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Abstract. This article explores the Hilfer fractional derivative within the context of fractional differential equations and
investigates a mathematical model formulated as a three-point boundary value problem (BVP). The primary focus is on
the application of these models to analyze the jet flow of the Antarctic Circumpolar Current. The study establishes the
existence of stream functions using Schaefer’s fixed point theorem under the assumption of the continuity of the vorticity
function Φ. Furthermore, the article delves into the existence and uniqueness results of the stream functions by employing
the Banach fixed point theorem. This analysis is conducted under the condition that the vorticity function Φ is Lipschitz
continuous with respect to the stream function. Additionally, the stability of the stream functions of the BVP is explored
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1. Introduction

The Antarctic Circumpolar Current (ACC) is a significant oceanic current that follows a clockwise di-
rection (as observed from the south pole) while moving from west to east around Antarctica, commonly
referred to as the west-wind drift. Its crucial role in the global climate lies in facilitating water exchange
between the Atlantic, Indian, and Pacific oceans. A comprehensive understanding of ACC transport dur-
ing the Last Glacial Maximum is essential for accurately assessing ACC dynamics and past global climate
changes (see [17,23]). Unlike a continuous flow, the ACC comprises thin jets spanning 40 to 50 kilometers
in width, with average speeds exceeding 1 meter per second. The absence of land barriers in the latitude
region of the Drake Passage results in the ACC being one of the world’s most potent gyres. It exhibits a
mean transit of approximately 134±13 Sv through the Drake Passage, surpassing the combined transport
of all the world’s rivers by more than 100 times (see [3]).

Constantin and Johnson [6] introduced an approach that employed Euler’s equation in conjunction
with the integration of the equation of mass conservation and associated boundary conditions. This
methodology resulted in a solution capable of accurately depicting the fundamental characteristics of
gyres on the Earth’s surface, regardless of their size. Subsequent to their work, Hus and Martin [16]
delved into an exploration of solutions and the function pertaining to the ACC. Building upon these
contributions, Marynets [20] reexamined the governing equation from Constantin and Johnson’s study
[6], transforming it into a second-order two-point boundary value problem (BVP) suitable for analyzing
ocean flows devoid of azimuthal variations
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φ′′(s) = p(s)Φ

(
s, φ(s)

)
+ q(s), s ∈ J = [e, f],

φ(e) = 0, φ(f) = 0,
(1.1)

where Φ : [e, f] × R → R denotes the given continuous nonlinear oceanic vorticity functions, e � 0 and
f > e. Also, p, q : [e, f] → R are continuous functions given by

p(s) =
es

(1 + es)2
and q(s) = −2ωes(es − 1)

(1 + es)3
,

and the Coriolis parameter is denoted by the dimensionless symbol ω > 0. The author employs an
approach based on the topological transversality theorem to prove the existence of solutions for a class of
oceanic vorticities. Chu and Marynets [5] further extended the work of [20] and studied the same second-
order two-point BVP. The authors of [5] considered the semi-linear case and established their result by
using the topological degree theory and weighted eigenvalues. Also, for the sub-linear and super-linear
cases, the existence results were given by using FPTs. Wang et al. [33] studied nonlocal formulations
for modeling ACC by using unknown functions to represent horizontal flow components without taking
vertical motion into account.⎧⎨

⎩
φ′′(s) = p(s)Φ

(
s, φ(s)

)
+ q(s), s ∈ J = [e, f],

φ(e) =
m−2∑
i=1

ciφ(κi) and φ(f) =
m−2∑
i=1

diφ(κi),
(1.2)

where κi(i = 1, 2, 3, · · · ,m − 2) satisfies the condition:

e < κ1 < κ2 < · · · < κm−2 < f,

ci and di satisfy the condition:
m−2∑
i=1

ci =
m−2∑
i=1

di = 1.

Using topological degree, the zero-exponent theory, and the fixed point method, the authors prove the
existence of positive solutions to nonlocal BVP with nonlinear vorticity. The recent works on the gyre
models for the modeling of the ACC can be seen in [7,36]. Also, the application of the fixed point theory
can be seen in understanding the mathematical framework of the ACC.

For a second-order ordinary differential equation that describes the ACC’s flow, Yang et al. [35]
investigated the two-point BVP. In order to establish that the bounded solutions exist, Yang et al. [35]
applied fixed point theory. For some class of oceanic vorticities, they found that the solutions are unique
and radially symmetric. The model of the ACC’s second-order elliptic equation with Dirichlet boundary
was studied by Zhang et al. [37]. Nonlinear ocean vorticity with sub-critical growth and super-quadratic
velocities leads to the presence of infinitely many solutions for the nonlinear elliptic equations using the
truncation function and perturbation method.

While studying a particular phenomenon, Hilfer [14] introduced a new approach for the definition of
fractional derivative, which is known as the Hilfer fractional derivative (HFD). It is a unification and gen-
eralization of the Riemann–Liouville (R-L) and the Liouville–Caputo (L-C) fractional derivative. In fact,
HFD can be viewed as an interpolation between R-L and L-C fractional derivatives. Hilfer’s derivative
is more general and flexible, making it suitable for a wide range of applications, particularly where an
interpolation between two types of fractional derivatives is beneficial. The Hadamard derivative is more
specialized and often used in contexts where logarithmic behavior is prominent. It may be remarked in
passing that, as already observed in the survey-cum-expository review articles by Srivastava (see, [26] and
[27]), the so-called Caputo fractional derivative should be called the Liouville–Caputo fractional deriva-
tives, thereby giving credits to Liouville who considered such fractional derivatives many decades earlier
in 1832.
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The HFD is used in the modeling of several theoretical fractional-order simulations in applied problems
such as those involving dielectric relaxation in glass forming materials [15], a thermally sensitive resistor
problem [31], and so on (see, for example, [1,2]). In the year 2012, Furati et al. [13] published the first
article in which he proposed the qualitative analysis concerning the existence and uniqueness of the
solution for the initial value problem (IVP) involving the HFD. For further theoretical developments
on the HFD, see [9,10,14,22,29,32]. Some general families of fractional derivatives were introduced and
applied in the recent works (see [26,28,30]).

The stability theory is also an important topic in several fields of mathematics and its widespread
applications. It studies the behavior of solutions of differential equations and the trajectories of dynamical
systems by using small perturbations. This type of stability analysis is more suitable to a dynamical
system and quite appropriate in applications when it is not possible to find an exact solution (see [4]).

Positive solutions for the ACC’s nonlinear model have been studied by Fečkan et al. [11], who also
provided a qualitative examination of the model in terms of the UH stability. In the year 2022, Dhawan et
al. [8] worked on the qualitative analysis for coupled Hilfer fractional differential equation (HFDE) with
nonlocal conditions. For the purpose of modeling the jet flow of the ACC, Wang et al. [34] looked into
the existence and uniqueness results where the vorticity function satisfies either a Lipschitz condition or
is continuous. The presence of solutions for nonlinear elliptic equations representing the steady flow of
the ACC was investigated by Fečkan et al. [12].

From the above discussion, we can observe that the qualitative analysis of the ACC models is quite
significant in order to observe ocean currents. Also, the HFD has numerous applications. To the best
of our knowledge, till now there is no such work on the qualitative analysis of the ACC model which
involves the HFD. Therefore, motivated by the works discussed above, we consider the following ACC
model involving HFD: ⎧⎪⎨

⎪⎩
D�,ϕ

e+ φ(s) = p(s)Φ
(
s, φ(s)

)
+ q(s), s ∈ J = [e, f],

φ(e) = 0 and φ(f) = RLI1−γ
e+ φ(η), e < η < f,

(1.3)

where D�,ϕ
e+ represents the HFD of order � (1 < � � 2) and type ϕ (0 � ϕ � 1) and RLI1−γ

e+ represent the
RL fractional derivative of order 1 − γ, γ = � + 2ϕ − �ϕ, (1 < γ ≤ 2). Also, Φ : [e, f] × R → R denotes the
given continuous nonlinear oceanic vorticity functions, e � 0 and f > e.

In our present investigation, we have used a variety of different approaches to obtain the primary
conclusions, which differ from the methodologies used in [19,21]. The primary purpose of this study
is to obtain the existence result for the Hilfer fractional differential equation (HFDE) with three-point
boundary conditions by using the Schaefer FPT. Also, for the uniqueness of the solution to the investigated
problem, the Banach fixed point theorem is used. In addition to the existence and uniqueness result, the a
priori estimate of the solution is also obtained. Furthermore, by adding to the qualitative properties, the
UH stability analysis is also proposed for the HFDE with three-point boundary conditions (1.3) following
the methodology given by Rus [25].

The proposed work is structured as follows. In Sect. 2, a few preliminaries of fractional calculus and
some basic lemmas are provided, which are required to analyze the mathematical model (1.3). Section 3
provides a few sufficient conditions for the analytical properties by using Schaefer’s FPT and the Banach
contraction principle and also obtains an a priori bound of the solution. In Sect. 4, we determine Ulam’s
stability of the solution of the FDE. Validation of our findings is provided by a number of appropriate
illustrative examples in Sect. 5. Finally, in Sect 6, the conclusion of our present study has been given.
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2. Preliminaries

Throughout this article, E = C([e, f], R) is a Banach space of all continuous functions defined on [e, f] → R,
which is endowed with the norm given as follows:

‖φ‖E = sup{|φ(s)| : s ∈ [e, f]}.

Definition 1. (see [18]and [24]) The R-L fractional integral operator RLI�
e+, for a function φ : [e, f] → R,

is given by

RLI�
e+φ(s) =

1
Γ(�)

s∫
e

(s − τ)�−1φ(τ) dτ,

provided that the integral exists, where Γ denotes the familiar gamma function.

Remark 1. (see [18]) If p > −1 and n > 0, then

RLIn
0+(xp) =

Γ(p + 1)
Γ(n + p + 1)

xn+p.

Definition 2. (see [18]and [24]) The R-L fractional derivative operator RLD�
e+ for a function φ, is defined

as follows:

RLD�
e+φ(s) =

1
Γ(n − �)

dn

dsn

s∫
e

φ(τ)
(s − τ)�+1−n

dτ.

Definition 3. (see [18], [24]and [27]) The L-C fractional derivative operator LCD�
e+ of order �, for a

function φ : [e, f] → R, is defined by

LCD�
e+φ(s) =

1
Γ(n − �)

s∫
e

(s − τ)n−�−1φ(n)(τ) dτ, n = [�] + 1,

provided that the integral exists, where [�] denotes the integer part of the real number � and φ(n) denotes
the derivative of the integer order n.

Definition 4. (see [14];see also [26] and [29])
For φ ∈ E, the HFD of order � and type ϕ is of the form given by

D�,ϕ
e+ φ(s) =

(
RLI

ϕ(n−�)
e+

dn

dsn
(RL

I
(1−ϕ)(n−�)
e+ φ

))
(s), v = � + nϕ − �ϕ, (2.1)

such that the expression on the right-hand side exists, where � ∈ R, n − 1 < � � n, n ∈ N, and
ϕ ∈ R (0 � ϕ � 1).

Remark 2. If ϕ = 0, n − 1 < � � n, then the HFD corresponds to the R-L fractional derivative and we
have

D�,0
e+ φ(s) =

dn

dsn

(
RLIn−�

e+ φ

)
(s) = RLD�

e+φ(s).

Remark 3. If ϕ = 1, n − 1 < � � n, then the HFD corresponds to the L-C fractional derivative and we
thus find that

D�,1
e+ φ(s) = RLIn−�

e+

dn

dsn
(
φ(s)

)
= LCD�

e+φ(s).

Lemma 1. [18] If φ ∈ Cn[e, f] and n − 1 < � � n, then
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(i) RLI�
e+

RLD�
e+φ(s) = φ(s) −

n∑
k=1

Ck(s − e)�−k.

(ii) RLD�
e+

RLI�
e+φ(s) = φ(s).

The following lemma addresses a linear version of the three-point BVP (1.3).

Lemma 2. Let P ∈ C([e, f], R) be a given function. Then, the solution of the following three-point BVP:{
D�,ϕ

e+ φ(s) = P(s), s ∈ J = [e, f],
φ(e) = 0 and φ(f) = RLI1−γ

e+ φ(η), e < η < f
(2.2)

is given by

φ(s) =
(s − e)γ−1

A

(
1

Γ(�ϕ − 2ϕ + 1)

η∫
e

(η − w)�ϕ−2ϕP(w)dw − 1
Γ(�)

f∫
e

(f − w)�−1P(w) dw

)

+
1

Γ(�)

s∫
e

(s − w)�−1P(w) dw, (2.3)

where

A = (f − e)γ−1 − Γ(γ) and γ = � + 2ϕ − �ϕ.

Proof. In order to solve the three-point BVP (2.2), we first apply the R-L integral of order � on both
sides of the given equation (2.2). We thus find that

RLI�
e+D�,ϕ

e+ φ(s) = RLI�
e+P(s).

Since 2 − γ = (2 − �)(1 − ϕ) and 1 < γ � 2, by using Definition 4, we have

RLI�
e+

RLI
ϕ(2−�)
e+ D2

(
RLI

(1−ϕ)(2−�)
e+ φ

)
(s) = RLI�

e+P(s)

RLIγ
e+D2 RLI2−γ

e+ = RLI�
e+P(s). (2.4)

Now, applying Lemma 1 in the equation (2.4), we have

φ(s) −
2∑

k=1

Ck(s − e)γ−k = RLI�
e+P(s),

φ(s) = C1(s − e)γ−1 + C2(s − e)γ−2 + RLI�
e+P(s). (2.5)

Using the boundary condition φ(e) = 0 implies that C2 = 0, so we get

φ(s) = C1(s − e)γ−1 + RLI�
e+P(s).

Again, using the another boundary condition φ(f) = RLI1−γ
e+ φ(η), we have

φ(f) = C1(f − e)γ−1 + RLI�
e+P(f).

We also have
RLI1−γ

e+ φ(η) = C1
RLI1−γ

e+ (η − e)γ−1 + RLI1−γ
e+

RLI�
e+P(η)

= C1Γ(γ) + RLI�ϕ−2ϕ+1
e+ P(η).

On comparing the above equations, we obtain the value of C1 as follows:

φ(f) = RLI1−γ
e+ φ(η)
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C1 =
1
A

(
RLI�ϕ−2ϕ+1

e+ P(η) − RLI�
e+P(f)

)
.

Substituting the value of C1 and C2 in the equation (2.5), the desired result is obtained. �

3. Existence and uniqueness results

This section discusses the suggested three-point BVP and the fundamental conclusions proving its ex-
istence and uniqueness of the solution of (1.3). With the help of linear growth condition imposed on
the nonlinear vorticity function, the result for the existence of the solution of the three-point BVP was
established and the result for the uniqueness of the solution for three-point BVP was investigated using
the Lipschitz condition. For this, operator F : C([e, f], R) → C([e, f], R) is defined as follows:

F
(
φ(s)

)
=

(s − e)γ−1

A

(
1

Γ(�ϕ − 2ϕ + 1)

η∫
e

(η − w)�ϕ−2ϕ[p(w)Φ
(
w, φ(w)

)
+ q(w)] dw

− 1
Γ(�)

f∫
e

(f − w)�−1[p(w)Φ
(
w, φ(w)

)
+ q(w)]dw

)

+
1

Γ(�)

s∫
e

(s − w)�−1[p(w)Φ
(
w, φ(w)

)
+ q(w)] dw, (3.1)

Therefore, three-point BVP is transformed into a fixed point problem s = F(s). Observe that the fixed
point of the operator F is the solution of the three-point BVP. We now present the necessary assumptions
for proving the existence and uniqueness results:
(H1) For φ, φ̄ ∈ R, there exist constants L, such that

|Φ(s, φ) − Φ(s, φ̄)| � L|φ − φ̄| ∀ s ∈ [e, f].

(H2) p, q : [e, f] → R be continuous and there exists m1,m2 > 0 to be a constant such that

|p(s)| < m1 and |q(s)| < m2.

(H3) There exist two real-valued functions p1, p2 ∈ R such that

|Φ(s, φ)| � p1 + p2|φ|
for s ∈ J and φ ∈ R.

(H4) There exists φ1 ∈ C([e, f], R+) to be an increasing function and K∗ > 0 such that
RLI�

e+φ1(s) � K∗φ1(s) for each s ∈ [e, f]

Theorem 1. Suppose that the hypotheses (H2) and (H3) are satisfied along with the condition 1−Λ2 > 0.
Then, the three-point BVP (1.3) has a solution where

Λ2 =
m1p2(η − e)�ϕ−2ϕ+1(f − e)�−1

Γ(2 − 2ϕ + �ϕ)
− m1p2(f − e)�

Γ(� + 1)

(
(f − e)�−1

|A|d2
+ 1

)
.

Proof. We prove that the solution of the three-point BVP (1.3) exists using Schaefer’s FPT. For this
first, we prove that F is continuous. Let {φn} be a sequence of functions that converges to φ.

|(Fφn)(s) − (Fφ)(s)| � (s − e)γ−1

|A|d2

[
1

Γ(�ϕ − 2ϕ + 1)

η∫
e

(η − w)�ϕ−2ϕ

(
|p(w)| · ∣∣Φn

(
w, φ(w)

)
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− Φ
(
w, φ(w)

)∣∣) dw +
1

Γ(�)

f∫
e

(f − w)�−1
[|p(w)|

· ∣∣Φn

(
w, φ(w)

) − Φ(w, φ(w)
)∣∣] dw

]

+
1

Γ(�)

s∫
e

(s − w)�−1
[|p(w)| · ∣∣Φn

(
w, φ(w)

) − Φ
(
w, φ(w)

)∣∣] dw

� (s − e)γ−1

|A|d2

(
1

Γ(�ϕ − 2ϕ + 1)

η∫
e

(η − w)�ϕ−2ϕ
[
m1|Φn

(
w, φ(w)

)

− Φ
(
w, φ(w)

)∣∣] dw +
1

Γ(�)

f∫
e

(f − w)�−1

· [
m1|Φn(w, φ

(
w)

) − Φ
(
w, φ(w)

)∣∣] dw

)

+
1

Γ(�)

s∫
e

(s − w)�−1
[
m1

∣∣Φn

(
w, φ(w)

) − Φ
(
w, φ(w)

)∣∣] dw

� (f − e)γ−1

|A|d2

m1 [p2(|φn| − |φ|)] (η − e)�ϕ−2ϕ+1

Γ(�ϕ − 2ϕ + 2)

+
m1 [p2(|φn| − |φ|)] (f − e)�

Γ(� + 1)

(
(f − e)γ−1

|A|d2
+ 1

)

� (f − e)γ−1

|A|d2

m1 p2(‖φn − φ‖E) (η − e)�ϕ−2ϕ+1

Γ(�ϕ − 2ϕ + 2)

+
m1 p2(‖φn − φ‖E) (f − e)�

Γ(� + 1)

(
(f − e)γ−1

|A|d2
+ 1

)
.

Since the function Φ
(
s, φ(s)

)
is continuous, we have ‖(Fφn)(s) − (Fφ)(s)‖E → 0 as n → ∞. Hence, the

function F is continuous.

We next prove that F maps bounded sets in C([e, f], R) into bounded sets. Indeed, for any r > 0, we
define Br = {φ ∈ E : ‖φ‖E � r}.

∣∣F(
φ(s)

)∣∣ � (s − e)γ−1

|A|d2

(
1

Γ(�ϕ − 2ϕ + 1)

η∫
e

(η − w)�ϕ−2ϕ
[|p(w)| · ∣∣Φ(

w, φ(w)
)∣∣ + |q(w)|] dw

+
1

Γ(�)

f∫
e

(f − w)�−1
[|p(w)| · ∣∣Φ(

w, φ(w)
)∣∣ + |q(w)|] dw

)

+
1

Γ(�)

s∫
e

(s − w)�−1
[|p(w)| · |Φ(

w, φ(w)
)∣∣ + |q(w)|] dw

� (s − e)γ−1

|A|d2

(
1

Γ(�ϕ − 2ϕ + 1)

η∫
e

(η − w)�ϕ−2ϕ[m1(p1 + p2|φ(s)|) + m2]dw
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+
1

Γ(�)

f∫
e

(f − w)�−1[m1(p1 + p2|φ(s)|) + m2]dw
)

+
1

Γ(�)

s∫
e

(s − w)�−1[m1(p1 + p2|φ(s)|) + m2]dw

� (f − e)γ−1

|A|d2

[m1(p1 + p2‖φ‖E) + m2](η − e)�ϕ−2ϕ+1

Γ(�ϕ − 2ϕ + 2)

+
[m1(p1 + p2‖φ‖E) + m2](f − e)�

Γ(� + 1)

(
(f − e)γ−1

|A|d2
+ 1

)
, (3.2)

which shows that F is uniformly bounded. Moreover, we prove that F(Br) is equi-continuous. Let 0 �
s1 < s2 � 1 and φ ∈ Br. Then, we have

|(Fφ)(s2) − (Fφ)(s1)| =
(s2 − e)γ−1

|A|d2

(
1

Γ(�ϕ − 2ϕ + 1)

η∫
e

(η − w)�ϕ−2ϕ
[|p(w)| · ∣∣Φ(

w, φ(w)
)∣∣

+ |q(w)|] dw +
1

Γ(�)

f∫
e

(f − w)�−1
[|p(w)| · ∣∣Φ(

w, φ(w)
)∣∣

+ |q(w)|] dw

)
+

1
Γ(�)

s2∫
e

(s − w)�−1
[|p(w)| · ∣∣Φ(

w, φ(w)
)∣∣ + |q(w)|] dw

+
(s1 − e)γ−1

|A|d2

(
1

Γ(�ϕ − 2ϕ + 1)

η∫
e

(η − w)�ϕ−2ϕ
[|p(w)| · ∣∣Φ(

w, φ(w)
)∣∣

+ |q(w)|] dw +
1

Γ(�)

f∫
e

(f − w)�−1
[|p(w)| · ∣∣Φ(

w, φ(w)
)∣∣ + |q(w)|]dw)

+
1

Γ(�)

s1∫
e

(s − w)�−1
[|p(w)| · ∣∣Φ(

w, φ(w)
)∣∣ + |q(w)|] dw

� (s2 − e)γ−1 − (s1 − e)γ−1

|A|d2

(
1

Γ(�ϕ − 2ϕ + 1)

η∫
e

(η − w)�ϕ−2ϕ

· [|p(w)| · ∣∣Φ(
w, φ(w)

)∣∣ + |q(w)|] dw

− 1
Γ(�)

f∫
e

(f − w)�−1
[|p(w)| · ∣∣Φ(

w, φ(w)
)|

+ |q(w)|] dw

)
+

1
Γ(�)

s2∫
s1

(s − w)�−1
[|p(w)| · |Φ(

w, φ(w)
)∣∣ + |q(w)|] dw

� (s2 − e)γ−1 − (s1 − e)γ−1

|A|d2

(
[m1(p1 + p2‖φ‖E) + m2]

Γ(�ϕ − 2ϕ + 2)
(η − e)�ϕ−2ϕ+1
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+
[m1(p1 + p2‖φ‖E) + m2]

Γ(� + 1)
(f − e)�ϕ−2ϕ+1

)

+
[m1(p1 + p2‖φ‖E) + m2]

Γ(� + 1)
(s2 − s1)�.

We thus obtain

‖(Fφ)(s2) − (Fφ)(s1)‖E → 0 as s2 → s1.

Since F(Br) is equi-continuous, from the Arzelá–Ascoli theorem, the function F is completely continuous.

Lastly, we prove that the set Θ = {φ ∈ C([e, f], R) : φ = θF(φ) for some θ ∈ (0, 1)} is bounded.
Let φ ∈ Θ. Then, φ(s) = θF(φ)(s) for some 0 < θ < 1. Therefore, for each s ∈ [e, f], we have

|φ(s)| = |θF(φ)(s)|

� (s − e)γ−1

|A|d2

(
1

Γ(�ϕ − 2ϕ + 1)

η∫
e

(η − w)�ϕ−2ϕ
[∣∣p(w)| · ∣∣Φ(

w, φ(w)
)∣∣ + |q(w)|] dw

+
1

Γ(�)

f∫
e

(f − w)�−1
[|p(w)| · ∣∣Φ(

w, φ(w)
)∣∣ + |q(w)|] dw

)

+
θ

Γ(�)

s∫
e

(s − w)�−1
[|p(w)| · ∣∣Φ(

w, φ(w)
)∣∣ + |q(w)|] dw

� (s − e)γ−1

|A|d2

(
1

Γ(�ϕ − 2ϕ + 1)

η∫
e

(η − w)�ϕ−2ϕ[m1(p1 + p2|φ(s)|) + m2]dw

+
1

Γ(�)

f∫
e

(f − w)�−1[m1(p1 + p2|φ(s)|) + m2]dw
)

+
1

Γ(�)

s∫
e

(s − w)�−1[m1(p1 + p2|φ(s)|) + m2]dw

� (f − e)γ−1

|A|d2

[m1(p1 + p2‖φ‖E) + m2](η − e)�ϕ−2ϕ+1

Γ(�ϕ − 2ϕ + 2)

+
[m1(p1 + p2‖φ‖E) + m2](f − e)�

Γ(� + 1)

(
(f − e)γ−1

|A|d2
+ 1

)
.

Thus, we have

‖φ‖E � (f − e)γ−1

|A|d2

[m1(p1 + p2‖φ‖E) + m2](η − e)�ϕ−2ϕ+1

Γ(�ϕ − 2ϕ + 2)

+
[m1(p1 + p2‖φ‖E) + m2](f − e)�

Γ(� + 1)

(
(f − e)γ−1

|A|d2
+ 1

)

‖φ‖E
(

1 − m1 p2 (f − e)γ−1(η − e)�ϕ−2ϕ+1

Γ(�ϕ − 2ϕ + 2)
− m1 p2 (f − e)�

Γ(� + 1)

(
(f − e)γ−1

|A|d2
+ 1

) )

� (f − e)γ−1

|A|d2

[m1p1 + m2](η − e)�ϕ−2ϕ+1

Γ(�ϕ − 2ϕ + 2)
+

[m1p1 + +m2](f − e)�

Γ(� + 1)

(
(f − e)γ−1

|A|d2
+ 1

)
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‖φ‖E � Λ1

1 − Λ2
,

where

Λ1 =
(f − e)γ−1

|A|d2

[m1p1 + m2](η − e)�ϕ−2ϕ+1

Γ(�ϕ − 2ϕ + 2)
+

[m1p1 + m2](f − e)�

Γ(� + 1)

(
(f − e)γ−1

|A|d2
+ 1

)

and

Λ2 =
m1 p2 (f − e)γ−1(η − e)�ϕ−2ϕ+1

Γ(�ϕ − 2ϕ + 2)
− m1 p2 (f − e)�

Γ(� + 1)

(
(f − e)γ−1

|A|d2
+ 1

)
.

Hence, clearly, the set Θ is bounded. Therefore, by referring to Schaefer’s FPT, F has a fixed point which
is a solution of (1.3). �

Theorem 2. If the conditions (H1) and (H2) are satisfied along with the condition N < 1, then the BVP
(1.3) has a unique solution on [e, f], where

N =
(f − e)γ−1

|A|d2

m1L(η − e)�ϕ−2ϕ+1

Γ(�ϕ − 2ϕ + 2)
+

m1L(f − e)�

Γ(� + 1)

(
(f − e)γ−1

|A|d2
+ 1

)
.

Proof. By applying the Banach FPT, we shall show that the function F has a unique fixed point. Let

M = sup
s∈[e,f]

|Φ(s, 0)| < ∞

and suppose that φ, ψ ∈ E. Then, for s ∈ [e, f], we have

|(Fφ)(s) − (Fψ)(s)| � (s − e)γ−1

|A|d2

(
1

Γ(�ϕ − 2ϕ + 1)

η∫
e

(η − w)�ϕ−2ϕ
[|p(w)| · ∣∣Φ(

w, φ(w)
)

− Φ(w, ψ(w))|] dw +
1

Γ(�)

f∫
e

(f − w)�−1
[|p(w)|

· ∣∣Φ(w, φ(w)
) − Φ

(
w, ψ(w)

)∣∣] dw

)

+
1

Γ(�)

s∫
e

(s − w)�−1
[|p(w)| · ∣∣Φ(

w, φ(w)
) − Φ

(
w, ψ(w)

)∣∣] dw

� (s − e)γ−1

|A|d2

(
1

Γ(�ϕ − 2ϕ + 1)

η∫
e

(η − w)�ϕ−2ϕ
[
m1|Φ

(
w, φ(w)

)

− Φ
(
w, ψ(w)

)∣∣] dw +
1

Γ(�)

f∫
e

(f − w)�−1

· [
m1|Φ

(
w, φ(w)

) − Φ
(
w, ψ(w)

)∣∣] dw

)

+
1

Γ(�)

s∫
e

(s − w)�−1
[
m1

∣∣Φ(
w, φ(w)

) − Φ
(
w, ψ(w)

)∣∣] dw

�
[
(f − e)γ−1

|A|d2

m1L (η − e)�ϕ−2ϕ+1

Γ(�ϕ − 2ϕ + 2)
+

m1L (f − e)�

Γ(� + 1)
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·
(

(f − e)γ−1

|A|d2
+ 1

) ]
‖φ − ψ‖E,

which implies that

‖Fφ − Fψ‖E � N‖φ − ψ‖E.
Since N < 1, we see that F is a contraction. Therefore, the Banach FPT allows us to conclude that F has
a fixed point that is the unique solution to the three-point BVP (1.3). �

The next result, which gives us the a priori bound of the solution, can be obtained readily at this
point.

3.1. The a priori bound of the solution

In light of the assumptions made in Theorem 2, it is possible for us to derive an a priori bound on the
solution φ(s) of (1.3). Let

Br = {φ ∈ E : ‖φ‖E � r}
be the set of bounded continuous functions in [e, f] with bound r > 0. We can estimate a value of r as
follows.

Assuming that the unique solution φ(s) is in Br, we have

|φ(s)| = |F(φ)(s)|

� (s − e)γ−1

|A|d2

(
1

Γ(�ϕ − 2ϕ + 1)

η∫
e

(η − w)�ϕ−2ϕ
[|p(w)| · ∣∣Φ(

w, φ(w)
)∣∣ + |q(w)|] dw

+
1

Γ(�)

f∫
e

(f − w)�−1
[|p(w)| · ∣∣Φ(

w, φ(w)
)∣∣ + |q(w)|] dw

)

+
1

Γ(�)

s∫
e

(s − w)�−1
[|p(w)| · ∣∣Φ(

w, φ(w)
)∣∣ + |q(w)|] dw

� (s − e)γ−1

|A|d2

(
1

Γ(�ϕ − 2ϕ + 1)

η∫
e

(η − w)�ϕ−2ϕ
[|p(w)| · ∣∣Φ(

w, φ(w)
) − Φ(w, 0)

∣∣
+ |Φ(w, 0)| + |q(w)|] dw

+
1

Γ(�)

f∫
e

(f − w)�−1
[|p(w)| · ∣∣Φ(

w, φ(w)
) − Φ(w, 0)

∣∣ + |Φ(w, 0)| + |q(w)|] dw

)

+
1

Γ(�)

s∫
e

(s − w)�−1
[|p(w)| · ∣∣Φ(w, φ(w)) − Φ(w, 0)

∣∣ +
∣∣Φ(w, 0)

∣∣ + |q(w)|] dw

� (s − e)γ−1

|A|d2

(
1

Γ(�ϕ − 2ϕ + 1)

η∫
e

(η − w)�ϕ−2ϕ[m1(L|φ(s)| + M) + m2]dw

+
1

Γ(�)

f∫
e

(f − w)�−1[m1(L|φ(s)| + M) + m2]dw
)
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+
1

Γ(�)

s∫
e

(s − w)�−1[m1(L|φ(s)| + M) + m2]dw

� (f − e)γ−1

|A|d2

[m1(L|‖φ‖E + M) + m2](η − e)�ϕ−2ϕ+1

Γ(�ϕ − 2ϕ + 2)

+
[m1(L|‖φ‖E + M) + m2](f − e)�

Γ(� + 1)

(
(f − e)γ−1

|A|d2
+ 1

)

� (f − e)γ−1

|A|d2

[m1(Lr + M) + m2](η − e)�ϕ−2ϕ+1

Γ(�ϕ − 2ϕ + 2)

+
[m1(Lr + M) + m2](f − e)�

Γ(� + 1)

(
(f − e)γ−1

|A|d2
+ 1

)
Hence, we obtain

‖φ(s)‖E � (f − e)γ−1

|A|d2

[m1(Lr + M) + m2](η − e)�ϕ−2ϕ+1

Γ(�ϕ − 2ϕ + 2)

+
[m1(Lr + M) + m2](f − e)�

Γ(� + 1)

(
(f − e)γ−1

|A|d2
+ 1

)
.

We now let r > 0 be a real number such that

r �
(f−e)γ−1

|A|d2

[m1M+m2](η−e)�ϕ−2ϕ+1

Γ(�ϕ−2ϕ+2) + [m1M+m2](f−e)�

Γ(�+1)

(
(f−e)γ−1

|A|d2
+ 1

)
1 − (f−e)γ−1

|A|d2

m1L(η−e)�ϕ−2ϕ+1

Γ(�ϕ−2ϕ+2) + m1L(f−e)�

Γ(�+1)

(
(f−e)γ−1

|A|d2
+ 1

) .

This provides an a priori bound for φ(s).

4. Stability results

In this section, we analyze the stability of the solution of HFDE by using the UH stability and the
generalized UH stability. Implementing the methodology demonstrated in [25], we present the following
definitions of the UH and the generalized UH stabilities conformable to the BVP (1.3).

Definition 5. The three-point BVP (1.3) is called UH stable whenever there exists a real constant GΦ > 0
such that, for each δ > 0 and for each solution φ ∈ E of the following inequality:

|D�,ϕ
e+ φ(s) − p(s)Φ

(
s, φ(s)

) − q(s)| � δ, (4.1)

there is a solution φ′ ∈ E of the system (1.3) such that

|φ(s) − φ′(s)| � GΦδ, s ∈ [e, f].

Definition 6. The system (1.3) is called a generalized UH stable whenever there exists a function ΥΦ ∈
C(R+, R

+), and ΥΦ(0) = 0, such that, for each δ > 0 and for each solution φ ∈ E of the following
inequality:

|D�,ϕ
e+ φ(s) − p(s)Φ

(
s, φ(s)

) − q(s)| � δ, (4.2)

there is a solution φ′ ∈ E of the system (1.3) such that

|φ(s) − φ′(s)| � ΥΦ(δ), s ∈ [e, f].

Remark 4. A function φ ∈ E is the solution of the inequality (4.1) if and only if there exists a function
g ∈ E, which depends on φ, such that

(i) |g(s)| � δ.
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(ii) D�,ϕ
e+ φ(s) = p(s)Φ

(
s, φ(s)

)
+ q(s) + g(s).

Theorem 3. If all of the assumptions of Theorem 2 are satisfied, then the three-point BVP (1.3) is UH
stable.

Proof. Let us consider δ > 0 and φ(s) ∈ E such that

|D�,ϕ
e+ φ(s) − p(s)Φ

(
s, φ(s)

) − q(s)| � δ.

Then, owing to Remark (1), there is a continuous function g such that

D�,ϕ
e+ φ(s) = p(s)Φ

(
s, φ(s)

)
+ q(s) + g(s)

and

|g(s)| � δ

for all s ∈ [e, f]. We thus have

φ(s) =
(s − e)γ−1

|A|d2

(
1

Γ(�ϕ − 2ϕ + 1)

η∫
e

(η − w)�ϕ−2ϕ
[
p(w)Φ

(
w, φ(w)

)
+ q(w) + g(w)

]
dw

− 1
Γ(�)

f∫
e

(f − w)�−1
[
p(w)Φ

(
w, φ(w)

)
+ q(w) + g(w)

]
dw

)

+
1

Γ(�)

s∫
e

(s − w)�−1
[
p(w)Φ

(
w, φ(w)

)
+ q(w) + g(w)

]
dw,

As we see from Theorem 2, there exists a unique solution φ′ ∈ E for the three-point BVP (1.3). Therefore,
we get

|φ(s) − φ′(s)| � (s − e)γ−1

|A|d2

(
1

Γ(�ϕ − 2ϕ + 1)

η∫
e

(η − w)�ϕ−2ϕ
[|p(w)| · ∣∣Φ(

w, φ(w)
) − Φ

(
w, φ′(w)

)∣∣

+ |g(w)|] dw − 1
Γ(�)

f∫
e

(f − w)�−1
[|p(w)| · ∣∣Φ(

w, φ(w)
) − Φ

(
w, φ′(w)

)∣∣ + |g(w)|] dw

)

+
1

Γ(�)

s∫
e

(s − w)�−1
[|p(w)| · ∣∣Φ(

w, φ(w)
) − Φ

(
w, φ′(w)

)∣∣ + |g(w)
∣∣] dw

� (s − e)γ−1

|A|d2

(
1

Γ(�ϕ − 2ϕ + 1)

η∫
e

(η − w)�ϕ−2ϕ
[
m1|Φ

(
w, φ(w)

)

− Φ
(
w, φ′(w)

)∣∣ + |g(w)|] dw − 1
Γ(�)

f∫
e

(f − w)�−1
[
m1|Φ

(
w, φ(w)

) − Φ
(
w, φ′(w)

)∣∣

+ |g(w)|] dw

)
+

1
Γ(�)

s∫
e

(s − w)�−1
[
m1

∣∣Φ(
w, φ(w)

) − Φ
(
w, φ′(w)

)∣∣ + |g(w)|] dw

�
[
(f − e)γ−1

|A|d2

[m1L|φ(s) − φ′(s)| + δ] (η − e)�ϕ−2ϕ+1

Γ(�ϕ − 2ϕ + 2)
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+
[m1L|φ(s) − φ′(s)| + δ] (f − e)�

Γ(� + 1)

(
(f − e)γ−1

|A|d2
+ 1

)]
.

We thus find that

(1 − N)‖φ − φ′‖E �
[
(f − e)γ−1

|A|d2

(η − e)�ϕ−2ϕ+1

Γ(�ϕ − 2ϕ + 2)
+

(f − e)�

Γ(� + 1)

(
(f − e)γ−1

|A|d2
+ 1

) ]
δ;

‖φ − φ′‖E � M

1 − N
δ;

‖φ − φ′‖E � GΦδ, (4.3)

where

M = (1 − N)‖φ − φ′‖E �
[
(f − e)γ−1

|A|d2

(η − e)�ϕ−2ϕ+1

Γ(�ϕ − 2ϕ + 2)
+

(f − e)�

Γ(� + 1)

(
(f − e)γ−1

|A|d2
+ 1

) ]
and

GΦ =
M

1 − N
.

Therefore, the system (1.3) is UH stable. �

Corollary 1. Assume that ΥΦ : R
+ → R

+ such that ΥΦ(δ) = GΦδ. Also, let ΥΦ be a continuous function
with ΥΦ(0) = 0. The equation (4.3), which is written as

‖φ − φ′‖E � ΥΦ(δ),

asserts that the system (1.3) is the generalized UH stable.

5. Applications and illustrative examples

In this section, we present two illustrative examples as applications in order to support our findings on
the existence, uniqueness and stability of HFDE.

Example 1. Consider the following FDE involving the HFD:⎧⎪⎪⎨
⎪⎪⎩

D
3
2 , 12
0+ φ(s) =

es

(1 + es)2

(
3 + φ(s)
1 + φ(s)

)
− 2ωes(es − 1)

(1 + es)3
, s ∈ J1 = [0, 1],

φ(0) = 0,
φ(1) = RLI1−γ

0+ φ( 1
2 ), e < η < f.

(5.1)

Comparing the problem (5.1) with the BVP (1.3), we have � = 3
2 , ϕ = 1

2 , e = 0, f = 1, η = 1
2 , ω = 2.

We construct the function Φ : [0, 1] × R → R given by

Φ(s, u) =
3 + u

1 + u
,

so that, from the hypothesis (H3), we have

|Φ(s, u)| =
∣∣∣∣3 + u

1 + u

∣∣∣∣
� (3 + |u|).

Therefore, we get the values of p1 = 3 and p2 = 1. Also, from the hypothesis (H2), we get

|p(s)| =
∣∣∣∣ es

(1 + es)2

∣∣∣∣ = 0.1966 = m1
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and

|q(s)| =
∣∣∣∣−2ωes(es − 1)

(1 + es)3

∣∣∣∣ = 0.3634 = m2.

We also have the condition given by

1 − Λ2 = 1 − m1 p2 (f − e)γ−1(η − e)�ϕ−2ϕ+1

Γ(�ϕ − 2ϕ + 2)
− m1 p2 (f − e)�

Γ(� + 1)

(
(f − e)γ−1

|A|d2
+ 1

)
= 1.0978 > 0,

where |A|d2 = 1.9191. Hence, all of the assumptions of Theorem 1 are satisfied. Therefore, the problem
(5.1) has a solution on [0, 1].

Example 2. Consider FDE involving HFD⎧⎪⎪⎨
⎪⎪⎩

D
5
4 , 34
1
2
+ φ(s) =

es

(1 + es)2
[10 + sin φ(s)] +

2ωes(es − 1)
(1 + es)3

, s ∈ J1 = [12 , 5],

φ(1
2 ) = 0,

φ(5) = RLI1−γ
0+ φ( 3

2 ), e < η < f.

(5.2)

Comparing the problem (5.1) with the BVP (1.3), we have � = 5
4 , ϕ = 3

4 , e = 1
2 , f = 5, η = 3

2 , ω = 5.

We now construct the function Φ : [12 , 5] × R → R given by

Φ(s, u) = 10 + sin φ(s).

Then, for any ui ∈ R (i = 1, 2) and s ∈ [
1
2 , 5

]
, we have

|Φ(s, u1) − Φ(s, u2)| � | sin(u1) − sin(u2)|.
Here, L = 1. Also, from the hypothesis (H2), we have

|p(s)| =
∣∣∣∣ es

(1 + es)2

∣∣∣∣ = 0.0066 = m1

and

|q(s)| =
∣∣∣∣−2ωes(es − 1)

(1 + es)3

∣∣∣∣ = 0.0656 = m2.

We also have the following condition:

N =
(f − e)γ−1

|A|d2

m1L(η − e)�ϕ−2ϕ+1

Γ(�ϕ − 2ϕ + 2)
+

m1L(f − e)�

Γ(� + 1)

(
(f − e)γ−1

|A|d2
+ 1

)
� 0.0745 < 1,

where |A|d2 = 4.3289. It can be seen that the assumptions of Theorem 2 are satisfied. Hence, the problem
(5.2) has a unique solution and also the problem (5.2) is UH stable on J2.

6. Conclusion

The present research has discussed the ACC model involving the HFD of order 1 < � � 2 with three-
point integral boundary conditions. With the help of certain assumptions such as linear growth and the
Lipschitz condition on the nonlinear function Φ defined in the BVP (1.3), we have successfully established
sufficient conditions for the existence and uniqueness of the solution with the aid of Schaefer’s FPT and
Banach FPT, respectively. We have also acquired the a priori bound of the solution of the present
problem. In order to enrich the literature further, we have investigated the stability analysis by using
the UH and the generalized UH stabilities for the assumed BVP (1.3). The work presented in this paper
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is presumably new and we have used markedly different approaches for obtaining several results on the
existence, uniqueness, and stability together with the a priori bound of the solution of ACC model.
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