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Abstract. This study investigates the exact solutions of the time-fractional (3+1)-dimensional combined Korteweg–de Vries
Benjamin–Bona–Mahony (KdV-BBM) equation. The considered model describes the long surface gravity waves of small
amplitude, which portrays the two-way propagation of waves. The modified generalized Kudryashov method and the exp(-
ϕ(ξ))-expansion methods are employed to resolve the aforementioned issue because of their effectiveness and simplicity. For
generality, the time fractional version is studied; more advanced solutions that do not exist in the literature were obtained.
As a result, a variety of the exact wave solutions of the conformable (3+1)-dimensional KdV-BBM equation are obtained.
The dynamical behaviors of some obtained solutions are represented with the proper parameter values. The used methods
yield noteworthy results in obtaining the analytical solutions of fractional differential equations under various conditions.
Besides, the sensitivity of regarding dynamical system is assessed to show the numerical stability effects.
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1. Introduction

Fractional order differential equations are a significant concept as an extension of integer order differential
equations because they provide a better explanation of physical processes than traditional derivatives.
Consequently, fractional differential equations are frequently utilized and researched as the best way to
model technical and physical processes. In recent years, nonlinear fractional partial differential (NFPDEs)
have been used to model many physical phenomena in various fields, such as fluid mechanics, solid-state
physics, plasma physics, chemical physics, fiber optics, and geochemistry. For fractional differential equa-
tions, there are some derivative definitions. They include Riemann–Liouville, Caputo, and conformable
fractional derivatives. Today, many people employ the Riemann-Liouville fractional derivative method.
It combines two well-known mathematicians, Riemann and Liouville, fractional derivative procedures.
Furthermore, scientists commonly employ Caputo derivatives. The conformable derivative [1,2] is also
documented in addition to these derivatives. It satisfies the chain rule, which makes it possible to find reli-
able exact solutions for fractional differential equations, in contrast to the Caputo and Riemann-Liouville
definitions. Great progress has been made in finding exact solutions to nonlinear equations, but these
advances have not been sufficient. As a result, analytical approaches have been used, and it has been dis-
covered that there is no one method that can be used to provide exact solutions to nonlinear problems of
every kind. Consequently, numerous techniques have been developed, including (G′/G)-expansion method
and its modification [3,4], sub-equation method [5], simple equation method and its modification [6–8],
modified Kudryashov method [9], sine-cosine method [10], tanh-coth expansion method [11], sinh-Gordon
equation expansion method [12], Hirota method [13,14], generalized Riccati equation mapping method
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[15], homotopy analysis method [16], new version of trial equation method [17], improved Bernoulli sub-
equation function method [18], exp(-ϕ(ξ))-expansion method [19–21], unified method [22,23], first integral
method [24], Sardar sub-equation method [25,26], etc.

Although these methods can yield exact solutions for specific kinds of equations, they come with
several drawbacks and limitations. Analytical techniques are frequently restricted to particular partial
differential equations (PDEs) classes with established solutions. Real-world PDEs can be highly complex
and nonlinear. In many circumstances, it is mathematically difficult or impossible to obtain analytical
solutions for such equations. Solving some PDEs analytically can be computationally difficult since they
need complex mathematical computations. This may reduce the viability of using these techniques for
more complicated problems. Additionally, analytical approaches become more difficult when the problem’s
dimensionality rises. Although many methods are effective in one or two dimensions, applying them in
three or more dimensions may be challenging. The balancing principle and determining an N value are
the starting points for both of the two approaches that have been suggested in this study. Nevertheless,
the methods will not function with equations that have non-integer balancing values. Furthermore, these
approaches may not be fully applicable when dealing with some higher-order PDEs. As a result, these
methods are case-specific and work well for some PDEs but need to be better for others.

Many physicists and mathematicians have proposed various mathematical models to understand the
state of water waves that occur in shallow water regimes. Two Dutch mathematicians, D. J. Korteweg and
G. de Vries, worked on this mathematical theory and obtained a nonlinear partial differential equation
that models the motion of two-dimensional, unidirectional propagating water waves on the free surface
of a shallow layer of water. Thus, the Korteweg–de Vries (KdV) equation emerges as a mathematical
model [27]. By developing this equation, some exemplary equations are also created, some of which are
the modified KdV (mKdV) equation [28], Korteweg–de Vries–Burgers (KdV-B) equation [29], modified
Korteweg–de Vries Zakharov–Kuznetsov (mKdv-ZK) equation [30], Korteweg–de Vries Benjamin–Bona–
Mahony equation [31], etc.

In this study, we consider the following (3+1)-dimensional KdV-BBM equation

uxt + μ1(uux)x + μ2uxxxx − μ3uxxxt + μ4uyy − μ5uzz = 0. (1)

The study of wave propagation in many physical systems, especially fluid dynamics and nonlinear
optics, gives rise to the Korteweg–de Vries Benjamin–Bona–Mahony (KdV-BBM) equation. Features from
the Benjamin–Bona–Mahony (BBM) equation and the Korteweg–de Vries (KdV) equation are combined
in this equation. This equation addresses the evolution of specific types of waves, such as solitary waves,
in dispersive media and multidimensional systems. In the study of water waves, the KdV-BBM equation
appears as a model for the evolution of surface waves, especially in shallow water where nonlinear effects
become substantial. In a dispersive medium, it characterizes the behavior of long, nonlinear waves with
small amplitude, allowing for both dispersion and dissipation effects.

There exist some studies about the model in the literature. Soliton solutions of the model are presented
by the auxiliary equation method in [30]. Invariant analysis and conservation laws of the model are given
by Lie symmetry method in [32]. Multiple rogue wave solutions to the model were obtained by a symbolic
calculation approach in [33]. Multi-soliton solutions of the model are derived by the modified hyperbolic
function expansion method [34]. Finally, rogue wave solutions of the model are provided by the Hirota’s
bilinear method [35].

To the authors’ knowledge, the fractional version of the model has not been studied yet. Therefore,
as an extension of the above work, we obtained the exact solutions of this equation, which we created
by using the conformable fractional derivative, the modified generalized Kudryashov, and exp(-ϕ(ξ))-
expansion methods. After that, the graphs were produced by giving appropriate values to the exact
solutions we had discovered.

The following is how the paper is organized. The fundamental definitions go in Sect. 2. In Sects. 3 and 4,
the generalized modified Kudryashov and exp(-ϕ(ξ))-expansion approaches are presented respectively. In
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Sect. 5, the governing equation’s solutions are provided. In the rest, graphical representations, sensitivity
analysis, and concluded remarks are listed.

2. Preliminaries

Definition 1. The conformable derivative of a g : [0,∞) → R function of order ω for t > 0 and ω ∈ (0, 1)
is defined as [1],

Dω
t (g)(t) = lim

β→0

g(t + βt1−ω) − g(t)
β

. (2)

Furthermore, if g is ω-differentiable in range (0, k), for k > 0 and the limt→0+ Dω
t (g)(t) exists, then

definition writes
Dω

t (g)(0) = lim
t→0+

Dω
t (g)(t). (3)

Lemma 1. Let g1 and g2 be ω-differentiable at t > 0, for 0 < ω ≤ 1. Then [1,36],
i. Dω

t (th1) = h1t
h1−ω, h1 ∈ R,

ii. Dω
t (h1g1 + h1g2) = h1Dω

t (g1) + h2Dω
t (g2), h1, h2 ∈ R,

iii. Dω
t

(
h1
h2

)
= h2.Dω

t (h1)−h1.Dω
t (h2)

h2
2

,
iv. Dω

t (h1.h2) = h1.Dω
t (h2) + h2.Dω

t (h1),
v. Dω

t (g1)(t) = t1−ω dg1(t)
dt ,

vi. Dω
t (C) = 0, if C=const.

3. The modified generalized Kudryashov method

The generalized modified Kudryashov approach is presented in this section, which consists of four main
steps [37].
Step 1: We suppose general form of the nonlinear fractional partial differential equation of the type

P(u,Dω
t ,Dxu,Dyu,D2

xu,D2
yu, ...) = 0, (4)

where the conformable derivative is denoted by Dω
t .

Step 2: Applying the following travelling wave transform to Eq. (4)

u(x, ..., t) = u(ξ), ξ = kx + ... + c
tω

ω
, (5)

where k and c are constants, the equation reduces to a nonlinear ordinary differential equation

Ω(u(ξ), u′(ξ), u′′(ξ), ...) = 0. (6)

When Ω is a polynomial in u(ξ), the superscripts represent the regular derivatives of u(ξ) with regard
to ξ. Eq. (6) is then integrated as long as all terms contain derivatives where integration constants are
considered as zeros.
Step 3: Let take into account the solution of the Eq. (6) in the following form

u(ξ) =
N∑

m=0

am

(1 + Q(ξ))m , (7)

where am, (m = 0, 1, ..., N) is an unknown constant. Moreover Q(ξ) will satisfy the following Riccati
equation:

Q′(ξ) = α + βQ(ξ) + γQ(ξ)2, (8)
where α, β, γ are real constants. The solutions of Eq. (8) for different cases of these coefficients are as
follows:
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• When α, β are arbitrary constants and γ �= 0, then Q(ξ) can be expressed as

Q(ξ) =

√
4αγ − β2 tan

(
1
2 (d + ξ)

√
4αγ − β2

)
− β

2γ
. (9)

• When α = 0, β �= 0, and γ is arbitrary constant, then Q(ξ) can be written as

Q(ξ) = − βeβ(d+ξ)

γeβ(d+ξ) − 1
. (10)

• When α is arbitrary constant, β �= 0, and γ = 0, then Q(ξ) be given by,

Q(ξ) = −α

β
+

eβ(d+ξ)

β
. (11)

Step 4: Applying the balancing rule to Eq. (6) will provide the balancing constant N ∈ Z
+. Putting Eq.

(7) along with Eqs. (9),(10), (11), respectively, into Eq. (6) and equating the coefficients of powers of Qi(ξ)
m = 0, 1, 2... equal to zero, we get a system of algebraic equations in parameters am, (m = 0.1, ..., N) , k,
and c. Substituting the resulting am, (m = 0.1, ..., N) , k, and c into (7) gives the analytical solution to
(6).

4. The exp(−ϕ(ξ))-expansion method

The subsequent stages should be used in a manner similar to how the initial two steps in the previous
technique were carried out.
Step 1: As a finite series, exact solutions can be constructed as

u(ξ) =
N∑

r=0

Br(exp(−ϕ(ξ)))r, BN �= 0, (12)

where the following ordinary differential equation is satisfied by ϕ = ϕ(ξ).

ϕ′(ξ) = exp(−ϕ(ξ)) + ηexp(ϕ(ξ)) + λ. (13)

Step 2: Eq. (13) yields the following solutions depending on the relevant parameters, where an integration
constant, h, is present.

When η �= 0, and λ2 − 4η > 0,

ϕ1(ξ) = ln

⎛
⎜⎜⎝

−√
(λ2 − 4η) tanh

(√
(λ2−4η)

2 (ξ + h)
)

− λ

2η

⎞
⎟⎟⎠ , (14)

when η �= 0, and λ2 − 4η < 0,

ϕ2(ξ) = ln

⎛
⎜⎜⎝

√
(4η − λ2) tan

(√
(4η−λ2)

2 (ξ + h)
)

− λ

2η

⎞
⎟⎟⎠ , (15)

when η = 0, and λ2 − 4η > 0, λ �= 0,

ϕ3(ξ) = − ln
(

λ

sinh(λ(h + ξ)) + cosh(λ(h + ξ)) − 1

)
, (16)
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when η �= 0, λ �= 0, and λ2 − 4η = 0,

ϕ4(ξ) = ln
(

−2(λ(ξ + h) + 2)
λ2(ξ + h)

)
, (17)

when λ = 0, η = 0, and λ2 − 4η = 0,

ϕ5(ξ) = ln(ξ + h). (18)

Step 3: The final step of the preceding technique is also used to arrive at the equation’s solutions.

5. Solutions for (3+1)-dimensional KdV-BBM equation

Take into account the fractional form of Eq. (1)

Dω
t ux + μ1(uux)x + μ2uxxxx − μ3D

ω
t uxxx + μ4uyy − μ5uzz = 0. (19)

We obtain the following equation by using the transformations in Eq. (5), and integrating twice,

− ck3μ3u
′′ + cku + k4μ2u

′′ +
1
2
k2μ1u

2 − μ5s
2u + μ4uw2 = 0. (20)

5.1. Analytical solutions for (3+1)-dimensional KdV-BBM equation via the modified generalized Kudryashov
method

The balance between u′′ and u2 gives N = 2. Thus, the predicted solution (7) takes the form

u(ξ) = a0 +
a1

1 + Q(ξ)
+

a2

(1 + Q(ξ))2
, (21)

and when paired with Eq. (8), the following system arises.

−4α2a1ck
3μ3 − 12α2a2ck

3μ3 + 2αa1βck3μ3 + 4αa2βck3μ3 + 2a0ck + 2a1ck + 2a2ck + 4α2a1k
4μ2

+12α2a2k
4μ2 − 2αa1βk4μ2 − 4αa2βk4μ2 + a2

0k
2μ1 + a2

1k
2μ1 + a2

2k
2μ1 + 2a0a1k

2μ1 + 2a0a2k
2μ1

+2a1a2k
2μ1 − 2a0μ5s

2 − 2a1μ5s
2 − 2a2μ5s

2 + 2a0μ4w
2 + 2a1μ4w

2 + 2a2μ4w
2 = 0,

−4α2a1ck
3μ3 − 4αa1βck3μ3 − 20αa2βck3μ3 + 4αa1cγk3μ3 + 8αa2cγk3μ3 + 2a1β

2ck3μ3

+4a2β
2ck3μ3 + 8a0ck + 6a1ck + 4a2ck + 4α2a1k

4μ2 + 4αa1βk4μ2 + 20αa2βk4μ2 − 4αa1γk4μ2

−8αa2γk4μ2 − 2a1β
2k4μ2 − 4a2β

2k4μ2 + 4a2
0k

2μ1 + 2a2
1k

2μ1 + 6a0a1k
2μ1 + 4a0a2k

2μ1

+2a1a2k
2μ1 − 8a0μ5s

2 − 6a1μ5s
2 − 4a2μ5s

2 + 8a0μ4w
2 + 6a1μ4w

2 + 4a2μ4w
2 = 0,

−6αa1βck3μ3 − 16αa2cγk3μ3 − 8a2β
2ck3μ3 + 6a1βcγk3μ3 + 12a2βcγk3μ3 + 12a0ck + 6a1ck

+2a2ck + 6αa1βk4μ2 + 16αa2γk4μ2 + 8a2β
2k4μ2 − 6a1βγk4μ2 − 12a2βγk4μ2 + 6a2

0k
2μ1

+a2
1k

2μ1 + 6a0a1k
2μ1 + 2a0a2k

2μ1 − 12a0μ5s
2 − 6a1μ5s

2 − 2a2μ5s
2 + 12a0μ4w

2 + 6a1μ4w
2

+2a2μ4w
2 = 0,

−6αa1βck3μ3 − 16αa2cγk3μ3 − 8a2β
2ck3μ3 + 6a1βcγk3μ3 + 12a2βcγk3μ3 + 12a0ck + 6a1ck

+2a2ck + 6αa1βk4μ2 + 16αa2γk4μ2 + 8a2β
2k4μ2 − 6a1βγk4μ2 − 12a2βγk4μ2 + 6a2

0k
2μ1 + μ1

+a2
1k

2μ1 + 6a0a1k
2 + 2a0a2k

2μ1 − 12a0μ5s
2 − 6a1μ5s

2 − 2a2μ5s
2 + 12a0μ4w

2 + 6a1μ4w
2

+2a2μ4w
2 = 0,

−4αa1cγk3μ3 − 2a1β
2ck3μ3 + 4a1βcγk3μ3 − 12a2βcγk3μ3 + 4a1cγ

2k3μ3 + 8a2cγ
2k3μ3 + 8a0ck

+2a1ck4αa1γk4μ2 + 2a1β
2k4μ2 − 4a1βγk4μ2 + 12a2βγk4μ2 − 4a1γ

2k4μ2 − 8a2γ
2k4μ2

+4a2
0k

2μ1 + 2a0a1k
2μ1 − 8a0μ5s

2 − 2a1μ5s
2 + 8a0μ4w

2 + 2a1μ4w
2 = 0,
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−2a1βcγk3μ3 + 4a1cγ
2k3μ3 − 4a2cγ

2k3μ3 + 2a0ck + 2a1βγk4μ2 − 4a1γ
2k4μ2 + 4a2γ

2k4μ2

+a2
0k

2μ1 − 2a0μ5s
2 + 2a0μ4w

2 = 0.

Solving the system above yields the following two cases and sets of solutions.

Case 1.

a0 =
12γ(α − β + γ) (k2μ2 + μ3 (μ4w2 − μ5s2))

μ1 (k2μ3 (β2 − 4αγ) − 1)
; a1 =

12(β − 2γ)(α − β + γ) (k2μ2 + μ3 (μ4w2 − μ5s2))

μ1 (k2μ3 (β2 − 4αγ) − 1)
;

a2 =
12(α − β + γ)2 (k2μ2 + μ3 (μ4w2 − μ5s2))

μ1 (k2μ3 (β2 − 4αγ) − 1)
; c =

k4μ2 (β2 − 4αγ) − μ5s2 + μ4w2

k3μ3 (β2 − 4αγ) − k
, (22)

where ω, k, s, μ1, μ2, μ3, μ4, μ5 are arbitrary constants.
Set 1.1. Substituting (22) into the Eq. (9) gives the following solution:

u1.1 = −12γ(α − β + γ)
(
4αγ − β2

) (
k2μ2 + μ3

(
μ4w

2 − μ5s
2
))

μ1 (1 − k2μ3 (β2 − 4αγ))
×

×
sec2

(√
4αγ−β2

2

(
d +

tω(k4μ2(β2−4αγ)−μ5s2+μ4w2)
ω(k3μ3(β2−4αγ)−k) + kx + sz + wy

))

(
β − 2γ −

√
4αγ − β2 tan

(√
4αγ−β2

2

(
d + tω(k4μ2(β2−4αγ)−μ5s2+μ4w2)

ω(k3μ3(β2−4αγ)−k) + kx + sz + wy
)))

2

.

(23)

Set 1.2. Substituting (22) into the Eq. (10) gives the following solution:

u1.2 = −12β2(β − γ)
(
k2μ2 + μ3

(
μ4w

2 − μ5s
2
))

μ1 (β2k2μ3 − 1)
×

×
exp

(
β

(
d +

tω(β2k4μ2−μ5s2+μ4w2)
ω(β2k3μ3−k) + kx + sz + wy

))

(
(β − γ) exp

(
β

(
d + tω(β2k4μ2−μ5s2+μ4w2)

ω(β2k3μ3−k) + kx + sz + wy
))

+ 1
)

2
. (24)

Set 1.3. Substituting (22) into the Eq. (11) yields

u1.3 = −12β2(β − α)
(
k2μ2 + μ3

(
μ4w

2 − μ5s
2
))

μ1 (β2k2μ3 − 1)
×

×
exp

(
β

(
d +

tω(β2k4μ2−μ5s2+μ4w2)
ω(β2k3μ3−k) + kx + sz + wy

))

(
−α + β + exp

(
β

(
d + tω(β2k4μ2−μ5s2+μ4w2)

ω(β2k3μ3−k) + kx + sz + wy
)))

2
. (25)

Case 2.

a0 = −2
(
2γ(α + 3γ) + β2 − 6βγ

) (
k2μ2 + μ3

(
μ4w

2 − μ5s
2
))

μ1 (k2μ3 (β2 − 4αγ) + 1)
;

a1 = −12(β − 2γ)(α − β + γ)
(
k2μ2 + μ3

(
μ4w

2 − μ5s
2
))

μ1 (k2μ3 (β2 − 4αγ) + 1)
;

a2 = −12(α − β + γ)2
(
k2μ2 + μ3

(
μ4w

2 − μ5s
2
))

μ1 (k2μ3 (β2 − 4αγ) + 1)
;

c =
k4μ2

(
β2 − 4αγ

)
+ μ5s

2 − μ4w
2

k3μ3 (β2 − 4αγ) + k
, (26)

where ω, k, s, μ1, μ2, μ3, μ4, μ5 are arbitrary constants.
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Set 2.1. Substituting Eq. (26) into Eq. (9), gives

u1.4 =
2
(
k2μ2 + μ3

(
μ4w

2 − μ5s
2
))

μ1 (k2μ3 (β2 − 4αγ) + 1)
×

×
{

−2γ(α + 3γ) − β2 + 6βγ − 24γ2(α − β + γ)2

B2 tan2 A
+

12γ(β − 2γ)(α − β + γ)
B tan A

}
, (27)

where A = 1
2

√
4αγ − β2

(
d +

tω(k4μ2(β2−4αγ)+μ5s2−μ4w2)
k3μ3ω(β2−4αγ)+kω + kx + sz + wy

)
, B = β−2γ−

√
4αγ − β2.

Set 2.2. Substituting Eq. (26) into Eq. (10), gives

u1.5 = 2β2
(
k2μ2 + μ3

(
μ4w

2 − μ5s
2
)) ×

×
(

(β − γ) exp

(
β

(
d +

tω
(
β2k4μ2 + μ5s

2 − μ4w
2
)

ω (β2k3μ3 + k)
+ kx + sz + wy

)))

×

(
(γ − β) exp

(
β

(
d +

tω(β2k4μ2+μ5s2−μ4w2)
ω(β2k3μ3+k) + kx + sz + wy

))
+ 4

)
− 1

μ1 (β2k2μ3 + 1)
(
(β − γ) exp

(
β

(
d + tω(β2k4μ2+μ5s2−μ4w2)

ω(β2k3μ3+k) + kx + sz + wy
))

+ 1
)

2
. (28)

Set 2.3. Substituting Eq. (26) into Eq. (10), gives

u1.6 = − 12(α − β)2
(
k2μ2 + μ3

(
μ4w

2 − μ5s
2
))

μ1 (β2k2μ3 + 1)

⎛
⎝−α

β +
exp

(
β

(
d+

tω(β2k4μ2+μ5s2−μ4w2)
ω(β2k3μ3+k)

+kx+sz+wy

))

β + 1

⎞
⎠ 2

−

− 12β(α − β)
(
k2μ2 + μ3

(
μ4w

2 − μ5s
2
))

μ1 (β2k2μ3 + 1)

⎛
⎝−α

β +
exp

(
β

(
d+

tω(β2k4μ2+μ5s2−μ4w2)
ω(β2k3μ3+k)

+kx+sz+wy

))

β + 1

⎞
⎠

−2β2
(
k2μ2 + μ3

(
μ4w

2 − μ5s
2
))

μ1 (β2k2μ3 + 1)
. (29)

5.2. Analytical solutions for (3+1)-dimensional KdV-BBM equation via the exp(−ϕ(ξ))-expansion method

Balancing u′′ = N + 2, u2 = 2N one get N = 2. The series of sums is as follows when we insert Eq. (12)

u = B0 + B1exp(−ϕ(ξ)) + B2exp(−ϕ(ξ))2. (30)

When paired with Eq. (13), the following system arises.

−6B2cηλk3μ3 − 2B1cηk3μ3 − B1cλ
2k3μ3 + B1ck + 6B2ηλk4μ2

+2B1ηk4μ2 + B1λ
2k4μ2 + B0B1k

2μ1 − B1μ5s
2 + B1μ4w

2 = 0,

−2B2cη
2k3μ3 − B1cηλk3μ3 + B0ck + 2B2η

2k4μ2 + B1ηλk4μ2

+
1
2
B2

0k
2μ1 − B0μ5s

2 + B0μ4w
2 = 0,

−10B2cλk3μ3 − 2B1ck
3μ3 + 10B2λk4μ2 + 2B1k

4μ2 + B1B2k
2μ1 = 0,

−8B2cηk3μ3 − 4B2cλ
2k3μ3 − 3B1cλk3μ3 + B2ck + 8B2ηk4μ2 + 4B2λ

2k4μ2

+3B1λk4μ2 +
1
2
B2

1k
2μ1 + B0B2k

2μ1 − B2μ5s
2 + B2μ4w

2 = 0,
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−6B2ck
3μ3 + 6B2k

4μ2 +
1
2
B2

2k
2μ1 = 0.

For B0, B1, B2 and c, we have two cases and two sets of solution in this instance.

Case 3.

B0 =
2
(
2η + λ2

) (
k2μ2 + μ3

(
μ4w

2 − μ5s
2
))

μ1 (k2μ3 (4η − λ2) − 1)
; B1 =

12λ
(
k2μ2 + μ3

(
μ4w

2 − μ5s
2
))

μ1 (k2μ3 (4η − λ2) − 1)
;

B2 =
12

(
k2μ2 + μ3

(
μ4w

2 − μ5s
2
))

μ1 (k2μ3 (4η − λ2) − 1)
; c =

k4μ2

(
4η − λ2

) − μ5s
2 + μ4w

2

k3μ3 (4η − λ2) − k
. (31)

Substituting the conditions in Step 2:, the solutions are as follows:

Set 3.1.
For η �= 0, and λ2 − 4η > 0,

u2.1 =
2A1

(
2η + λ2

)
C1

+
48A1η

2

C1

(
−

√
λ2 − 4η tanh

(
1
2

√
λ2 − 4η (C2 + h + kx + sz + wy)

)
− λ

)2 +

24A1ηλ

C1

(
−

√
λ2 − 4η tanh

(
1
2

√
λ2 − 4η (C2 + h + kx + sz + wy)

)
− λ

) , (32)

for η �= 0, and λ2 − 4η < 0,

u2.2 =
2A1

(
2η + λ2

)
C1

+
48A1η

2

C1

(√
4η − λ2 tan

(
1
2

√
4η − λ2 (C2 + h + kx + sz + wy)

)
− λ

)2 +

24A1ηλ

C1

(√
4η − λ2 tan

(
1
2

√
4η − λ2 (C2 + h + kx + sz + wy)

)
− λ

) , (33)

for η = 0, λ �= 0, and λ2 − 4η > 0,

u2.3 =
2A1λ

2

μ1 (−k2λ2μ3 − 1)

+
12A1λ

2

μ1 (−k2λ2μ3 − 1) (sinh (λ (C3 + h + kx + sz + wy)) + cosh (λ (C3 + h + kx + sz + wy)) − 1)2

+
12A1λ

2

μ1 (−k2λ2μ3 − 1) (sinh (λ (C3 + h + kx + sz + wy)) + cosh (λ (C3 + h + kx + sz + wy)) − 1)
,

(34)

for η �= 0, λ �= 0, and λ2 − 4η = 0,

u2.4 = − 3A1λ
4 (−C4 + h + kx + sz + wy)2

μ1 (λ (−C4 + h + kx + sz + wy) + 2)2
+

6A1λ
3 (−C4 + h + kx + sz + wy)

μ1 (λ (−C4 + h + kx + sz + wy) + 2)
− 12A1η

μ1
,

(35)

for η = 0, λ = 0, and λ2 − 4η = 0,

u2.5 =
12A1

μ1 (−4ηk2μ3 − 1) (C5 + h + kx + sz + wy)2
+

8A1η

μ1 (−4ηk2μ3 − 1)
, (36)

and hence

A1 = k2μ2 + μ3

(
μ4w

2 − μ5s
2
)
, C1 = μ1

(
k2μ3

(
4η − λ2

) − 1
)
, C2 =

tω
(
k4μ2

(
4η − λ2

) − μ5s
2 + μ4w

2
)

ω (k3μ3 (4η − λ2) − k)
,



ZAMP Sensitivity and wave propagation... Page 9 of 15 78

C3 =
tω

(−k4λ2μ2 − μ5s
2 + μ4w

2
)

ω (−λ2k3μ3 − k)
, C4 =

tω
(
μ4w

2 − μ5s
2
)

kω
,C5 =

tω
(−4ηk4μ2 − μ5s

2 + μ4w
2
)

ω (−4ηk3μ3 − k)
.

Case 4.

B0 = −12η
(
k2μ2 + μ3

(
μ4w

2 − μ5s
2
))

μ1 (k2μ3 (4η − λ2) + 1)
; B1 = −12λ

(
k2μ2 + μ3

(
μ4w

2 − μ5s
2
))

μ1 (k2μ3 (4η − λ2) + 1)
;

B2 = −12
(
k2μ2 + μ3

(
μ4w

2 − μ5s
2
))

μ1 (k2μ3 (4η − λ2) + 1)
; c =

k4μ2

(
4η − λ2

)
+ μ5s

2 − μ4w
2

k3μ3 (4η − λ2) + k
. (37)

Set 4.1.

For η �= 0, and λ2 − 4η > 0,

u2.6 = −12A1η

D1μ1
− 48A1η

2

D1μ1

(
−

√
λ2 − 4η tanh

(
1
2

√
λ2 − 4η (D2 + h + kx + sz + wy)

)
− λ

)2

− 24A1ηλ

D1μ1

(
−

√
λ2 − 4η tanh

(
1
2

√
λ2 − 4η (D2 + h + kx + sz + wy)

)
− λ

) , (38)

for η �= 0, and λ2 − 4η < 0,

u2.7 = −12A1η

D1μ1
− 48A1η

2

D1μ1

(√
4η − λ2 tan

(
1
2

√
4η − λ2 (D2 + h + kx + sz + wy)

)
− λ

)2

− 24A1ηλ

D1μ1

(√
4η − λ2 tan

(
1
2

√
4η − λ2 (D2 + h + kx + sz + wy)

)
− λ

) , (39)

for η = 0, λ �= 0, and λ2 − 4η > 0,

u2.8 = − 12A1λ
2

μ1 (1 − k2λ2μ3) (sinh (λ (D3 + h + kx + sz + wy)) + cosh (λ (D3 + h + kx + sz + wy)) − 1)2

− 12A1λ
2

μ1 (1 − k2λ2μ3) (sinh (λ (D3 + h + kx + sz + wy)) + cosh (λ (D3 + h + kx + sz + wy)) − 1)
,

(40)

for η �= 0, λ �= 0, and λ2 − 4η = 0,

u2.9 = − 3A1λ
4 (D4 + h + kx + sz + wy)2

μ1 (λ (D4 + h + kx + sz + wy) + 2)2
+

6A1λ
3 (D4 + h + kx + sz + wy)

μ1 (λ (D4 + h + kx + sz + wy) + 2)
− 12A1η

μ1
, (41)

for η = 0, λ = 0, and λ2 − 4η = 0,

u2.10 = − 12A1

μ1 (1 − 4ηk2μ3) (D5 + h + kx + sz + wy)2
, (42)

where

A1 = k2μ2 + μ3

(
μ4w

2 − μ5s
2
)
,D1 = k2μ3

(
4η − λ2

)
+ 1,D2 =

tω
(
k4μ2

(
4η − λ2

)
+ μ5s

2 − μ4w
2
)

ω (k3μ3 (4η − λ2) + k)
,

D3 =
tω

(−k4λ2μ2 + μ5s
2 − μ4w

2
)

ω (k − k3λ2μ3)
,D4 =

tω
(
μ5s

2 − μ4w
2
)

kω
,D5 =

tω
(−4ηk4μ2 + μ5s

2 − μ4w
2
)

ω (k − 4ηk3μ3)
.
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Fig. 1. The surface graphs of modified generalized Kudryashov solution u1.1 of Eq. (23)

6. Graphical representations

By selecting appropriate values for the unknown parameters, numerous graphs are displayed in this study
using Mathematica. The results reveal that Eqs. (23) and (32) are dark soliton, Eqs. (24), (27), (33), and
(39) are periodic, Eqs. (25), (34), and (40) are hyperbolic function, Eqs.(28), and (29) are exponential
function, and Eqs. (35), (36), (41), and (42) are lump soliton solutions.

For Eqs. (23), (24), (25), (27), (28), (29), (32) and (38), the 3D, contour and 2D plots are shown in
Figs. 1, 2, 3, 4, 5. Wave structures are significant in the realm of engineering and physical sciences. All
of the solutions obtained are novel and do not exist in the literature.

• Figure 1 with (a) and (b) for α = 0.1, β = 0.1, γ = 0.72, d = 0.27, k = −0.17, μ1 = −0.33, μ2 =
−0.45, μ3 = 0.61, μ4 = 0.77, s = 0.28, w = 0.19, y = 0.15, z = 0.15, μ5 = 0.24, and ω = 0.95, (c)
t = 0.35.

• Figure 2 with (a) and (b) for β = 0.1, γ = 0.72, d = 0.97, k = −0.17, μ1 = −0.33, μ2 = −0.45, μ3 =
0.61, μ4 = 0.77, μ5 = −0.24, s = 0.1, w = 0.19, y = 0.13, z = 0.17, and ω = 0.65, (c) t = 0.35.

• Figure 3 with (a) and (b) for α = 2, β = 1, d = 0.97, k = 0.17, μ1 = −0.43, μ2 = 0.55, μ3 =
−0.81, μ4 = 0.37, s = 0.38, w = 0.19, y = 0.25, z = 0.15, μ5 = 0.14, and ω = 0.65, (c) t = 0.35.

• Figure 4 with (a) and (b) for k = 1.5, w = 1, s = 0.01, y = 0.1, z = −0.5, μ1 = μ3 = μ4 = μ5 =
0.1, μ2 = 0.5, λ = 1, η = 0.1, h = 0.9, ω = 0.95, (c) t = 0.55.

• Figure 5 with (a) and (b) for k = 1.4, w = −0.5, s = 0.1, y = 0.1, z = 0.1, μ1 = 0.2, μ2 = μ5 =
0.1, μ3 = 0.1, μ4 = 0.3, λ = 0.99, η = 0.1, h = 0.4, ω = 0.95, (c) t = 0.95.

The outcomes show that the suggested methods will help the other associated strong nonlinear models,
leading to some novel soliton solutions. As a result, it is clear that the findings in this study provide new
knowledge to the existing literature because of their significance in the areas mentioned.

7. Sensitivity assessment

In order to analyze the sensitivity of the generalized KdV-BBM model in Eq. (1), the Galilean operator
for Eq. (20) results the following dynamical system:

du
dξ = φ,
dφ
dξ = −2cku(ξ)−k2μ1u(ξ)2+2μ5s2u(ξ)−2μ4w2u(ξ)

2k3(kμ2−cμ3)
.

(43)
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Fig. 2. The surface graphs of modified generalized Kudryashov solution u1.2 of Eq. (24)

Fig. 3. The surface graphs of modified generalized Kudryashov solution u1.3 of Eq. (25)

Fig. 4. The surface graphs of exp(−ϕ(ξ))-expansion solution u2.1 of Eq. (32)

The dynamical system is of low sensitivity if a small change in starting values gives a slight modification in

the system dynamics. The critical points of the given system will be the origin and (− 2(ck−μ5s2+μ4w2)
k2μ1

, 0).
Based on the trial values: c = −1, k = 1.2, w = 0.8, and s = μi = 1, the initial positions and velocities
of the system are considered to be closed to the origin as follows: P1 = (0.1, 0), P2 = (0.15, 0), and
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Fig. 5. The surface graphs of exp(−ϕ(ξ))-expansion solution u2.6 of Eq. (38)

Fig. 6. Sensitivity assessment for different initial data

P3 = (0.2, 0), the solutions are illustrated in Fig. 6a. The influence, with P1 = (0.85, 0.1), P2 = (0.9, 0.075),
and P3 = (0.95, 0.05) is also considered in Fig. 6b, subject to the parameters c = −0.8, k = 1.35, w = 0.5,
s = 0.3, and μi = 1. The critical point in this case is approximately (1, 0).

8. Conclusion

The modified generalized Kudryashov and exp(-ϕ(ξ))-expansion methods are used to derive entirely new
soliton solutions to the combined KdV-BBM equations. To understand the fundamental significance of
the suggested approaches through some solitons, graphical representations in 3D, contour, and 2D plots,
as illustrated in Figs. 1, 2, 3, 4, 5, are provided. These solutions are expected to play a significant role in
understanding the dynamics of this model and capturing some of its physical properties. The methods
show the power and efficiency of producing new exact solutions for a large class of nonlinear fractional
evolution equations. It is also important to note that the obtained exact solutions are plugged back into the
original equation to verify the accuracy of retrieved solutions. In addition, the sensitivity effectiveness
for the corresponding dynamical system is discussed. It has been shown that the methods are quite
successful and can be used to solve various forms of NFPDEs in many fields of physics, engineering, and
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mathematics. The obtained solutions may benefit some real-world situations or in particular geographic
areas, including coastal constructions or additional environmental factors. They could also be used to
study the energy transfer and subsequent wave patterns in nonlinear interactions between solitary waves.
This might have an impact on how waves behave in coastal areas, including how solitary waves might
affect sediment transfer, erosion along the coast, or the layout of coastal constructions. In conclusion, this
work has the potential to further our understanding of shallow water wave dynamics and offer insightful
information for both theoretical and practical applications in the future.
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