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Abstract. Mathematical models play a crucial role in controlling and preventing the spread of diseases. Based on the
communication characteristics of diseases, it is necessary to take into account some essential epidemiological factors such
as the time delay that takes an individual to progress from being latent to become infectious, the infectious age which
refers to the duration since the initial infection and the occurrence of reinfection after a period of improvement known as
relapse, etc. Moreover, age-structured models serve as a powerful tool that allows us to incorporate age variables into the
modeling process to better understand the effect of these factors on the transmission mechanism of diseases. In this paper,
motivated by the above fact, we reformulate an SEIR model with relapse and age structure in both latent and infected
classes. Then, we investigate the asymptotic behavior of the model by using the stability theory of differential equations.
For this purpose, we introduce the basic reproduction number R0 of the model and show that this threshold parameter
completely governs the stability of each equilibrium of the model. Our approach to show global attractivity is based on the
fluctuation lemma and Lyapunov functionals method with some results on the persistence theory. The conclusion is that the
system has a disease-free equilibrium which is globally asymptotically stable if R0 < 1, while it has only a unique positive
endemic equilibrium which is globally asymptotically stable whenever R0 > 1. Our results imply that early diagnosis of
latent infection with decrease in both transmission and relapse rates may lead to control and restrict the spread of disease.
The theoretical results are illustrated with numerical simulations, which indicate that the age variable is an essential factor
affecting the spread of the epidemic.
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1. Introduction

Infectious diseases have posed a significant threat to human health and economic growth. Consequently,
controlling and reducing these diseases is becoming an increasingly collective priority. Mathematical
modeling is a useful tool to investigate various characteristics of diseases such as their rapid spread,
transmission routes, incubation period, relapse phase, and more. Compartmental models are an elegant
method to understand how infectious diseases spread and identify the epidemiological factors that in-
fluence the propagation of the disease throughout the population [1–3]. Usually, epidemiological models
assume that the population of susceptible individuals can progress to different categories of infection,
such as exposed, infected, reinfected, and recovered. Among many models used to study the transmis-
sion dynamics of infectious diseases, the susceptible-infective-recovered (SIR) models have received more
attention. In 1927, Kermack and McKendrick [4] were the first to develop the SIR model, where the
total population is divided into three classes: susceptible, infective, and recovered. The model was ini-
tially designed to study infectious diseases such as measles, chickenpox, or mumps, where getting infected
provides immunity. Since then, several versions of the SIR compartmental model have been created and
developed to study different characteristics of infectious diseases, some of which are described in [5–9]
and references therein.
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In some infectious disease, there is a significant incubation period during which an individual has been
infected but is not yet infectious [10]. For example, tuberculosis may take several months to develop into
the infectious stage. Taking into account this fact, an additional category of individuals who have been
exposed to the disease but are not yet capable of transmitting it has been added to the SIR epidemic
model and then the novel epidemic model known as SEIR was introduced (see, e.g., [11–13]). Moreover,
due to several factors, a recovered individual can be reinfected again after a period of improvement which
is known as the relapse phase (see, e.g., [14–16]). Identifying the related factors that affect reinfection
in recovered individuals allows public health services to create prevention programs and develop control
strategies that eliminate such factors and reduce the relapse rate [17,18].

Most of these models are based on differential equations (ODE), which assume that all individuals
in different categories have the same waiting time. Otherwise, it is crucial to indicate that, for example,
the duration of the latent period of exposed individuals may vary significantly among several elements
and factors, such as the specificity of infections and the individual’s health status. For example, latent
tuberculosis can remain in the inactive stage without causing disease for months, years, or even decades
before becoming infectious, potentially developing into a severe stage, highly contagious, and deadly
disease if left untreated or incompletely treated [19,20]. Furthermore, the infection age period, which
refers to the duration since the initial infection, is an important epidemiological element that plays a
vital role in the modeling process of infectious diseases, particularly HIV/AIDS and hepatitis B (see, e.g.,
[21–24]).

In fact, age-structured models serve as a puissant tool to study the epidemiology of infectious disease (
see, e.g., [24–26]). Moreover, by investigating the global dynamics of these epidemic models, we can under-
stand how the disease spreads through the population with the aim of developing some control strategies
to reduce or even eradicate the spread of diseases. For example, Magal et al. [27] have investigated the
global stability of endemic equilibrium for an age-structured model with infection age using the classic
Volterra-type Lyapunov functions. These functions were also used to get the global stability of a delay
SIR (susceptible-infected-removed) model with a fixed infection period in McCluskey [28] and Melnik and
Korobeinikov [29] used them to obtain the global stability for SIR and SEIR models with age-dependent
susceptibility. More details concerning the development of the Lyapunov functionals approach to study
the global dynamics of infectious diseases, we name a few references [1,18,30–37].

Motivated by the above works, this paper introduces and analyzes an SEIR epidemic model with
latency, infection age structure, and relapse. This model is appropriate for diseases that have latent
periods and can also relapse, such as tuberculosis and herpes virus infection. To the best of our knowledge,
our model is new, which lies in the fact that both latency and infection individuals are to be continuous
age-dependent, with a relapse phase.

This study aims to clarify the global asymptotic behavior of the model by using the Lyapunov function
method, which consists of constructing an appropriate Lyapunov function. For this purpose, we establish
the threshold parameter R0 in connection with the existence of the endemic equilibrium of the model.
Then, we show that it determines the global asymptotic stability (or attractivity) of each equilibrium,
that is, if R0 < 1, then the disease-free equilibrium is globally asymptotically stable, whereas if R0 > 1,
then the endemic equilibrium uniquely exists and it is globally attractive.

The rest of this paper is organized as follows: In Sect. 2, we reformulate the mathematical model and
provide some important preliminary concepts. Then, in Sect. 3, we show the existence of both disease-
free and endemic equilibria of the model. Then, we analyze their local asymptotic stability by using
the linearization approach. Furthermore, Sect. 4 is devoted to the relative compactness of solution semi-
flow and the existence of a global attractor. Moreover, In Sect. 5, we prove the uniform persistence of
the model. Section 6 discusses the global asymptotic stability of disease-free and endemic equilibria by
employing the Lyapunov functional technique. Finally, Sect. 7 is dedicated to perform some numerical
simulations that illustrate our theoretical results.
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2. Model formulation

To create our model, we assume that the population can be divided into four subsets, namely, susceptible,
exposed, infected, and recovered. Let S(t) be the size of the susceptible individual at time t, e(t, a)
represent the density of exposed individuals who are infected but not yet infectious at time t with latency
age a, i(t, b) denote the density of infected individual at time t with infection age b, and R(t) the size of
recovered individuals at time t. Then, we suppose that the model to be studied is based on the following
assumptions:

i. Susceptible individuals become infected when they come into contact with infectious individuals. In

this context, we consider the bilinear form S(t)
∫ ∞

0

ϑ(b)i(t, b)db as the incidence rate for our model,

where ϑ(b) represents the age-dependent transmission coefficient, which describes the contact process
between susceptible and infectious individuals.

ii. Exposed individuals can leave the latent classe and become infected at rate of ϕ(a). Thus, the
total rate at which exposed individuals progress into the infectious class alive may be given by∫ ∞

0

ϕ(a)e(t, a)da.

iii. Infected individuals move to the recovered class at an age-dependent rate of ψ(b). As a result, the

total rate at which the infected individuals become recovered can be determined by
∫ ∞

0

ψ(b)i(t, b)db.

iv. After the improvement period, there is a possibility of relapse, and hence, the recovered individ-
ual may get reinfected again at a rate denoted by δ. Consequently, the quantity of the reinfected
individual can be presented by the linear relapse rate δR(t).

v. The natural mortality rate for all individuals is given by μ. Moreover, the death rates of exposed
and infectious individuals because of the disease are given by ν1(a) and ν2(b), respectively.

Therefore, the disease spread model according to the above assumptions is represented as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

= A − μS(t) − S(t)
∫ ∞

0

ϑ(b)i(t, b)db,

∂e(t, a)
∂t

+
∂e(t, a)

∂a
= −(ϕ(a) + ν1(a) + μ)e(t, a),

∂i(t, b)
∂t

+
∂i(t, b)

∂b
= −(ψ(b) + ν2(b) + μ)i(t, b),

dR(t)
dt

=

∞∫

0

ψ(b)i(t, b)db − (δ + μ)R(t),

(1)

with boundary conditions

e(t, 0) = S(t)J(t), and i(t, 0) = W (t), (2)

and initial condition, by biological reasons, are the positive continuous functions

S(0) = S0, e(0, a) = e0(a), i(0, b) = i0(b), and R(0) = R0, (3)

where

J(t) =

∞∫

0

ϑ(b)i(t, b)db, (4)

W (t) =

∞∫

0

ϕ(a)e(t, a)da + δR(t). (5)

Throughout this paper, we consider the following assumptions and notations:
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Assumption A. Assume that
i. A, μ, δ > 0, and ν1, ν2, ϕ, ψ, ϑ ∈ L∞

+ (0,∞).
ii. ϑ and ϕ are Lipschitz continuous functions on R+, with Lipschitz coefficients Lϑ and Lϕ, respectively.
iii. For any function π ∈ L∞

+ (0,∞), we denote

π := ess inf
τ∈R+

π(τ) < +∞, and π := ess sup
τ∈R+

π(τ) < +∞.

Let us define the following functional space:

X := R+ × L1
+(0,∞) × L1

+(0,∞) × R+,

equipped with the norm

∥∥(x1, x2, x3, x4)
∥∥

X
= |x1| +

∫ ∞

0

|x2(a)|da +

∞∫

0

|x3(b)|db + |x4|.

Notice that the initial condition of system (1)–(3) can be expressed as follows:

x0 = (S0, e0(·), i0(·), R0) ∈ X.

By the standard theory of functional differential equations (see, e.g., [38,39]), we can verify that system
(1) with boundary conditions (2) and initial condition (3) has a unique nonnegative continuous solution
(S, e, i, R).

Next, we define a continuous semi-flow Φ : R+ × X → X generated by system (1)–(3) by

Φ(t, x0) = (S(t), e(t, ·), i(t, ·), R(t)), t ≥ 0, x0 ∈ X. (6)

Hence,
∥∥Φ(t, x0)

∥∥
X

=
∥∥(S(t), e(t, ·), i(t, ·), R(t))

∥∥
X

= S(t) +
∫ ∞

0

e(t, a)da +
∫ ∞

0

i(t, b)db + R(t).

Denote

p1(a) = ϕ(a) + ν̃1(a), and p2(b) = ψ(b) + ν̃2(b), (7)

where

ν̃1(a) = ν1(a) + μ, and ν̃2(b) = ν2(b) + μ.

Let

μ0 = min{μ, ν̃1, ν̃2}. (8)

Then, we define the following biologically feasible region

Γ =
{

(S, e, i, R) ∈ X : S(t) +
∫ ∞

0

e(t, a)da +
∫ ∞

0

i(t, b)db + R(t) ≤ A

μ0

}
.

Now, we can prove the following result:

Proposition 2.1. Considering system (1)–(3), then we have
i. Γ is positively invariant for {Φ(t, x0)}t≥0, that is, Φ(t, x0) ∈ Γ, for x0 ∈ Γ and t ≥ 0;
ii. {Φ(t, x0)}t≥0 is point dissipative and Γ attract all points in X.

Proof. First, by the definition of the semi-flow Φ given by (6), we have

d
dt

∥∥Φ(t, x0)
∥∥

X
=

dS(t)
dt

+

∞∫

0

∂e(t, a)
∂t

da +

∞∫

0

∂i(t, b)
∂t

db +
dR(t)

dt
.
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Then, system (1)–(3) provides

d
dt

∥∥Φ(t)x0

∥∥
X

= A − μS(t) − S(t)

∞∫

0

ϑ(b)i(t, b)db + e(t, 0) −
∞∫

0

p1(a)e(t, a)da

+i(t, 0) −
∞∫

0

p2(b)i(t, b)db +

∞∫

0

ψ(b)i(t, b)db − (μ + δ)R(t).

where p1 and p2 are provided by (7). Therefore, by using the boundary conditions (2), we can get

d
dt

∥∥Φ(t, x0)
∥∥

X
≤ A − μ0

∥∥Φ(t, x0)
∥∥

X
. (9)

where μ0 is given by (8). Hence, by the variation of the constants, we find

∥∥Φ(t, x0)
∥∥

X
≤ A

μ0
− e−μ0t

(
A

μ0
− ∥∥x0

∥∥
X

)
, (10)

which implies that Φ(t, x0) ∈ Γ, t ≥ 0, for any solution of system (1)–(3) satisfying x0 ∈ Γ. Thus, we have
{Φ(t, x0)}t≥0 is positively invariant for the set Γ. Moreover, if follows from (10) that lim sup

t→∞

∥∥Φ(t, x0)
∥∥

X
≤

A

μ0
, for any x0 ∈ Γ. Consequently, it can be concluded that {Φ(t, x0)}t≥0 is point dissipative and Γ is an

attracting set for all points in X. This completes the proof. �

The following properties are direct consequences of Proposition 2.1.

Proposition 2.2. If x0 ∈ X and ‖x0‖X ≤ η for some constant η ≥ A
μ0

, then the following statements hold
true for t ≥ 0:

i. 0 ≤ S(t),

∞∫

0

e(t, a)da,

∞∫

0

i(t, b)db, R(t) ≤ η;

ii. e(t, 0) ≤ ϑ η2, and i(t, 0) ≤ (ϕ + δ)η;

iii. lim inf
t→∞ S(t) ≥ A

μ + ϑη
.

3. Existence and local stability of equilibria

In this section, we will establish the existence of both disease-free and endemic equilibria of system (1)–(3).
Furthermore, we will analyze the local asymptotic stability of these equilibria by using the linearization
technique described in Webb [26, Section 4.5]. Before going on, for the sake of clarity, let us introduce
the following notations:

ζ1 =

∞∫

0

ϕ(a)φ1(a)da, ζ2 =

∞∫

0

ϑ(b)φ2(b)db, and ζ3 =

∞∫

0

ψ(b)φ2(b)db, (11)

with

φ1(a) = e
−

a∫
0

p1(σ)dσ
, and φ2(b) = e

−
b∫
0

p2(σ)dσ
, for all a, b ∈ R+. (12)

Evidently, it can be observed that ζ1, ζ3 ≤ 1. Now, we could state the following result about the existence
of the disease-free equilibrium:
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Lemma 3.1. System (1)–(3) has always a unique disease-free equilibrium E0 = (S0, 0, 0, 0), where

S0 =
A

μ
. (13)

Proof. When there is no disease-transmission (i.e., e(t, a) = i(t, b) = R(t) = 0 for all t, a, b ∈ R+), the
disease-free equilibrium of system (1)–(3) must satisfy the following equation A−μS0 = 0, which implies
that S0 = A

μ . Then, without any restrictions, system (1)–(3) admits a unique disease-free equilibrium,
denoted by E0 = (S0, 0, 0, 0). This proves Lemma 3.1. �

Next, we pass to study the local asymptotic stability of the disease-free equilibrium E0 given in
Lemma 3.1. It is worth noting that investigating the dynamical behavior of the disease-free equilibrium
aims to identify the impact of disease elimination on the population.

Theorem 3.2. Let R0 be given by (21). Then, the disease-free equilibrium E0 of system (1)–(3) is locally
asymptotically stable if R0 < 1, whereas it is unstable if R0 > 1.

Proof. Let S0 be given by (13). Consider the following pertubation variables: S̃(t) = S(t) − S0, ẽ(t, a) =
e(t, a), ĩ(t, b) = i(t, b), and R̃(t) = R(t). Then, by linearizing system (1)–(3) around E0, we could find⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS̃(t)
dt

= −μS̃ − S0

∞∫

0

ϑ(b)̃i(t, b)db,

∂ẽ(t, a)
∂t

+
∂ẽ(t, a)

∂a
= −p1(a)ẽ(t, a),

∂ĩ(t, b)
∂t

+
∂ĩ(t, b)

∂b
= −p2(b)̃i(t, b),

dR̃(t)
dt

=

∞∫

0

ψ(b)̃i(t, b)db − (δ + μ)R̃(t),

e(t, 0) = S0

∞∫

0

ϑ(b)̃i(t, b)db,

i(t, 0) =

∞∫

0

ϕ(a)ẽ(t, a)da + δR̃(t).

(14)

Furthermore, consider the following exponential solution functions S̃(t) = x1e
λt, ẽ(t, a) = x2(a)eλt,

ĩ(t, b) = x3(b)eλt, and R̃(t) = x4e
λt, where (x1, x2(a), x3(b), x4) ∈ X is to be determined later, and

λ ∈ R. Therefore, by substituting them into system (14), it yields
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ + μ)x1 = −S0

∞∫

0

ϑ(b)x3(b)db,

dx2(a)
da

= −(λ + p1(a))x2(a),
dx3(b)

db
= −(λ + p2(b))x3(b),

(λ + μ + δ)x4 =

∞∫

0

ψ(b)x3(b)db,

x2(0) = S0

∞∫

0

ϑ(b)x3(b)db,

x3(0) =

∞∫

0

ϕ(a)x2(a)da + δx4.

(15)

Solving the second and third differential equations of system (15), we obtain

x2(a) = x2(0)e
−

a∫
0
(λ+p1(σ))dσ

, (16)

and

x3(b) = x3(0)e
−

b∫
0
(λ+p2(σ))dσ

. (17)

Before going on, we need to show that λ + μ �= 0 and λ + μ + δ �= 0. To this end, we suppose by
contradiction that λ + μ + δ = 0. Then, by inserting (17) into the fourth equation of system (15), we get
x3(0) = 0. This together with the first equation of system (15) gives λ + μ = 0, which is a contradiction.
Similarly, we can also show that λ + μ �= 0. According to the fourth equation of system (15), we could
obtain

x4 =
x3(0)

λ + μ + δ

∞∫

0

ψ(b)e
−

b∫
0
(λ+p2(σ))dσ

db. (18)

Next, by substituting (16), (17) and (18) into the last equation of system (15), we find

x3(0) = S0ζ̂1(λ)ζ̂2(λ)x3(0) +
δ

λ + μ + δ
ζ̂3(λ)x3(0),

where ζ̂1(λ), ζ̂2(λ), and ζ̂3(λ) are the Laplace transform of functions ϕφ1, ϑφ2 and ψφ1, respectively.
Thus, the characteristic equation of the linear system (15) at E0 can be expressed as follows:

G(λ) = S0ζ̂1(λ)ζ̂2(λ) +
δ

λ + μ + δ
ζ̂3(λ) = 1. (19)

Note that G is continuously differentiable function and satisfies

lim
λ→−∞

G(λ) = +∞, lim
λ→+∞

G(λ) = 0, and G′(λ) < 0.

Therefore, G is monotonically decreasing of λ ∈ R. Thus, with the help of the intermediate value theorem,
we can deduce that any eigenvalue λ of the equation G(λ) = 1 has a positive real part if G(0) > 1. Hence,
the disease-free equilibrium E0 of system (1)–(3) is unstable when G(0) > 1. Next, we consider G(0) < 1,
and we claim that all roots of Eq. (19) have negative real parts. To this end, we suppose that λ is a
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complex root satisfying G(λ) = 1, such that Re(λ) ≥ 0. Therefore, by taking the real part of Eq. (19), it
yields the following

1 = ReG(λ) = Re
[
S0 ζ̂1(λ) ζ̂2(λ) +

δ

λ + μ + δ
ζ̂3(λ)

]

≤ S0 ζ̂1(Re(λ)) ζ̂2(Re(λ)) +
δ [Re(λ) + μ + δ]

[Re(λ) + μ + δ]2 + Im2(λ)
ζ̂3(Re(λ))

≤ G(Re(λ)),

where we have used Re(λ) ≥ 0. Hence, we have

1 = ReG(λ) ≤ G(Re(λ)) ≤ G(0), (20)

which contradicts the assumption of G(0) < 1. Thus, we conclude that any eigenvalue λ of Eq. (19) has
a negative real part if G(0) < 1. At this stage, we define the basic reproduction number of (1)–(3) by

R0 = G(0) = S0ζ1ζ2 +
δ

μ + δ
ζ3, (21)

which is the average number of secondary infections produced by an infected individual in a population
completely susceptible (see, e.g., [3] for more details). In conclusion, from the above analysis, it follows
that the disease-free equilibrium E0 of system (1)–(3) is locally asymptotically stable whenever R0 < 1,
and unstable if R0 > 1. This completes the proof. �

Remark 3.3. Denote

ζ̃3 =
δ

μ + δ
ζ3. (22)

According to (11), we have ζ3 =

∞∫

0

ψ(b)e
−

b∫
0
(ψ(σ)+ν2(σ)+μ)dσ

db ≤ 1. Therefore, it can be readily deduced

that ζ̃3 < 1.

Remark 3.4. Recall that ϑ(b) represents the disease-transmission function rate, and ϕ(a) denotes the rate
at which the exposed individual becomes infectious. Thus, we have

R01 = S0︸︷︷︸
i

∞∫

0

ϕ(a)φ1(a)da

︸ ︷︷ ︸
ii

×
∞∫

0

ϑ(b)φ2(b)db

︸ ︷︷ ︸
iii

is the number of infectious individuals produced by the primary cases after the incubation period, where
i. Denotes the initial susceptible population size.
ii. Denotes the probability refers to the likelihood of an exposed individual becoming infectious.
iii. Represents the total transmission rate of an infectious individual who can transmit the disease

during their infectious period.
Moreover, since ψ(b) is the function rate at which the infectious individual becomes recovered, and δ is
the relapse rate, we have

R02 =
δ

μ + δ︸ ︷︷ ︸
iv

∞∫

0

ψ(b)φ2(b)db

︸ ︷︷ ︸
v

is the number of infectious cases produced by the primary case after the relapse phase, where
iv. Refers to the proportion of individuals who return to being infectious after having recovered.
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v. It represents the likelihood of infectious individuals surviving an infectious disease and becoming
recovered.

Consequently, the basic reproduction number R0 of system (1)–(3) can be expressed in the following way
R0 = R01 + R02.

Next, we move to investigate the existence and local asymptotic stability of the endemic equilibrium
of system (1)–(3). First, we introduce the following result which ensures the existence of the endemic
equilibrium under some conditions.

Lemma 3.5. Let R0 be defined by (21). Then, system (1)–(3) has a unique endemic equilibrium E∗ =
(S∗, e∗(a), i∗(b), R∗), if R0 > 1, where

S∗ =
1 − ζ̃3
ζ1ζ2

, e∗(a) =
μ(R0 − 1)

ζ1ζ2
φ1(a), i∗(b) =

μ(R0 − 1)
(1 − ζ̃3)ζ2

φ2(b), and R∗ =
μ(R0 − 1)ζ3

(μ + δ)(1 − ζ̃3)ζ2
,

where ζ̃3 < 1 is given by (22).

Proof. For system (1)–(3), an endemic equilibrium E∗ = (S∗, e∗(a), i∗(b), R∗) should verify the following
system ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = A − μS∗ − S∗
∞∫

0

ϑ(b)i∗(b)db,

de∗(a)
da

= −p1(a)e∗(a),
di∗(b)

db
= −p2(b)i∗(b),

0 =

∞∫

0

ψ(b)i∗(b)db − (μ + δ)R∗,

e∗(0) = S∗
∞∫

0

ϑ(b)i∗(b)db,

i∗(0) =

∞∫

0

ϕ(a)e∗(a)da + δR∗.

(23)

In view of the second and third differential equations of system (23), it yields

e∗(a) = e∗(0)φ1(a), for all a ∈ R+, (24)

and

i∗(b) = i∗(0)φ2(b), for all b ∈ R+, (25)

where φ1(a) and φ2(b) are provided by (12). Furthermore, from the fourth equation of system (23) and
by using (25), we can obtain

R∗ =
ζ3

μ + δ
i∗(0). (26)

Next, by inserting (26) into the last equation of (23) and by using (24) and (25), we find

i∗(0) =

∞∫

0

ϕ(a)e∗(a)da + δR∗

= ζ1e
∗(0) +

δζ3
μ + δ

i∗(0)
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= S∗ζ1ζ2i∗(0) +
δζ3

μ + δ
i∗(0),

which implies that

S∗ =
1 − ζ̃3
ζ1ζ2

. (27)

Notice that the fact that ζ̃3 < 1 ensures the nonnegativity of S∗. Moreover, by substituting (27) into the
first equation of system (23), it results

i∗(0) =
μ(R0 − 1)
(1 − ζ̃3)ζ2

. (28)

Then, from the fifth equation of system (23) and by using (28), it follows

e∗(0) =
μ(R0 − 1)

ζ1ζ2
.

Lastly, by inserting (28) into Eq. (26), we get

R∗ =
μ(R0 − 1)ζ3

(μ + δ)(1 − ζ̃3)ζ2
.

This completes the proof of Lemma 3.5. �
Remark 3.6. Note that e∗(0) and i∗(0) can be written as follows: e∗(0) = S∗J∗ and i∗(0) = W ∗, where

J∗ =
μ(R0 − 1)

1 − ζ̃3
, and W ∗ = ζ1S

∗J∗ + δR∗. (29)

We can also observe that when J∗ = 0, the endemic equilibrium E∗ becomes the disease-free equilibrium
E0.

In what follows, we analyze the local asymptotic stability of E∗. Notice that the study of the dynamical
behavior of the endemic equilibrium is intended to determine how disease spreads when it becomes
endemic in a population.

Theorem 3.7. Suppose R0 > 1. Then, the endemic equilibrium E∗ is locally asymptotically stable.

Proof. Let S∗, e∗(a), i∗(b), and R∗ be given in Lemma 3.5. Consider the following perturbation variables:
S̄(t) = S(t) − S∗, ē(t, a) = e(t, a) − e∗(a), ī(t, b) = i(t, b) − i∗(b), and R̄(t) = R(t) − R∗. Then, through
linearization of system (1)–(3) around E∗, we obtain the following linearized system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS̄(t)
dt

= −μS̄(t) − J∗S̄(t) − S∗
∞∫

0

ϑ(b)̄i(t, b)db,

∂ē(t, a)
∂t

+
∂ē(t, a)

∂a
= −p1(a)ē(t, a),

∂ī(t, b)
∂t

+
∂ī(t, b)

∂b
= −p2(b)̄i(t, b),

dR̄(t)
dt

=

∞∫

0

ψ(b)̄i(t, b)db − (μ + δ)R̄(t),

ē(t, 0) = J∗S̄(t) + S∗
∞∫

0

ϑ(b)̄i(t, b)db,

ī(t, 0) =

∞∫

0

ϕ(a)ē(t, a)da + δR̄(t),

(30)
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where J∗ is given by (29). Next, we consider the following exponential functions: S̄(t) = y1e
ωt, ē(t, a) =

y2(a)eωt, ī(t, b) = y3(b)eωt and R̄(t) = y4e
ωt, where (y1, y2(a), y3(b), y4) ∈ X is to be determined later,

and ω ∈ R. Then, by substituting them into system (30), it yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ω + μ + J∗)y1 = −S∗
∞∫

0

ϑ(b)y3(b)db,

dy2(a)
da

= −(ω + p1(a))y2(a),
dy3(b)

db
= −(ω + p2(b))y3(b),

(ω + μ + δ)y4 =

∞∫

0

ψ(b)y3(b)db,

y2(0) = J∗y1 + S∗
∞∫

0

ϑ(b)y3(b)db,

y3(0) =

∞∫

0

ϕ(a)y2(a)da + δy4.

(31)

Therefore, the solutions of the second and third differential equations of system (31) are given, respectively,
by

y2(a) = y2(0)e
−

a∫
0
(ω+p1(σ))dσ

, for all a ∈ R+, (32)

and

y3(b) = y3(0)e
−

b∫
0
(ω+p2(σ))dσ

. for all b ∈ R+, (33)

Now, we show that ω + μ + J∗ �= 0 and ω + μ + δ �= 0. To this end, we assume that ω + μ + δ = 0. Then,
it results from (33) and the fourth equation of system (31) that y3(0) = 0. Hence, from the first equation
of system (31), it follows that ω + μ + J∗ = 0, which results in a contradiction. In the same way, we can
also show that ω + μ + J∗ �= 0. Next, in view of system (31), we can express the characteristic equation
corresponding to E∗ of the linearized system (30) as follows:

(ω + μ)(ω + μ + δ)S∗ζ̂1(ω)ζ̂2(ω) − (ω + μ + J∗)(ω + μ + δ − δζ̂3(ω)) = 0, (34)

where ζ̂1(ω), ζ̂2(ω) and ζ̂3(ω) are the Laplace transform of the functions ϕφ1, ϑφ2 and ψφ1, respectively.
Thus, Eq. (34) can be rewritten as follows:

H(ω) =
ω + μ

ω + μ + J∗ S∗ζ̂1(ω)ζ̂2(ω) +
δ

ω + μ + δ
ζ̂3(ω) = 1. (35)

It is clearly to see that if R0 > 1, then we have

H(0) =
1 − ζ̃3

1 + R0−1

1−ζ̃3

+ ζ̃3 < 1. (36)

Assume that the equation H(ω) = 1 has a complex root ω such that Re(ω) ≥ 0. Then, by taking the real
part of Eq. (35), we have

1 = ReH(ω) ≤ H(Re(ω)) ≤ H(0);

which goes against the inequality (36), and this contradicts the assumption of R0 > 1. Consequently, any
eigenvalue ω of H(ω) = 1 has a negative real part, if R0 > 1. Therefore, the endemic equilibrium E∗ is
considered to be locally asymptotically stable, if R0 > 1. This completes the proof. �
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Remark 3.8. Biologically speaking, Theorem 3.2 and Theorem 3.7 imply that the disease can be elimi-
nated from the community when the basic reproduction number R0 < 1; while the disease will be able
to start spreading through a population when R0 > 1, if the initial sizes of the populations of the model
are in the basin of attraction of the equilibria E0 and E∗, respectively. However, to ensure that the elim-
ination or spreading of the disease is independent of the initial sizes of the populations, it is necessary
to show that the equilibria E0 and E∗ are globally asymptotically stable, respectively (see, Theorem 6.1
and Theorem 6.6 obtained below).

4. Existence of compact global attractor

In this section, we will show that the semi-flow generated by system (1)–(3) admits a compact global
attractor, which is necessary to study the attractivity of the endemic equilibrium in Sect. 6. According to
the approach presented in the monograph of Hale [40, Chapter 3], the existence of the global attractor is
established with the help of the following

Lemma 4.1. [40, Theorem 3.4.6] If T (t) : X → X, t ∈ R+ is asymptotically smooth, point dissipative
and orbits of bounded sets are bounded, then there exists a global attractor.

One can observe that the second and third statements of Lemma 4.1 are obtained directly by Propo-
sition 2.1. Then, to derive the first statement of Lemma 4.1 (i.e., asymptotic smoothness of the semi-flow
Φ ), we will use the following

Lemma 4.2. [40, Lemma 3.2.3] For each t ∈ R+, suppose T (t) = S(t) + U(t) : X → X has the property
that U(t) is completely continuous and there is a continuous function k : R+ × R+ → R+ such that
k(t, r) → 0 as t → ∞, and |S(t)x| ≤ k(t, r) if |x| < r. Then, T (t), t ∈ R+, is asymptotically smooth.

Before we proceed, it is necessary to state some essential ingredients. Firstly, by applying the charac-
teristic method [26, Chapter 1], we can solve the second and third first-order hyperbolic partial differential
equations of system (1) with boundary condition (2) and initial condition (3) along the characteristic
lines t − a = const, and t − b = const, respectively, as follows:

e(t, a) =

⎧⎨
⎩

S(t − a)J(t − a)φ1(a), t > a,

e0(a − t)
φ1(a)

φ1(a − t)
, t ≤ a,

(37)

and

i(t, b) =

⎧⎨
⎩

W (t − b)φ2(b), t > b,

i0(b − t)
φ2(b)

φ2(b − t)
, t ≤ b.

(38)

Furthemorer, we introduce the following proposition:

Proposition 4.3. The functions J(t) and W (t) given by (4) and (5), respectively, are Lipschitz continous
on R+, with Lipschitz constants LJ and LW , respectively.

Now, based on the above preparations, we are able to state the main result of this section.

Theorem 4.4. Assume R0 > 1. Then, there exists a global attractor A for the solution semi-flow Φ of
system (1)–(3) in Γ.

Proof. To show the asymptotic smoothness of the semi-flow Φ defined by (6), we only need to apply
Lemma 4.2. Specifically, for each t ∈ R+ and x0 ∈ Γ, we define Φ1 and Φ2 by

Φ1(t, x0) = (S(t), ẽ(t, ·), ĩ(t, ·), R(t)), and Φ2(t, x0) = (0, ê(t, ·), î(t, ·), 0),
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where

ê(t, a) =

{
0, t > a,

e0(a − t) φ1(a)
φ1(a−t) , t ≤ a,

(39)

î(t, b) =

{
0, t > b,

i0(b − t) φ2(b)
φ2(b−t) , t ≤ b,

(40)

and

ẽ(t, a) = e(t, a) − ê(t, a) =
{

S(t − a)J(t − a)φ1(a), t > a,
0, t ≤ a,

(41)

ĩ(t, b) = i(t, b) − î(t, b) =
{

W (t − b)φ2(b), t > b,
0, t ≤ b,

(42)

where J(t) and W (t) are given by (4) and (5), respectively. Then, we have Φ = Φ1 + Φ2 and it is clearly
to observe that ê, î, ẽ and ĩ are nonnegatives. By using (39) and (40), we could find

‖Φ2(t, x0)‖X = ‖ê(t, ·)‖1 + ‖̂i(t, ·)‖1

=

∞∫

t

e0(a − t)
φ1(a)

φ1(a − t)
da +

∞∫

t

i0(b − t)
φ2(b)

φ2(b − t)
db

=

∞∫

0

e0(a)
φ1(a + t)

φ1(a)
da +

∞∫

0

i0(b)
φ2(b + t)

φ2(b)
db

≤ ‖e0‖1e−p
1
t + ‖i0‖1e−p

2
t

≤ e−p0t‖x0‖X , t ≥ 0,

where p0 = min{p
1
, p

2
}, which means that the assumption on Φ2 stated in Lemma 4.2 is satisfied. Next,

we show that Φ1 is completely continuous. Let t ∈ R+ and E ⊆ Γ be a bounded set. Define

Γt = {Φ1(t, x0) | x0 ∈ E} .

To claim that Φ1 is completely continuous, it suffices to show that Γt is precompact set. To to this, it is
enough to prove that

Γt(e, i) =
{
(ẽ(t, ·), ĩ(t, ·)) | (S(t), ẽ(t, ·), ĩ(t, ·), R(t)) ∈ Γt

}
is precompact set with the help of Fréchet–Kolmogrov Theorem [41, Page 275] in Yosida’s monograph.
So, from the definitions of Φ1 and Γ, it follows that Γt(e, i) is bounded. Therefore, the first condition
stated in the Fréchet–Kolmogrov Theorem is satisfied. Moreover, according to (41) and (42), it is obvious
to see that

∞∫

t

ẽ(t, a)da =

∞∫

t

ĩ(t, b)db = 0, for all a, b ≥ t,

which implies the third condition stated also satisfied. Lastly, we need to verify the second condition of
the Fréchet–Kolmogrov Theorem. This involves to show that

lim
h→0

∥∥ẽ(t, · + h) − ẽ(t, ·)∥∥
1

= 0, (43)

and

lim
h→0

∥∥ĩ(t, · + h) − ĩ(t, ·)∥∥
1

= 0, (44)
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uniformly in Γt(e, i). So, according to (42) we have ĩ(0, ·) = 0. Thus, the expression (44) is automatically
satisfied when t = 0. Assume t > 0 and h ∈ (0, t). Then, from (42), we have

∥∥ĩ(t, · + h) − ĩ(t, ·)∥∥
1

=

∞∫

0

∣∣̃i(t, b + h) − ĩ(t, b)
∣∣db

=

t−h∫

0

∣∣W (t − b − h)φ2(b + h) − W (t − b)φ2(b)
∣∣db

+

h∫

t−h

W (t − b)φ2(b)db

≤ �1 + �2 + �3.

Then, in view of Proposition 2.2, it follows

�1 =

t−h∫

0

W (t − b − h)
∣∣φ2(b + h) − φ2(b)

∣∣db

≤ (ϕ + δ)η

t−h∫

0

∣∣φ2(b + h) − φ2(b)
∣∣db

= (ϕ + δ)η

⎛
⎝

t−h∫

0

φ2(b)db −
t−h∫

0

φ2(b + h)db

⎞
⎠

= (ϕ + δ)η

⎛
⎝

h∫

0

φ2(b)db −
t∫

t−h

φ2(b)db

⎞
⎠

≤ (ϕ + δ)ηh. (45)

Next, with the help of Proposition 4.3, we obtain

�2 =

t−h∫

0

∣∣W (t − b − h) − W (t − b)
∣∣φ2(b)db

≤ LW h

t−h∫

0

φ2(b)db

≤ LW

p
2

h, (46)

where we have used W (t) is Lipschitz function with constant LW . Further, we have

�3 =

h∫

t−h

W (t − b)φ2(b)db ≤ (ϕ + δ)ηh. (47)

In summary, by collecting the inequalities (45), (46) and (47), we get∥∥ĩ(t, · + h) − ĩ(t, ·)∥∥
1

≤ Cih, Ci = 2(ϕ + δ)η + LW /p
2
,
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which implies that (44) is satisfied. Similarly, by repeating the same calculations as above, we could get∥∥ẽ(t, · + h) − ẽ(t, ·)∥∥
1

≤ Ceh, Ce = 2ϑη2 + η(ϑLS + LJ )/p
1
. (48)

Thus, Eq. (43) is also satisfied. This completes the proof of Theorem 4.4. �

5. Uniform persistence

This section aims to show that system (1)–(3) is uniformly persistent whenever R0 > 1 by using the
approach developed in [42, Chapter 9]. Before going further, for the sake of convenience, we consider the
function H : R+ → R, and denote

H∞ = lim inf
t→∞ H(t), and H∞ = lim sup

t→∞
H(t).

Then, we state the following two Lemmas, which will assist in the discussion ahead.

Lemma 5.1. [43, Lemma 4.2] Let H : R+ → R be a bounded and continuously differentiable function.
Then, there exist sequences {tn} and {rn} such that tn → ∞ and rn → ∞, H(tn) → H∞, H(rn) → H∞,
H′(tn) → 0, and H′(rn) → 0 as n → ∞.

Lemma 5.2. [38, Chapter 7] Suppose H : R+ → R is bounded function and y ∈ L1
+(0,+∞). Then, we

have

lim sup
t→∞

t∫

0

H(τ)y(t − τ)dτ ≤ H∞‖y‖1.

Now, let us define the persistence function ρ : Γ → R+, as follows

ρ(S, e(·), i(·), R) =

∞∫

0

ϑ(b)i(t, b)db = J(t),

which provides the infective force at time t. Furthermore, we set

Γ0 = {x0 ∈ Γ | There exists t0 ∈ R+ such that ρ(Φ(t0, x0)) > 0} .

Hence, it can be clearly seen that, for any x0 ∈ Γ\Γ0, we have lim
t→∞ Φ(t, x0) = E0. Moreover, let us

introduce the following definition of the uniform persistence concept.

Definition 5.3. [42, Page 61] System (1)–(3) is said to be uniformly weakly ρ-persistent (respectively,
uniformly strongly ρ-persistent) if there exists an ε > 0, independent of the initial condition, such that

lim sup
t→∞

ρ(Φ(t, x0)) > ε,
(
respectively lim inf

t→∞ ρ(Φ(t, x0)) > ε
)

,

for any x0 ∈ Γ0.

Now we are in a position to state the following result:

Theorem 5.4. Assume R0 > 1. Then, system (1)–(3) is uniformly weakly ρ-persistent.

Proof. Since R0 > 1, there exists a small ε0 > 0 such that

ε1 � A

μ + ε0
− ε0 > 0,

and

ε2 � ε1ζ̂1(ε0)ζ̂2(ε0) +
δ

μ + δ + ε0
ζ̂3(ε0) > 1. (49)
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In what follows, by a way of contradiction, we will show that system (1)–(3) is uniformly weakly
ρ-persistent. Otherwise, there exists x0 ∈ Γ0 such that

lim sup
t→∞

∞∫

0

ϑ(b)i(t, b)db ≤ ε0
2

. (50)

Then, there exists t0 ≥ 0 such that
∞∫

0

ϑ(b)i(t, b)db ≤ ε0, for all t ≥ t0. (51)

Without loss of generality, we can assume that t0 = 0 since we can replace the initial condition with
Φ(t0, x0). Next, the first equation in (1) together with (51) provides

dS(t)
dt

≥ A − (μ + ε0)S(t), for all t ≥ t0 = 0. (52)

Thus, we have S∞ ≥ A
μ+ε0

. Therefore, there exists t1 ≥ 0 suc that

S(t) ≥ ε1, for all t ≥ t1 = 0. (53)

Furthermore, the fourth equation of system (1) with (38), gives

dR(t)
dt

≥
t∫

0

ψ(b)φ2(b)W (t − b)db − (μ + δ)R(t). (54)

Then, by applying the Laplace transform on the inequality (54), we get

λR̂(λ) − R(0) ≥ ζ̂3(λ)Ŵ (λ) − (μ + δ)R̂(λ), (55)

where ζ̂3, R̂, and Ŵ are the Laplace transform of ψφ2, R(t), and W (t), respectively. Hence, we have

R̂(λ) ≥ ζ̂3(λ)
λ + μ + δ

Ŵ (λ). (56)

Moreover, (5) together with (53) provides

W (t) ≥
t∫

0

ϕ(a)φ1(a)S(t − a)J(t − a)da + δR(t)

≥ P (t) + δR(t), (57)

where

P (t) = ε1

t∫

0

ϕ(a)φ1(a)

t−a∫

0

ϑ(b)φ2(b)W (t − a − b)dbda.

Now, by taking the Laplace transform again on both sides of (57), we find

Ŵ (λ) ≥ P̂ (λ) + δR̂(λ), (58)

where Ŵ , P̂ and R̂ are the Laplace transform of W (t), P (t), and R(t), respectively, with

P̂ (λ) = ε1

∞∫

0

e−λt

t∫

0

ϕ(a)φ1(a)

t−a∫

0

ϑ(b)φ2(b)W (t − a − b)dbdadt
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= ε1

∞∫

0

ϕ(a)φ1(a)e−λada

∞∫

0

ϑ(b)φ2(b)e−λbdb

∞∫

0

W (σ)e−λσdσ.

Thus, we have

P̂ (λ) = ε1ζ̂1(λ)ζ̂2(λ)Ŵ (λ), (59)

where ζ̂1 and ζ̂2 are the Laplace transforms of ϕφ1 and ϑφ2, respectively. Next, inserting (59) into (58)
and using (56), it yields

Ŵ (λ) ≥
(

ε1ζ̂1(λ)ζ̂2(λ) +
δ

λ + μ + δ
ζ̂3(λ)

)
Ŵ (λ). (60)

Note that Ŵ (λ) < +∞ because W (t) is bounded function; further, since x0 ∈ Γ0, we have Ŵ (λ) > 0 for
all λ > 0. Then, dividing both sides by Ŵ (λ) and letting λ → ε0 in (60), we immediately obtain

1 ≥ ε1ζ̂1(ε0)ζ̂2(ε0) +
δ

ε0 + μ + δ
ζ̂3(ε0),

which contradicts (49), and hence the proof is complete. �

Now, in order to move from uniform weak persistence to uniform strong persistence, we follow the ap-
proach described in [42, Chapter 9], (see also, McCluskey [33, Section 8]). We consider total Φ-trajectories
of system (1)–(3) in space X, where Φ is a continuous semi-flow defined by (6). Let x(t) : R → X
be a total Φ-trajectory such that x(t) = (S(t), e(t, ·), i(t, ·), R(t)), for all t ∈ R. Then, it follows that
x(t + r) = Φ(r,x(t)) for all t ∈ R, and all r ∈ R+. Hence, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

= A − μS(t) − S(t)

∞∫

0

ϑ(b)i(t, b)db,

e(t, a) = S(t − a)J(t − a)φ1(a),
i(t, b) = W (t − b)φ2(b),

J(t) =

∞∫

0

ϑ(b)W (t − b)φ2(b)db,

W (t) =

∞∫

0

ϕ(a)S(t − a)J(t − a)φ1(a)da + δR(t),

dR(t)
dt

=

∞∫

0

ψ(b)i(t, b)db − (δ + μ)R(t),

(61)

for all t ∈ R, and a, b ∈ R+. Now, let us introduce the following lemmas which will be used later to show
the uniform strong persistence result.

Lemma 5.5. Let x(t) be a total trajectory in Γ for all t ∈ R. Then, the following statements hold: i. S(t)
is strictly positive on R; ii. if ρ(Φ(t)) = 0 for all t ≤ 0, then ρ(Φ(t)) = 0 for all t ≥ 0.

Proof. i. Firstly, we show that S(t) > 0, for all t ∈ R. By way of contradiction, suppose (i) is not true.
Then, there exists a fixed t∗ ∈ R such that S(t∗) = 0. Therefore, from (61) we have dS(t∗)

dt = A > 0.
Hence, by the continuity of S(t), there exists a sufficiently small ε > 0 such that S(t∗ −ε) < 0, which
contradicts S(t) ∈ Γ. Thus, S(t) is strictly positive on R.

ii. Assume that J(t) = 0, for all t ≤ 0. Then, from fourth to fifth equations of system (61), it yields
that R(t) ≤ 0, for all t ≤ 0. This together with last equation of system (61) provides

R(t) = 0, for all t ∈ R. (62)
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From fourth to fifth equations in system (61), we can obtain

J(t) =

∞∫

0

ϑ(b)φ2(b)

∞∫

0

ϕ(a)φ1(a)S(t − a − b)J(t − a − b)dadb + F (t), (63)

where

F (t) = δ

∞∫

0

ϑ(b)φ2(b)R(t − b)db.

By changing the variables, we can rewrite (63) as follows:

J(t) =

t∫

−∞
ϑ(t − σ)φ2(t − σ)

∞∫

0

ϕ(a)φ1(a)S(σ − a)J(σ − a)dadσ + F (t)

=

t∫

−∞
ϑ(t − σ)φ2(t − σ)

σ∫

−∞
ϕ(σ − υ)φ1(σ − υ)S(υ)J(υ)dυdσ + F (t).

Here, if J(t) = 0, for all t ≤ 0, it can be deduced from Eq. (62) that F (t) = 0, for all t ∈ R; in
addition, with the help of Proposition 2.1, we obtain

J(t) ≤ ϑη

t∫

0

σ∫

0

J(υ)dυdσ, for all t ≥ 0. (64)

Next, denote

B(t) =

t∫

0

J(υ)dυ +

t∫

0

σ∫

0

J(υ)dυdσ, for all t ≥ 0.

Thus, we have

dB(t)
dt

= J(t) +

t∫

0

J(υ)dυ

≤ ϑη

t∫

0

σ∫

0

J(υ)dυdσ +

t∫

0

J(υ)dυ

≤ γB(t),

where γ = max
{
ϑη, 1

}
. Hence, we get B(t) ≤ B(0)eγt, for all t ≥ 0. Notice that since B(0) = 0, it

results then B(t) = 0, for all t ≥ 0, and hence J(t) = 0, for all t ≥ 0. Proof is complete. �

Lemma 5.6. Let x(t) be a total trajectory in Γ for all t ∈ R. Then, ρ(Φ(t)) is either strictly positive or
identical to zero on R.

Proof. Note that, for any t∗ ∈ R, with the help of Lemma 5.5, we may observe J(t) = 0 for all t ≥ t∗, if
J(t) = 0 for all t ≤ t∗. This means that either

i. J(t) is identically zero on R; or
ii. there exists a decreasing sequence {tn}n≥1 such that tn → −∞ as n → ∞ and J(tn) > 0.
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For the second statement (ii.), let us denote

Jn(t) = J(t + tn), for all t ≥ 0. (65)

From (4) we have

Jn(t) =

t∫

0

ϑ(b)φ2(b)Wn(t − b)db + J̃n(t), (66)

where

J̃n(t) =

∞∫

t

ϑ(b)i0n(t − b)
φ2(b)

φ2(t − b)
db

=

∞∫

0

ϑ(t + b)i0n(b)
φ2(t + b)

φ2(b)
db, (67)

Moreover, in view of (5) it yields

Wn(t) =

t∫

0

ϕ(a)φ1(a)Sn(t − a)Jn(t − a)da + δRn(t) + W̃n(t)

≥
t∫

0

ϕ(a)φ1(a)Sn(t − a)Jn(t − a)da, (68)

where

W̃n(t) =

∞∫

t

ϕ(a)e0n(t − a)
φ1(a)

φ1(t − a)
da.

Next, combining (66) and (68), we find

Jn(t) ≥
t∫

0

ϑ(b)φ2(b)

t−b∫

0

ϕ(a)φ1(a)Sn(t − a − b)Jn(t − a − b)dadb + J̃n(t).

Denote inf
t∈R

S(t) = S. Then, after making some changes of variables, we can get

Jn(t) ≥ S

t∫

0

ϑ(t − σ)φ2(t − σ)

σ∫

0

ϕ(a)φ1(a)Jn(σ − a)dadσ + J̃n(t)

= S

t∫

0

ϑ(t − σ)φ2(t − σ)

σ∫

0

ϕ(σ − υ)φ1(σ − υ)Jn(υ)dυdσ + J̃n(t)

= S

t∫

0

⎛
⎝

t−υ∫

0

ϑ(t − υ − s)φ2(t − υ − s)ϕ(s)φ1(s)ds

⎞
⎠ Jn(υ)dυ + J̃n(t).

Therefore, we have

Jn(t) ≥
t∫

0

γ(t − υ)Jn(υ)dυ + J̃n(t)
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=

t∫

0

γ(υ)Jn(t − υ)dυ + J̃n(t),

where

γ(t) = S

t∫

0

ϑ(t − s)φ2(t − s)ϕ(s)φ1(s)ds, t ≥ 0.

Note that from (66) to (67), we have J̃n(0) = J(tn) > 0, and J̃n is a continuous function at 0. By applying
the result described in the monograph of Smith and Thiem [42, Corollary B.6], we can show that there
is a positive constant ξ > 0 that depends only on the function γ(t), such that Jn(t) > 0 for all t > ξ.
Furthermore, using the definition of Jn(t) given by (65), we can easily see that J(t) > 0 for all t > ξ + tn.
Since tn → −∞ as n → ∞, it follows that J(t) > 0 for all t ∈ R. Consequently, J(t) is strictly positive
on R. This proves Lemma 5.6. �

Now, based on the above preparations, we will state the main result of this section.

Theorem 5.7. Assume R0 > 1. Then, system (1)–(3) is uniformly strongly ρ-persistent.

Proof. In view of Theorem 4.4, the semi-flow Φ generated by system (1)–(3) has a global compact attractor
A. Additionally, when R0 > 1, Theorem 5.4 shows that system (1)–(3) is uniformly weakly ρ-persistence.
This combined with Lemma 5.5, Lemma 5.6, and [42, Theorem 5.2] leads immediately to conclude that
system (1)–(3) is uniformly strongly ρ-persistence. �

Next, in accordance with [42, Theorem 5.7], we introduce the following

Theorem 5.8. There exists a compact attractor Ã that attracts every solution with initial condition in Γ0.
Moreover Ã is uniformly ρ-positive, i.e., there exists a positive constant �, such that

ρ(Φ(t, x0) ≥ �, for all x0 ∈ Ã. (69)

Remark 5.9. In epidemiology, the uniform persistence concept means, roughly speaking, that the pro-
portion of infected individuals is bounded away from 0 and the bound does not depend on the initial
condition after a sufficient long time, if the basic reproduction number is larger than unity.

6. Global stability

In this section, we will discuss the main results of this paper. Firstly, we will start by studying the global
stability of the disease-free equilibrium E0 of system (1)–(3) with the help of the Fluctuation Lemma 5.1.
To this end, let us state the following result:

Theorem 6.1. Assume R0 < 1. Then, the disease-free equilibrium E0 of system (1)–(3) is globally asymp-
totically stable in Γ.

Proof. By Theorem 3.2, we only need to get the global attractivity of E0. Let (S, e(t, ·), i(t, ·), R) be a
solution of system (1)–(3), with the initial condition (S0, e0, i0, R0) in Γ. We first claim that W∞ = J∞ =
R∞ = 0, which means that

lim sup
t→∞

W (t) = lim sup
t→∞

J(t) = lim sup
t→∞

R(t) = 0.

In view of Lemma 5.1, there exists a sequence {tn} such that tn → ∞, R(tn) → R∞ and dR(tn)
dt → 0 as

n → ∞. Last equation of system (1) with (38) gives

dR(tn)
dt

=

tn∫

0

ψ(b)φ2(b)W (tn − b)db +

∞∫

tn

ψ(b)i0(b − tn)
φ2(b)

φ2(b − tn)
db − (μ + δ)R(tn)
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≤
tn∫

0

ψ(b)φ2(b)W (tn − b)db + ψ‖i0‖1e−p
2
tn − (μ + δ)R(tn).

Passing to the limite as n → ∞ and by using Lemma 5.2, we find

0 ≤ ζ3W
∞ − (μ + δ)R∞,

which implies

R∞ ≤ ζ3
μ + δ

W∞. (70)

Moreover, from (4) to (38), we can write

J(t) =

t∫

0

ϑ(b)φ2(b)W (t − b)db +

∞∫

t

ϑ(b)i0(b − t)
φ2(b)

φ2(b − t)
db

≤
t∫

0

ϑ(b)φ2(b)W (t − b)db + ϑ‖i0‖1e−p
2
t.

With the help of Lemma 5.2 again, it results

J∞ ≤ ζ2W
∞. (71)

Furthermore, the formula of W (t) in (5) with (37) provides

W (t) =

t∫

0

ϕ(a)φ1(a)S(t − a)J(t − a)da +

∞∫

t

ϕ(a)e0(a − t)
φ1(a)

φ1(a − t)
da + δR(t)

≤
t∫

0

ϕ(a)φ1(a)S(t − a)J(t − a)da + ϕ‖e0‖1e−p
1
t + δR(t).

According to Lemma 5.2, we can obtain

W∞ ≤ S0ζ1J
∞ + δR∞, (72)

where we have used S∞ ≤ S0. Now, by combining (70), (71) and (72), it yields

W∞ ≤ R0W
∞. (73)

Due to R0 < 1, it follows immediately that W∞ = 0. This together with (70) and (71) leads to obtain
R∞ = J∞ = 0. Therefore, it can be deduced that

lim sup
t→∞

‖e(t, ·)‖1 = 0, lim sup
t→∞

‖i(t, ·)‖1 = 0, and lim sup
t→∞

R(t) = 0.

Lastly, recall that S0 = A
μ . Then, we move to show that lim sup

t→∞
S(t) = S0. To this end, it suffices to

prove that S∞ ≥ S0 since it is straightforward to observe that S∞ ≤ S0.
By Lemma 5.1, there exists a sequence {tn} such that tn → ∞, S(tn) → S∞ and dS(tn)

dt → 0 as
n → ∞. First equation of (1) together with (37) allows to write

dS(tn)
dt

= A − μS(tn) − S(tn)

tn∫

0

ϑ(b)W (tn − b)φ2(b)db

−S(tn)

∞∫

tn

ϑ(b)i0(b − tn)
φ2(b)

φ2(b − tn)
db
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≥ A − μS(tn) − S(tn)

tn∫

0

ϑ(b)W (tn − b)φ2(b)db − S(tn)ϑ‖i0‖1e−p
2
tn .

Letting n → ∞ with the help of Lemma 5.2, we can obtain 0 ≥ A − μS∞, which implies that S∞ ≥ S0,
where we have used W∞ = 0. Therefore, based on the above discussion, we have derived the following
conclusion

lim sup
t→∞

(S(t), e(t, ·), i(t, ·), R(t)) = E0.

Thus, the proof is complete. �

In what follows, based on the Lyapunov functionals technique and LaSalle invariance principle (we
may refer to [44,45], for more details), we will derive the global stability of the endemic equilibrium E∗

of system (1)–(3). Before going on, it is necessary define the function g : (0,+∞) −→ R+, as follows

g(x) = x − 1 − ln x, (74)

which is a well-known ingredient to build the Lyapunov functional in Volterra–Lotka systems [46]. Note
that g′(x) = 1 − 1

x . Therefore, the function g is decreasing on (0, 1], and increasing on [1,+∞), and it
has only one extremum, which is a global minimum at x = 1. Additionally, we have 1 − x + ln x ≤ 0 for
x > 0, and the equality holds if and only if x = 1.

The following lemma ensures the well definition of the constructive Lyapunov functional defined by
(78).

Lemma 6.2. Consider R0 > 1. Let x(t) be a total trajectory in Ã for all t ∈ R. Then, the following
estimates hold:

S(t) ≥ �1,
e(t, a)
e∗(a)

≥ ��1

S∗J∗ ,
i(t, b)
i∗(b)

≥ ��1

W ∗ ζ1, and R(t) ≥ �2,

where �1 = A
μ+� , �2 = ��1

μ+δ ζ1ζ3, and � is given in Theorem 5.8.

Proof. In view of (61) and by using (69), we obtain

dS(t)
dt

≥ A − (μ + �)S(t),

which means that lim inf
t→∞ S(t) ≥ A

μ + �
= �1, for each point in Ã. Thus, by invariance, we get

S(t) ≥ �1, for all t ∈ R. (75)

Moreover, we have e(t, a) = S(t − a)J(t − a)φ1(a). Then, according to (69) and (75), we can write

e(t, a)
e∗(a)

=
S(t − a)J(t − a)

S∗J∗ ≥ ��1

S∗J∗ , for all t ∈ R. (76)

Next, we have i(t, b) = W (t − b)φ2(b), for all t ∈ R, where

W (t) =

∞∫

0

ϕ(a)S(t − a)J(t − a)da + δR(t) ≥ ��1ζ1,

and hence, we have

i(t, b)
i∗(b)

=
W (t)
W ∗ ≥ ��1

W ∗ ζ1, for all t ∈ R. (77)
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Finally, from equation of R in (61) and with the help of (77), we find

dR(t)
dt

=

∞∫

0

ψ(b)i(t, b)db − (μ + δ)R(t)

=

∞∫

0

ψ(b)φ2(b)W (t − b)db − (μ + δ)R(t)

≥ ��1ζ1ζ3 − (μ + δ)R(t).

Hence, we have R∞ ≥ ��1

μ + δ
ζ1ζ3 = �2. Therefore, we have

R(t) ≥ �2, for all t ∈ R.

The proof of Lemma 6.2 is complete for all t ∈ R. The proof is complete. �

Furthermore, some straightforward lemmas are summarized below, which will be used in proving
Theorem 6.6.

Lemma 6.3. Each solution of system (1)–(3) satisfies
∞∫

0

ϑ(b)i∗(b)
[
S(t)i(t, b)e∗(0)
S∗i∗(b)e(t, 0)

− 1
]

db = 0.

Lemma 6.4. Set δ∗ = δ
(μ+δ)ζ1S∗ . Then, we have

∞∫

0

[ϑ(b) + δ∗ψ(b)] i∗(b)db =
i∗(0)
ζ1S∗ .

Lemma 6.5. Each solution of system (1)–(3) satisfies

1
ζ1S∗

∞∫

0

ϕ(a)e∗(a)
[
e(t, a)i∗(0)
i(t, 0)e∗(a)

− 1
]

da + δ∗
∞∫

0

ψ(b)i∗(b)
[
R(t)i∗(0)
R∗i(t, 0)

− 1
]

db = 0.

After setting the above preparations, we are about to show the global asymptotic stability of the
endemic equilibrium E∗.

Theorem 6.6. Assume R0 > 1. Then, the endemic equilibrium E∗ of system (1)–(3) is globally asymp-
totically stable.

Proof. By Theorem 3.7, E∗ is locally asymptotically stable and there exists a global attractor Ã ∈ Γ.
Hence, our aim is showing Ã = {E∗}. Let x(t) = (S(t), e(t, ·), i(t, ·), R(t)) be a total Φ-trajectory in Ã
for all t ∈ R. By Lemma 6.2, there exists �0 such that 0 ≤ g(x) ≤ �0 with x being any of S(t)

S∗ , e(t,a)
e∗(a) ,

i(t,b)
i∗(b) , and R(t)

R∗ , for any t ∈ R and a ∈ R+.
Define

V (t) = V1(t) + V2(t) + V3(t) + V4(t), (78)

where

V1(t) = g

(
S(t)
S∗

)
,
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V2(t) =
1

ζ1S∗

∞∫

0

υ1(a)e∗(a)g
(

e(t, a)
e∗(a)

)
da,

V3(t) =

∞∫

0

υ2(b)i∗(b)g
(

i(t, b)
i∗(b)

)
db,

V4(t) = δ∗R∗g
(

R(t)
R∗

)
,

with

υ1(a) =

∞∫

a

ϕ(σ)e
−

σ∫
a

p1(s)ds
dσ, and υ2(b) =

∞∫

b

[ϑ(σ) + δ∗ψ(σ)] e
−

σ∫
b

p2(s)ds
dσ,

where δ∗ is given in Lemma 6.4. Note that for all a, b ∈ R+, we have⎧⎪⎪⎨
⎪⎪⎩

υ1(0) = ζ1,
υ2(0) = ζ2 + δ∗ζ3,
υ′
1(a) = p1(a)υ1(a) − ϕ(a),

υ′
2(b) = p2(b)υ2(b) − [ϑ(b) + δ∗ψ(b)].

(79)

Now, we move to show that dV (t)
dt is nonnegative. Here, we will independently calculate the derivatives

dV1
dt , dV2

dt , dV3
dt , and dV4

dt , then we collect them all up. Firstly, by differentiating V1 along the solution of
system (1)–(3), we obtain

dV1

dt
= −μ

(S(t) − S∗)2

S(t)S∗ +

∞∫

0

ϑ(b)i∗(b)
(

1 − S∗

S(t)
− S(t)i(t, b)

S∗i∗(b)
+

i(t, b)
i∗(b)

)
db,

where we have used A = μS∗ + S∗
∞∫

0

ϑ(b)i∗(b)db. Then, after some calculations and rearrangement, we

find

dV1

dt
= −μ

(S(t) − S∗)2

S(t)S∗ +

∞∫

0

ϑ(b)i∗(b)
[
i(t, b)
i∗(b)

− S(t)i(t, b)
S∗i∗(b)

+ ln
e(t, 0)
e∗(0)

− ln
i(t, b)
i∗(b)

]
db

−
∞∫

0

ϑ(b)i∗(b)
[
g

(
S∗

S(t)

)
+ g

(
S(t)i(t, b)e∗(0)
S∗i∗(b)e(t, 0)

)]
db

+

∞∫

0

ϑ(b)i∗(b)
[
S(t)i(t, b)e∗(0)
S∗i∗(b)e(t, 0)

− 1
]

db.

With the help of Lemma 6.3, we can obtain

dV1

dt
= −μ

(S(t) − S∗)2

S(t)S∗ +

∞∫

0

ϑ(b)i∗(b)
[
i(t, b)
i∗(b)

− S(t)i(t, b)
S∗i∗(b)

+ ln
e(t, 0)
e∗(0)

− ln
i(t, b)
i∗(b)

]
db

−
∞∫

0

ϑ(b)i∗(b)
[
g

(
S∗

S(t)

)
+ g

(
S(t)i(t, b)e∗(0)
S∗i∗(b)e(t, 0)

)]
db. (80)
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Next, by differentiating V2(t) along the solution of system (1)–(3), it follows

dV2(t)
dt

= − 1
ζ1S∗

∞∫

0

υ1(a)
(

1 − e∗(a)
e(t, a)

)(
∂e(t, a)

∂a
+ p1(a)e(t, a)

)
da

= − 1
ζ1S∗

∞∫

0

υ1(a)e∗(a)
∂

∂a
g

(
e(t, a)
e∗(a)

)
da, (81)

where we have used
∂

∂a
g

(
e(t, a)
e∗(a)

)
=

1
e∗(a)

(
1 − e∗(a)

e(t, a)

)(
∂e(t, a)

∂a
+ p1(a)e(t, a)

)
.

Applying integration by parts on (81) and taking into account (79), we can get

dV2(t)
dt

= − 1
ζ1S∗

⎡
⎣υ1(a)e∗(a)g

(
e(t, a)
e∗(a)

)∣∣∣∞
0

−
∞∫

0

(υ′
1(a) − p1(a)υ1(a)) e∗(a)g

(
e(t, a)
e∗(a)

)
da

⎤
⎦

= − 1
ζ1S∗

⎡
⎣

∞∫

0

ϕ(a)e∗(a)g
(

e(t, a)
e∗(a)

)
da − ζ1e

∗(0)g
(

e(t, 0)
e∗(0)

)⎤
⎦ .

Thus, we have

dV2

dt
=

1
ζ1S∗

∞∫

0

ϕ(a)e∗(a)
(

e(t, 0)
e∗(0)

− ln
e(t, 0)
e∗(0)

− e(t, a)
e∗(a)

+ ln
e(t, a)
e∗(a)

)
da.

After doing some calculations and simplifying, we have consequently got

dV2

dt
=

1
ζ1S∗

∞∫

0

ϕ(a)e∗(a)
[
ln

i∗(0)
i(t, 0)

+
e(t, 0)
e∗(0)

− ln
e(t, 0)
e∗(0)

− e(t, a)
e∗(a)

]
da

− 1
ζ1S∗

∞∫

0

ϕ(a)e∗(a)g
(

e(t, a)i∗(0)
i(t, 0)e∗(a)

)
da

+
1

ζ1S∗

∞∫

0

ϕ(a)e∗(a)
[
e(t, a)i∗(0)
i(t, 0)e∗(a)

− 1
]

da. (82)

Similarly, the derivative of V3(t) can be expressed as follows

dV3

dt
=

∞∫

0

[ϑ(b) + δ∗ψ(b)] i∗(b)
(

i(t, 0)
i∗(0)

− ln
i(t, 0)
i∗(0)

− i(t, b)
i∗(b)

+ ln
i(t, b)
i∗(b)

)
db.

Then, by performing some rearrangements, it yields

dV3

dt
=

∞∫

0

[ϑ(b) + δ∗ψ(b)]i∗(b)
i(t, 0)
i∗(0)

db − δ∗
∞∫

0

ψ(b)i∗(b)g
(

R(t)i∗(0)
R∗i(t, 0)

)
db

+

∞∫

0

ϑ(b)i∗(b)
[
ln

i(t, b)
i∗(b)

− i(t, b)
i∗(b)

− ln
i(t, 0)
i∗(0)

]
db
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+δ∗
∞∫

0

ψ(b)i∗(b)
[
ln

R∗

R(t)
+ ln

i(t, b)
i∗(b)

− i(t, b)
i∗(b)

]
db

+δ∗
∞∫

0

ψ(b)i∗(b)
[
R(t)i∗(0)
R∗i(t, 0)

− 1
]

db. (83)

Next, differentiating V4 and considering that μ + δ =
1

R∗

∞∫

0

ψ(b)i∗(b)da, we obtain

dV4

dt
= δ∗

∞∫

0

ψ(b)i∗(b)
[
1 − R(t)

R∗ − R∗i(t, b)
R(t)i∗(b)

+
i(t, b)
i∗(b)

]
db.

Through some computations, we can get

dV4

dt
= −δ∗

∞∫

0

ψ(b)i∗(b)g
(

R∗i(t, b)
R(t)i∗(b)

)
db − δ∗

∞∫

0

ψ(b)i∗(b)
R(t)
R∗ db

+δ∗
∞∫

0

ψ(b)i∗(b)
[
i(t, b)
i∗(b)

− ln
i(t, b)
i∗(b)

− ln
R∗

R(t)

]
db. (84)

In summary, by combining and rearranging the expressions (80), (82), (83), and (84) with the help of
Lemma 6.4 and Lemma 6.5, the derivative of V (t) can be expressed as follows:

dV (t)
dt

= −μ
(S(t) − S∗)2

S(t)S∗ −
∞∫

0

ϑ(b)i∗(b)
[
g

(
S∗

S(t)

)
+ g

(
S(t)i(t, b)e∗(0)
S∗i∗(b)e(t, 0)

)]
db

− 1
ζ1S∗

∞∫

0

ϕ(a)e∗(a)g
(

e(t, a)i∗(0)
i(t, 0)e∗(a)

)
da

−δ∗
∞∫

0

ψ(b)i∗(b)
[
g

(
R(t)i∗(0)
R∗i(t, 0)

)
+ g

(
R∗i(t, b)
R(t)i∗(b)

)]
db. (85)

Therefore, it follows that dV (t)
dt ≤ 0, which implies that the function V (t) is non-increasing. Further,

we can observe that V (t) is bounded function on any solution x(·), which means that α-limit set of
solution x(·) must be contained in the largest invariance subset M in

{
dV (t)
dt = 0

}
. Now, let us proceed

to determine the subset M. To this end, it follows from dV (t)
dt = 0 that S(t) = S∗, for all t ∈ R. Then, by

taking into account S(t) = S∗, it yields from the first equation of system (61) that

0 = A − μS∗ − S∗
∞∫

0

ϑ(b)i(t, b)db, for all t ∈ R. (86)

In addition, from the first equation of system (23), we have

0 = A − μS∗ − S∗
∞∫

0

ϑ(b)i∗(b)db. (87)
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Equation (86) with (87) provides that

∞∫

0

ϑ(b)i(t, b)db =

∞∫

0

ϑ(b)i∗(b)db. Moreover, we have

e(t, 0) = S(t)

∞∫

0

ϑ(b)i(t, b)db = S∗
∞∫

0

ϑ(b)i∗(b)db = e∗(0), (88)

which implies that e(t, a) = e∗(a), for all t ∈ R. Thus, it can be deduced that i(t, b) = i∗(b), and
R(t) = R∗, for all t ∈ R. Consequently, M = {E∗} is the largest invariant subset of

{
dV (t)
dt = 0

}
. Hence,

according to the Lyapunov–LaSalle invariance principle, the endemic equilibrium E∗ can be considered
globally asymptotically stable whenever R0 > 1. This completes the proof of Theorem 6.6. �
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Fig. 1. The evolution of solutions S(t), E(t) =

∞∫

0

e(t, a)da, I(t) =

∞∫

0

i(t, b)db, and R(t) when β1 = 7.5×10−4, δ = 1/78.5and

R0 = 0.7564 < 1
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7. Numerical simulations

In this section, we will illustrate some numerical analysis to provide the theoretical results obtained in
previous sections. We will consider herpes disease as an illustrative example that aligns well with the
SEIR model (1)–(3). To this end, the backward Euler and linearized finite difference method will be used
to discretize the ODEs and PDE in system (1)–(3), and the integral will be numerically calculated using
Simpson’s rule.

We use parameters from previous research by Foss et al. [47]. The parameters A, μ, and δ in system
(1)–(3) take the following values: A = 275, μ = 0.014, and δ is assumed to be varied.

The functions ν1(a), and ν2(b) are considered to be constants, and ν1(a) = ν2(b) = ν = 0.019.
Moreover, the functions ϑ(b), ϕ(a), and ψ(b) are chosen to be

ϑ(b) = β1

(
1 + sin

(b − 5)π
10

)
, ϕ(a) = β2

(
1 + sin

(a − 1)π
2

)
, ψ(b) = β3

(
1 + sin

(b − 15)π
30

)
,

where β1 is assumed to be varied, β2 = 0.03, and β3 = 0.09. Moreover, the initial condition is chosen as

S(0) = 1200, e0(a) = 50(a + 3)e0.2(a+3), i0(b) = (b + 3)e0.2(b+3), and R(0) = 50.

i. When β1 = 7 × 10−4 and δ = 1/78.5, then we have R0 = 0.7564 < 1. Thus, according to Theorem
6.1 the disease-free equilibrium E0 is globally asymptotically stable (see, Figs. 1 and 2). This means
that the disease eventually tends to go extinct.

ii. When β1 = 7 × 10−3 and δ = 1/87.2, then we have R0 = 1.4502 > 1. In view of Theorem 6.6, the
endemic equilibrium E∗ is globally asymptotically stable (see Figs. 3 and 4). This indicates that the
disease can start spreading through the population.

Discussion

In this paper, we have created and analyzed an SEIR epidemic model with continuous age structure
for both latently infected individuals and infectious individuals with relapse to understand how these
epidemiological factors affect the spread of the infectious disease. We then studied the global asymptotic
stability of each equilibrium of the model by constructing the appropriate Lyapunov functional. Our
theoretical results showed that the threshold parameter R0 completely governs the spread of diseases.

Fig. 2. The evolution of solutions e(t, a)da and i(t, b) when β1 = 7.5 × 10−4, δ = 1/78.5 and R0 = 0.7564 < 1
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Fig. 3. The evolution of solutions S(t), E(t) =

∞∫

0

e(t, a)da, I(t) =

∞∫

0

i(t, b)db, and R(t) when β1 = 7.5 × 10−3, δ = 1/97.2

and R0 = 1.4502 > 1

Fig. 4. The evolution of solutions e(t, a) and i(t, b) when β1 = 7.5 × 10−3, δ = 1/97.2 and R0 = 1.4502 > 1
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That is, if R0 < 1, then the disease-free equilibrium is globally asymptotic stable, which means that the
disease can be eradicated from the community, while the endemic equilibrium of the model is considered
to be globally asymptotic stable whenever R0 > 1, indicating that the disease will continue to spread
through the population. To control the transmission of the disease, we should take related strategies to
reduce the basic reproduction number to below one. From the expression of R0, that is,

R0 =
A

μ
ζ1ζ2 +

δ

μ + δ
ζ3.

Notice that we must work on both terms to reduce the R0 value. The first term can be reduced by
decreasing the quantities of ζ1 and ζ2. However, the relapse rate δ must be reduced to decrease the
second term, as it has a direct effect, while the treatment rate ζ does not. Thus, strategies for controlling
the disease may include early diagnosis of latent infections, decreasing both transmission and relapse
rates.
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