m∗S(x0) + β∗
1

α∗e
S(x0).

Then, we immediately have the following results

S(x) � Λ(x0)
m(x0) + 1

α(x0)e
β(x0)

� Λ∗

m∗ + 1
α∗eβ∗

for all x ∈ Ω. (5.30)

Thus, the solution S has lower bound.
Step 2. We prove that the solution S is W 1,q bound for q > 0.
From system (5.1), we have

⎧
⎪⎪⎨

⎪⎪⎩

− ΔS +
[β(x)Ie−α(x)I + m(x)]

d1
S =

γ(x)I + Λ(x)
d1

, x ∈ Ω,

∂S

∂n
= 0, x ∈ ∂Ω.

(5.31)

From Eq. (5.6), we can obtain
∫

Ω

|Λ(x) + γ(x)I(x)|dx � C . (5.32)

Based on Eqs. (5.31) and (5.32), and employing the elliptic L1-estimate [4], we have

||S||W 1,q(Ω) � C , for q ∈
[

1, 1 +
1

n − 1

)

if n > 1, or||S||W 1,q(Ω) � C ,∀1 � q < ∞ if n = 1. (5.33)

Thus, we know that the solution S is W 1,q bound for small positive number q.
Step 3. We prove that solutions S and I are Lp-bound for any positive number p.
From Eq. (5.33), using the Sobolev embedding W 1,q(Ω) ↪→ Lp1(Ω) and noticing q ∈ [1, 1+ 1

n−1 ), then
we have ||S||Lp1 (Ω) � C , 1 < p1 � nq

n−q . When q tends to n
n−1 , we immediately obtain

||S||Lp1 (Ω) � C , 1 < p1 � 1 +
2

n − 2
. (5.34)

Assume n � 2, then (5.34) holds for ∀ < p1 < +∞.
Next, for any number k > 0, we multiply both of the second equation for (5.1) by solution Ik, and

integrate two hands of (5.1) over region Ω, then we obtain

d2k

∫

Ω

Ik−1|∇I|2dx =
∫

Ω

β(x)SIk+1e−α(x)Idx −
∫

Ω

γ(x)Ik+1dx.

Hence, one has

γ∗
∫

Ω

Ik+1dx ≤
∫

Ω

γ(x)Ik+1dx <

∫

Ω

β(x)SIk+1e−α(x)Idx ≤ β∗
α∗e

∫

Ω

SIkdx. (5.35)

Choosing k1 = 1
q1

and q1 = 1 + 1
(p1−1) = p1

(p1−1) , where 1
p1

+ 1
q1

= 1, from Eq. (5.35) and using Hölder
inequality, it follows that

γ∗
∫

Ω

Ik1+1dx <
β∗
α∗e

∫

Ω

SIk1dx <
β∗
α∗e

⎛

⎝

∫

Ω

Sp1dx

⎞

⎠

1
p1

⎛

⎝

∫

Ω

Idx

⎞

⎠

1
q1

< C .
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Observe that Eqs. (5.34) and (5.6), clearly, we immediately have, ||I||Lk1+1(Ω) < C , further, taking
k2 = (k1+1)

q1
= 1

q1
+ 1

q2
1
, (5.35) and using Hölder inequality again, yield

γ∗
∫

Ω

Ik2+1dx <
β∗
α∗e

∫

Ω

SIk2dx <
β∗
α∗e

⎛

⎝

∫

Ω

Sp1dx

⎞

⎠

1
p1

⎛

⎝

∫

Ω

Ik2q1dx

⎞

⎠

1
q1

< C . (5.36)

From Eqs. (5.34) and (5.36), thus, ||I||Lk2+1(Ω) < C . By repeating the iteration, we immediately
obtain

||I||Lk∞+1(Ω) < C , (5.37)

where k∞ = 1
q1

+ 1
q2
1

+ 1
q3
1

+ · · · · = 1
q1−1 = p1 − 1. By Eq. (5.34), we know that (5.37) is true by using

finitely many times of iterations). Thus, one has

||I||Lp1 (Ω) < C . (5.38)

Now, by Eqs. (5.31), (5.37) and using Elliptic Lp-theory, one has that ||I||W 2,p1 (Ω) < C . Employing
Sobolev embedding, that is, W 2,p1(Ω) ↪→ Lp2(Ω), 1 < p2 < Np1

N−2p1
and the fact of Np1

N−2p1
tends to N

N−4

as p1 tends to N
N−2 (refer to Eq. (5.34), then we obtain ||S||Lp2 (Ω) < C , 1 < p2 < N

N−4 if N > 4, or
∀1 < p2 < +∞ if N ≤ 4, then, one can get ||I||Lp2 (Ω) < C . From Eq. (5.31) and applying elliptic
Lp-theory again, we eventually obtain the following results

||S||Lp(Ω) < C , and ||I||Lp(Ω) < C ,∀1 < p < +∞. (5.39)

Step 4. We prove that the solutions S and I are convergence.
By Eqs. (5.31) and (5.39), the following inequality is given as ||S||W 2,p(Ω) < C , and ∀1 < p < ∞,

where the positive p is sufficiently large.
By using the standard embedding theory, ensure that {d2} of the diffusion rate d2 → 0, that is,

dm := d2,m tends to zero with dm → 0 as m → ∞,

and the sequence (Sm, Im) := (Sd1,m
, Id2,m

) > 0 of system (5.1) with d2 = d2,m satisfies

the solution Sm → Ŝ∗∗ in C1(Ω), as m → ∞,

where the solution Ŝ∗∗ ∈ C1(Ω) and Ŝ∗∗ is positive on region Ω due to (5.30).
In addition, the solution Im of system (5.1) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

− d1ΔIm =
[
β(x)Sm

eα(x)Im
− γ(x)

]

In, x ∈ Ω,

∂Im

∂n
= 0, x ∈ ∂Ω.

(5.40)

From (5.31) and (5.40), similarly to the step 3 of Theorem 5.2 (or see [11,20]), one also has the solu-
tion Im → Î∗∗ in C1(Ω), as m → +∞, where the solution Î∗∗ is given by (5.28).

Obviously, the solution Ŝ∗∗ satisfies (5.29); by the expression of solution Î∗∗, and then exists a unique
positive solution of system (5.29) (refer to Ref. [29]). �

5.3. The case of d1 → ∞

In this part, the asymptotic dynamics of (5.1) is studied when the diffusion rate d1 → +∞, and then we
give the following theorem.
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Theorem 5.3. Assume that R > 1, fixing d2 > 0 and let d1 → +∞, then every (S, I) of system (5.1)
starting from positive initial value satisfies S → Ŝ∞, I → Î∞ uniformly on region Ω, where Ŝ∞ > 0 and
the solution Î∞ > 0 on region Ω, and the point (Ŝ∞, Î∞) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫

Ω

Λ(x) − m(x)Ŝ∞ − β(x)Ŝ∞Î∞

eα(x)Î∞ + γ(x)Î∞dx = 0,

d2ΔÎ∞ + βŜ∞Î∞e−α(x)Î∞ − γ(x)Î∞ = 0,

∂Î∞

∂n
= 0.

(5.41)

Proof. To establish Theorem 5.3, we first know that (5.11) is held for C > 0 with respect to the positive
diffusion rate d1, and Eq. (5.30) is still held, and then, we have

⎧
⎪⎪⎨

⎪⎪⎩

− d1ΔS =
[
Λ(x)

S
− m(x) − β(x)I

eα(x)I
+

γ(x)I
S

]

S, x ∈ Ω,

∂S

∂n
= 0, x ∈ ∂Ω.

(5.42)

Employing elliptic Harnack inequality [42] and the inequality (5.5), for all positive number d1 > 1, we
have

S(x) < C min
Ω

S <
C

|Ω|
∫

Ω

Sdx < C ,∀x ∈ Ω.

Now, by Eq. (5.41) and using a standard compactness argument, there exists a subsequence of d1,
labeled by the diffusion rate dn with dn tends to ∞ as n → ∞ such that (Sn, In) of system (5.1) for
d1 = dn satisfies the solution Sn tends to Ŝ∞ in C1(Ω) as the integer n → ∞, where Ŝ∞ is positive
number on region Ω due to (5.30). Further, the solution Ŝ∞ satisfy the following equation −ΔŜ∞ =
0, x ∈ Ω; ∂Ŝ∞

∂n = 0, x ∈ ∂Ω. Obviously, we have the solution Ŝ∞ > 0 on region Ω.
Similarly, from the second equation of system (5.1), by a similar discussion of a further subsequence,

namely,

the solution In → Î∞ in C1(Ω), as the integer n → +∞, (5.43)

where the solution Î∞ ∈ C1(Ω) is nonnegative. Furthermore, similar discussion proceeds to (5.43), we
obtain that the positive solution Î∞ on region Ω is observed.

Hence, from Eq. (5.2) and system (5.1), it shows hat the point (Ŝ∞, Î∞) satisfies Eq. (5.41). Thus,
this completes the proof. �

5.4. The case of d2 → ∞

In this part, we explore the limiting dynamical behaviors of positive solutions for system (5.1) when the
diffusion rate d2 → ∞. To ensure the existence of positive solutions of system (5.1) for all large number
d2, based on Proposition 3.1, then the following results are given as:

Theorem 5.4. If the inequality
∫

Ω

β(x)Λ(x)
m(x) dx >

∫

Ω

γ(x)dx, fixing the diffusion rate d1 > 0 and let the

diffusion rate d2 → ∞, then every (S, I) of system (5.1) starting from positive initial value satisfy S →
Ŝ∞, I → Î∞ uniformly on region Ω, where the positive solution Ŝ∞ and the positive solution Î∞ on region
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Ω satisfies the following equation
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− d1ΔŜ∞ = Λ(x) − m(x)Ŝ∞ − β(x)Ŝ∞Î∞
eα(x)Î∞

+ γ(x)Î∞, x ∈ Ω,
∫

Ω

β(x)S∞Î∞e−α(x)Î∞ − γ(x)Î∞dx = 0,

∂Ŝ∞
∂n

= 0, x ∈ ∂Ω.

(5.44)

Proof. To establish Theorem 5.4, we observe that (5.30) and (5.11) are true for some C > 0. Thus, similar
to the proof of above Theorem 5.3, we know that there exists a subsequence of {d2} such that (Sd2 , Id2)
of system (5.1) starting from positive initial value satisfies (Sd2 , Id2) tends to (Ŝ∞, Î∞) in C1(Ω), as
d2 → ∞, where the solutions Î∞ ≥ 0 and Ŝ∞ > 0 on region Ω.

Next, we prove that the solution Î∞ is a positive constant. To the contrary, if Î∞ = 0, we know that
Ŝ∞ = Λ(x)

m(x) , let I∗
d2

:= Id2
||Id2 ||L∞(Ω) , then norm ||I∗

d2
||L∞(Ω) = 1 for all positive number d2 > 1, and the

solution Id2 satisfies (5.21).
As above, similar to argument of a further subsequence of the diffusion rate d2, we have

I∗
d2

→ 1 in C1(Ω), as d2 → ∞. (5.45)

In addition, by (5.21), we obtain
∫

Ω

[β(x)Sd2e
−α(x)Id2 − γ(x)]I∗

d2
dx = 0,∀d2 > 0. While

Sd2 → Ŝ∞ = Λ(x)
m(x) > 0 on Ω, by using d2 → +∞, (5.45) and Id2 → 0,

∫

Ω

β(x)Λ(x)
m(x) dx >

∫

Ω

γ(x)dx, we

have
∫

Ω

[β(x)Ŝ∞ − γ(x)]dx =
∫

Ω

(
β(x)Λ(x)

m(x) − γ(x)
)

dx = 0, which is a contradiction with Î∞ = 0. So we

know that the solution Î∞ > 0. It shows that (Ŝ∞, Î∞) satisfies (5.44). The proof is complete. �

Remark 1. It is worth pointing out that when the coefficients of system (2.1) are taken as Λ(x) =
0,m(x) = 0, α(x) = 0, then (2.1) degenerates to the system in [16]. Compared with [16,23,29], the
difference of our paper uses the Lyapunov function to prove that when all coefficients of system (2.1)
are constant, the disease equilibrium point of the system is globally attractive. Using the Lp theorem
and some inequality techniques, the well-posedness of the system with the item SIe−αI is analyzed. In
addition, compared with [23], our paper discusses an SIS model with linear terms Λ(x)−m(x)S and the
media effects e−α(x)I , but [23] has studied an SEIR model with fractional terms β(x)SI

S+I+E+R . Reference [23]
only considered the coefficients β and γ as a function of x, but we discuss all coefficients as a function of x
in our paper. In addition, the local stability of the equilibrium is discussed in [23], but it gives the global
stability of the system. Through the conclusions of this article, we know that

∫

Ω

[β(x)Λ(x)
m(x) − γ(x)]dx < 0 if

the ratio Λ(x)
m(x) is smaller. The main results show that the activities of infected individuals can only be at

low risk, and then the virus eventually will be extinct, that is, to control the entry of viruses from abroad
and increase the detection of domestic viruses.

6. Numerical simulations

In this section, we give some numerical simulations of two examples to validate the correctness of the
theoretical results
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Fig. 1. When R < 1 and α(x) = 0.002, d1 = 0.8, d2 = 0.9, Λ(x) = 0.3, m(x) = 0.2, β(x) = 0.1, γ(x) = 0.1, the disease-free
equilibrium of system (2.1) is globally asymptotically stable

Fig. 2. When R < 1 and α(x) = 5, d1 = 0.8, d2 = 0.9, Λ(x) = 0.3, m(x) = 0.2, β(x) = 0.1, γ(x) = 0.1, the disease-free
equilibrium of system (2.1) is globally asymptotically stable
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Fig. 3. When Λβ > mγ, d1 = 1.1, d2 = 0.8, Λ(x) = 50, m(x) = 1, β(x) = 0.18, α(x) = 0.001, γ(x) = 1, the endemic
equilibrium is globally attractive

Example 1. Consider a linear source epidemic system with diffusion and media impact
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

St = 0.8ΔS + 1 − S − 0.1SIe−α(x)I + 0.1I, (x, t) ∈ [0, 1] × (0,+∞),

It = 0.9ΔI + 0.1SIe−α(x)I − 0.1I, (x, t) ∈ [0, 1] × (0,+∞),
∂S

∂n
=

∂I

∂n
= 0, x ∈ 0 or 1,

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ [0, 1].

(6.1)

Choosing the following parameters d1 = 0.8, d2 = 0.9,Λ(x) = 1,m(x) = 1, β(x) = 0.1, γ(x) = 0.1,
x ∈ [0, 1], and the initial values are S0(x) = 12, I0(x) = 8. It shows that all the conditions in Theorems 3.1
are satisfied. Therefore, the disease-free equilibrium of the linear source epidemic system with diffusion and
media impact in a spatially homogeneous environment is globally asymptotically stable. The numerical
simulations are shown in Fig. 1 if α(x) = 0.1 and Fig. 2 if α(x) = 5.

Example 2. Consider a linear source epidemic system with diffusion and media impact
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

St = 1.1ΔS + 50 − S − 0.18SIe−α(x)I + I, (x, t) ∈ [0, 0.15] × (0,+∞),

It = 0.8ΔI + 0.18SIe−α(x)I − I, (x, t) ∈ [0, 0.15] × (0,+∞),
∂S

∂n
=

∂I

∂n
= 0, x ∈ 0 or 0.15,

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ [0, 0.15].

(6.2)

Choosing the following parameters d1 = 1.1, d2 = 0.8,Λ(x) = 50,m(x) = 1, β(x) = 0.18, γ(x) = 1,
x ∈ [0, 0.15], and the initial values are S0(x) = 20, I0(x) = 50. Λβ > mγ. This shows that all the
conditions in Theorems 4.1 are satisfied. Therefore, the endemic equilibrium of the linear source epidemic
system with diffusion and media impact in a spatially homogeneous environment is globally attractive.
The numerical simulations are shown in Fig. 3 if α(x) = 0.001 and Fig. 4 if α(x) = 0.2.
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Fig. 4. When Λβ > mγ, d1 = 1.1, d2 = 0.8, Λ(x) = 50, m(x) = 1, β(x) = 0.18, α(x) = 0.2, γ(x) = 1, the endemic equilibrium
is globally attractive

Remark 2. Note that this article discusses the uniformity of spatial heterogeneity, where the coefficients
of the model are constant. Although the susceptible individuals and the infected individuals in the model
vary with space and time, by constructing appropriate Lyapunov functions, we obtain the globally stable
equilibrium state of the model’s solution. The difference is that the two equilibrium states in our model
are functions of position x. When considering the absence of diffusion effects in the model, the model
in this paper will degenerate into an ordinary differential equation. Previous work has shown that the
equilibrium state of the model is only a constant point and a fixed value. In addition, if we consider the
case where the two diffusion rates are not equal to zero, there will be two scenarios for the solution of
this manuscript: one scenario is the extinction of susceptible individuals, and the other scenario is the
persistence of infected individuals and susceptible individuals. However, there is no effective proof of the
global stability of a linear source epidemic systems with spatial heterogeneity in diffusion. Currently,
only the proof of the Lyapunov function is given under the condition of constant coefficients. Therefore,
there are no good results on the global stability of our model in the presence of diffusion. In the absence
of diffusion effects, the degraded model in this paper can be found to be ultimately globally stable by
constructing a Lyapunov function.

7. Conclusion and discussion

Recently, both theoretical and experimental evidences confirm that environmental heterogeneity and
individuals mobility will seriously affect the dynamics of the diseases. For instance, in [6], one of the main
problems is that the disease is the persistence or extinction.

In this paper, in order to better explain the meaning of our analysis results, for instance, in [2],
the terms of low/hig/medium-risk dating place or habitat were considered. The authors have investi-
gated the low/high/medium risk of habitat region Ω if the spatial average function

∫

Ω

β(x)Λ(x)
m(x) dx is less

than/greater than/equal to the spatial average function
∫

Ω

γ(x)dx. In addition, they also have considered
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a low/high/medium risk of place x if the function β(x)Λ(x)
m(x) of the infection disease is less than/ greater

than/equal to its partial recovery rate function γ(x).
In this article, we have found that in a spatially uniform environment, the system also has two

equilibrium states of global attractivity, as shown in Theorems 3.1 and 4.1 in the paper. The significance
of this theorem shows that the media coverage has a significant impact on the spread of infectious diseases.
In cases where there are many infected cases, the media coverage will reduce the chances and probability
of susceptible populations coming into contact with infections, thereby helping to control and prevent the
further spread of diseases. In other words, a large media coverage coefficient will reduce the transmission
of individual diseases. This article continues to discuss the spread of diseases under the influence of media
and diffusion. We have found that under certain conditions, the infected individuals and the susceptible
individuals will approach a disease-free equilibrium. In another form, the number of diseased individuals
will persist. These dynamics provide that with some effective suggestions to prevent the spread of diseases.
In addition, this paper focuses on the epidemic model with diffusion and media influence, where diffusion
influence is more in line with real-life situations, as the transmission of susceptible individuals or infected
individuals is not only temporal but also spatial. Therefore, this paper discusses the cases where the
diffusion rate approaches 0 and infinity and provides the regional situation of disease transmission for
individuals, which has practical guidance significance. In addition, considering the model with media
coverage, and we have also conducted numerical simulations by providing different rates of media coverage.
From Figs. 1 and 2 or Figs. 3 and 4, we know that the greater the media coverage rate α(x), the faster
the rate of decline of susceptible individuals, which means the smaller the spread of diseases. Because
the most public opinion will attract the attention of leaders during the spread process, many regions will
implement measures such as isolating infected individuals in certain ways to control the spread of the
disease. In short, we can effectively control and monitor the spread of diseases through the size of the
diffusion rate and media influence rate. Therefore, the diffusion and media coverage has practical guiding
significance.

In our article, we focus on an impact of media reaction–diffusion system (2.1) involving spatially
heterogeneous environments. Based on R, we study the threshold dynamics of epidemic model (2.1). In
other words, if R < 1, the disease of system (2.1) will be eliminated, and if R > 1, the disease of system
(2.1) will be persist. In some cases, as long as the space environment is homogeneous, we can obtain
the global stability of the unique E.E. (see Theorem 4.1). Moreover, we further consider the asymptotic
profiles of the epidemic equilibrium when the diffusion rate d1 or d2 is small or large. If the habitat of
system (2.1) exists some high-risk place, it is shown that infection will lead to the disease to become
extinct only in low/medium-risk place, and by controlling the movement speed of susceptible individuals.
Thus, we know that the disease persists, that is, system (2.1) exists in high-risk place. According to the
spatial average function, from the point of view

∫

Ω

β(x)Λ(x)
m(x) dx when β(x) is a positive constant if the ratio

Λ(x)
m(x) is smaller. The main results show that the activities of infected individuals can only be at low risk,
and then the virus eventually will be extinct, that is, to control the entry of viruses from abroad and
increase the detection of domestic viruses.

To sum up, based on the above discussion, it is shown that a impact of media model (2.1) with a
constant total population was studied. In [17], the SIS model with linear external sources was investigated,
and the authors in [12] studied SIS epidemic models with large-scale effects. But without delay and
nonlinear external source, such as an impact of media SIS epidemic delay models with the general form is
seldom considered. Then, those reactive diffusion models with spontaneous infections will be interesting,
we plan to study them in the future.
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