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Abstract. In this paper, the full information about the existence and nonexistence of a time-periodic traveling wave solution
of a reaction–diffusion Zika epidemic model with seasonality, which is non-monotonic, is investigated. More precisely, if the
basic reproduction number, denoted by R0, is larger than one, there exists a minimal wave speed c∗ > 0 satisfying for each
c > c∗, the system admits a nontrivial time-periodic traveling wave solution with wave speed c, and for c < c∗, there exist
no nontrivial time-periodic traveling waves such that if R0 � 1, the system admits no nontrivial time-periodic traveling
waves.
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1. Introduction

In this paper, we focus on the following reaction–diffusion Zika epidemic model with seasonality
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂SH(t,x)
∂t = D1ΔSH(t, x) − β1(t)SH(t, x)IH(t, x) − β2(t)SH(t, x)IV (t, x),

∂IH(t,x)
∂t = d1ΔIH(t, x) + β1(t)SH(t, x)IH(t, x) + β2(t)SH(t, x)IV (t, x) − r1(t)IH(t, x),

∂SV (t,x)
∂t = D2ΔSV (t, x) − β3(t)SV (t, x)IH(t, x),

∂IV (t,x)
∂t = d2ΔIV (t, x) + β3(t)SV (t, x)IH(t, x) − r2(t)IV (t, x),

t > 0, x ∈ R,

(1.1)

where the total group of human can be divided into the susceptible group SH and the infected group IH .
Similarly, the total group of mosquitoes can be separated into SV -susceptible and IV -infected. Di(i = 1, 2)
and di(i = 1, 2) are the diffusion rate of the susceptible individuals, the susceptible mosquitoes, the
infectious individuals and the infectious mosquitoes, respectively. β1(t), β2(t), and β3(t) are the contact
rates among the susceptible humans and the infected humans, the susceptible humans and the infected
mosquitoes, and the infected humans and the susceptible mosquitoes, respectively. r1(t) and r2(t) are the
removal rate of the infectious individuals and the infectious mosquitoes, respectively. Moreover, we make
the following assumption:
(A) Di(i = 1, 2) and di(i = 1, 2) are all positive constants. In addition, βi(t)(i = 1, 2, 3) and ri(t)(i = 1, 2)

are Hölder continuous and positive nontrivial functions on R
+ and periodic in time with the same

period T > 0.
In the paper, we study the existence and non-existence of a time-periodic traveling wave solution of
system (1.1). Namely, system (1.1) admits a nontrivial time-periodic traveling wave front with each wave
speed c > c∗ if R0 > 1. However, the system admits no nontrivial time-periodic traveling wave fronts
with 0 < c < c∗ and R0 > 1 or R0 � 1.
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Model (1.1) describes the spatial transmission of Zika virus in human, which were first confirmed
in Nigeria [25]. A first severe Zika outbreak has occurred in Island of Yap in 2007. After that, they
have also experienced the subsequent outbreak of Zika, such as French Polynesia, South Pacific, New
Caledonia, Easter Island, etc. [6]. In 2015, a large outbreak in Brazil was occurred and provided a large
number of infected cases. Since then, it had spread freely to many other countries [35]. WHO called Zika
a “Public Health Emergency of International Concern” in 2016 [42]. Up to now, there is still no effective
drug used to treat Zika patients. In fact, Zika virus infection can be transmitted mainly by the bite of an
infected Aedes species mosquito during the day and night. Then a mosquito can be infected with a virus
when it bites an infected person during the period of time when the virus can be found in the person’s
blood, typically only through the first week of infection [5]. Similar to other viruses transmission through
mosquito bites, such as dengue, fever, rash, headache and muscle pain are the most common symptoms of
many infected people with Zika virus. However, unlike these infectious disease, Zika virus can be passed
through sex [13]. In order to establish a theoretical framework for mathematical analysis of transmission of
Zika virus, many ordinary differential epidemic models have been derived, see [5,8,13,15,19,26,28,32,34]
and the cited reference therein.

Since the human individuals and the mosquitoes usually move randomly in the spatial space, it is rea-
sonable to take to account the random walk of individuals, which can be described by a reaction–diffusion
epidemic model. In the literature, there are many results studying the existence and non-existence of trav-
eling wave solutions of some reaction–diffusion epidemic models, see Murray [27], Rass and Radcliffe [29],
Ruan [30], Ruan and Wu [31], Ducrot et al. [9,10], Wang et al. [38,39], Li and Zou [21], Zhao et al. [51,52]
and the references cited therein. Recently, Zhang and Zhao [49] studied traveling wave solutions for a
nonlocal diffusive Zika transmission model with bilinear incidence. Zhao [54] firstly analyzed spreading
speed of a reaction–diffusion Zika model with constant recruitment in terms of the basic reproduction
number R0 and the minimal wave speed c∗. On the basis of it, the full information about the existence
and nonexistence of traveling wave solutions of the system is investigated.

It was reported that the transmission dynamics of infectious diseases can be significantly influenced
by the seasonal change, see Bacaëra and Gomes [2], Buonomo [4], Eikenberry and Gumel [11], Grassly
and Fraser [14], Hethcote [16], Hethcote and Levin [17] and Soper [33]. Thus, it is crucial to investigate
the influence of the seasonal factor on the geographic transmission of infectious diseases. However, the
study for traveling waves solutions of non-autonomous epidemic models is few. Wang et al. [40] stud-
ied the existence and nonexistence of a time-periodic traveling wave solution for a reaction–diffusion
SIR epidemic model with the standard incidence rate and seasonality. After that, they [48] further in-
vestigated a traveling wave solution of a time-periodic reaction–diffusion SIR model with the bilinear
incidence rate. Compared with the above system in [40], the infection group of such system, denoted by
I(t, x), is unbounded. Zhao et al. [53] took into account the asymptotic speed of spread and traveling
wave solutions for a time-periodic reaction–diffusion SIR epidemic model with periodic recruitment and
standard incidence rate determined by the basic reproduction number R0 and the minimal wave speed
c∗. Wang et al. [36] analyzed the existence and non-existence of a time-periodic traveling wave solution
of a generalization of the classical Kermack–McKendrick model with seasonality and nonlocal delayed
transmission derived by mobility of individuals during latent period of the infectious disease. Yang and
Lin [47] established the speed of asymptotic spreading and minimal wave speed of traveling wave solu-
tions for a time-periodic and diffusive DS-I-A epidemic model. Ambrosio et al. [1] studied the existence
of generalized traveling waves for a time-dependent reaction–diffusion SIR epidemic model with the bi-
linear incidence rate on R

2. Huang et al. [18] established the spreading speeds and periodic traveling
waves for a class of time-periodic and partially degenerate reaction–diffusion systems with monotone and
non-monotone nonlinearities. For other related results on the periodic traveling waves for time-periodic
and spatially continuous non-monotone epidemic model, we refer to the literature [7,44,46]. Recently,
Wu [43] analyzed the spreading speed and periodic traveling waves for a time-periodic epidemic model
in discrete media, which is the lack of comparison principle and compactness of solution operators.
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We mention that the major difficulty to study (1.1) is that it lacks the classical comparison principle.
Thus, the theory on the traveling wave solutions for monotone semiflows, see [12,22,23,41] and the
cited references therein, doesn’t directly work for system (1.1). In addition, a reaction–diffusion epidemic
model describing Zika virus spreading is more complex. Thus, except for [49,54], there seem no results on
a time-periodic traveling wave solution for such a reaction–diffusion Zika epidemic model with seasonality.

The rest of this paper is organized as follows. In Sect. 2, the basic reproduction number R0 and the
minimal wave speed c∗ of the system are defined. On the basis of it, the full information with the existence
and non-existence of a time-periodic traveling wave solution of system (1.1) is established for (t, x) ∈ R

2

in Sects. 3 and 4.

2. Preliminary

The aim of the preliminary is to find the basic reproduction number and the minimal wave speed of
system (1.1), denoted by R0 and c∗, which is related with the existence and non-existence of a time-
periodic traveling wave solution for the system. Firstly, let CT be the Banach space of all T-periodic
continuous functions from R to R

2, which is endowed with the usual supremum norm. Its positive cone
C

+
T consists of all functions in CT with both nonnegative components.

Secondly, consider the following ODE system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dS̃H

dt = −β1(t)S̃H(t)ĨH(t) − β2(t)S̃H(t)ĨV (t), t > 0,
dĨH

dt = β1(t)S̃H(t)ĨH(t) + β2(t)S̃H(t)ĨV (t) − r1(t)ĨH(t), t > 0,
dS̃V

dt = −β3(t)S̃V (t)ĨH(t), t > 0,
dĨV

dt = β3(t)S̃V (t)ĨH(t) − r2(t)ĨV (t), t > 0.

(2.1)

It is clear that (S0
H , 0, 0, S0

V , 0) is always an equilibrium of (2.1), denoted by E0, which is called the
disease-free equilibrium of (2.1). Let

F(t) :=
(

β1(t)S0
H β2(t)S0

H

β3(t)S0
V 0

)

and V(t) :=
(

r1(t) 0
0 r2(t)

)

.

There is an evolution operator U(t, s) for t � s such that the following linear T -periodic system

dy

dt
= −V(t)y.

Precisely speaking, for each s ∈ R, the 2 × 2 matrix U(t, s) satisfies

d
dt

U(t, s) = −V(t)U(t, s), ∀t � s, U(s, s) = I,

where I is the 2 × 2 identify matrix. Define a linear operator L : CT → CT by

(Lv)(t) =

∞∫

0

U(t, t − s)F(t − s)v(t − s)ds, ∀t ∈ R, v ∈ CT .

According to [37], L is called by the next infection operator and define the basic reproduction number of
system (2.1) by R0 := r(L), where r(L) is the spectral radius of L.

Linearizing the second equation and the forth equation of system (1.1) at the disease-free equilibrium
E0 yields

{
∂tIH(t, x) = d1ΔIH(t, x) + S0

Hβ1(t)IH(t, x) + S0
Hβ2(t)IV (t, x) − r1(t)IH(t, x), t > 0, x ∈ R,

∂tIV (t, x) = d2ΔIV (t, x) + S0
V β3(t)IH(t, x) − r2(t)IV (t, x), t > 0, x ∈ R.

(2.2)
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Letting
(
IH

IV

)
(t, x) = eμx

(
ηH(t)
ηV (t)

)
and then plugging it into equation (2.2), we obtain the characteristic

equations as below
{

η′
H(t) = d1μ

2ηH(t) + S0
Hβ1(t)ηH(t) + S0

Hβ2(t)ηV (t) − r1(t)ηH(t), ∀t > 0,

η′
V (t) = d2μ

2ηV (t) + S0
V β3(t)ηH(t) − r2(t)ηV (t), ∀t > 0.

(2.3)

Denote the solution map of system (2.3) by (ηH , ηV )t(η̃H0, η̃V 0) := (ηH , ηV )(t; η̃H0, η̃V 0), where (ηH , ηV )(t;
η̃H0, η̃V 0) is the solution of system (2.3) with initial value (η̃H0, η̃V 0) ∈ R

2
+. Assume that r(μ) denotes the

spectral radius of the Poincaré map Bc := (ηH , ηV )T with system (2.3). By using the similar arguments as
those in [45], (η∗

H , η∗
V ) is a eigenvalue vector of Bc associated with the corresponding principal eigenvalue

r(μ). Furthermore, according to [37] with R0 > 1, one has r0 := r(0) > 1, indicating that r(μ) > r0 > 1.
Define λ(μ) := ln r(μ)

T and Φ(μ) := λ(μ)
μ , ∀μ ∈ (0,∞). It then follows from Lemma 3.8 in [23] that there

exist μ∗, c∗ ∈ (0,+∞) such that

c∗ = Φ(μ∗) = inf
μ>0

Φ(μ). (2.4)

Choose a small enough constant ε > 0, which is determined later. Then consider the following system
{

∂IH(t,x)
∂t = d1ΔIH(t, x) + S0

H(1 − ε)
(
β1(t)IH(t, x) + β2(t)IV (t, x)

)
− r1(t)IH(t, x),

∂IV (t,x)
∂t = d2ΔIV (t, x) + S0

V (1 − ε)β3(t)IH(t, x) − r2(t)IV (t, x),

On the same way, plugging
(
Iε

H
Iε

V

)
(t, x) = eμx

(ηε
H(t)

ηε
V (t)

)
into the above equations causes to

{
(ηε

H)′(t) = d1μ
2ηε

H(t) + S0
H(1 − ε) [β1(t)ηε

H(t) + β2(t)ηε
V (t)] − r1(t)ηε

H(t), ∀t > 0,

(ηε
V )′(t) = d2μ

2ηε
V (t) + S0

V (1 − ε)β3(t)ηε
H(t) − r2(t)ηε

V (t), ∀t > 0,
(2.5)

Similarly, define the spectral radius of the Poincaré map with system (2.5) by rε(μ). Due to R0 > 1,
there exists a ε0 > 0 small enough such that for any ε ∈ (0, ε0), one has rε

0 := rε(0) > 1, indicating that
rε(μ) > rε

0 > 1. Let λε(μ) := ln rε(μ)
T and Φε(μ) := λε(μ)

μ , ∀μ ∈ (0,∞). Then there exist μ∗
ε , c

∗
ε ∈ (0,+∞)

such that c∗
ε = Φε(μ∗

ε ) = infμ>0 Φε(μ) and

c∗
ε = inf

μ>0

ln rε(μ)
Tμ

� ln rε(μ∗)
Tμ∗ <

ln r(μ∗)
Tμ∗ = c∗

by using (2.4) and (2.5). In addition, it is obvious that limε→0+ c∗
ε = c∗.

3. Existence of periodic traveling wave solutions

In the section, we establish the existence of the time-periodic traveling wave solutions of model (1.1). We
firstly define a time T -periodic traveling wave solution for system (1.1), namely, it is a special solution
with the form as follows

SH(t, x) = u1(t, x + ct) := u1(t, z), IH(t, x) = v1(t, x + ct) := v1(t, z),

SV (t, x) = u2(t, x + ct) := u2(t, z), IV (t, x) = v2(t, x + ct) := v2(t, z), ∀(t, z) ∈ R × R,

and ui(t, z) = ui(t + T, z), vi(t, z) = vi(t + T, z), ∀(t, z) ∈ R × R, i = 1, 2.

(3.1)

In addition, it can satisfy the following epidemic model
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu1(t, z) = D1∂zzu1(t, z) − c∂zu1(t, z) − u1(t, z)(β1(t)v1(t, z) + β2(t)v2(t, z)),
∂tv1(t, z) = d1∂zzv1(t, z) − c∂zv1(t, z) + u1(t, z)(β1(t)v1(t, z) + β2(t)v2(t, z)) − r1(t)v1(t, z),
∂tu2(t, z) = D2∂zzu2(t, z) − c∂zu2(t, z) − β3(t)u2(t, z)v1(t, z),
∂tv2(t, z) = d2∂zzv2(t, z) − c∂zv2(t, z) + β3(t)u2(t, z)v1(t, z) − r2(t)v2(t, z)

(3.2)
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posed for ∀(t, z) ∈ R × R. We intend to find a nonnegative solution (u1(t, z), u2(t, z), v1(t, z), v2(t, z)) of
system (3.2) so that the following boundary conditions

u1(t,−∞) = S0
H , u2(t,−∞) = S0

V , v1(t,−∞) = v2(t,−∞) = 0,

u1(t,+∞) = S∞
H , u2(t,+∞) = S∞

V , v1(t,+∞) = v2(t,+∞) = 0
(3.3)

uniformly t ∈ R, where S0
H > S∞

H and S0
V > S∞

V , S∞
H and S∞

V are determined later.
Linearizing the second and the last equation of system (3.2) causes to

{
∂tv̄1(t, z) = d1∂zz v̄1(t, z) − c∂z v̄1(t, z) + S0

Hβ1(t)v̄1(t, z) + S0
Hβ2(t)v̄2(t, z) − r1(t)v̄1(t, z),

∂tv̄2(t, z) = d2∂zz v̄2(t, z) − c∂z v̄2(t, z) + S0
V β3(t)v̄1(t, z) − r2(t)v̄2(t, z).

(3.4)

Letting
(
v̄1
v̄2

)
(t, z) = eμz

( J1(t)
J2(t))

)
and then plugging it into (3.4), we get the characteristic equations as

below
{

dJ1
dt (t) − d1μ

2J1(t) − S0
H

(
β1(t)J1(t) + β2(t)J2(t)

)
+ r1(t)J1(t) = −cμJ1(t),

dJ2
dt (t) − d2μ

2J2(t) − S0
V β3(t)J1(t) + r2(t)J2(t) = −cμJ2(t).

(3.5)

Next, we show that system (3.5) generates a positive time-periodic solution with the period T > 0, still
denoted by (J1,J2). Firstly, consider the following system

{
dη̃1
dt (t) = (d1μ2 − cμ)η̃1(t) + S0

H(β1(t)η̃1(t) + β2(t)η̃2(t)) − r1(t)η̃1(t),
dη̃2
dt (t) = (d2μ2 − cμ)η̃2(t) + S0

V β3(t)η̃1(t) − r2(t)η̃2(t).
(3.6)

Define the solution semiflow of system (3.6) by (η̃1, η̃2)t(η̃10, η̃20) := (η̃1, η̃2)(t; η̃10, η̃20), where (η̃1, η̃2)(t; η̃10,
η̃20) is the solution of system (3.6) with initial value (η̃10, η̃20) ∈ R

2
+. In addition, denote the Poincaré

map of system (3.6) by Pc := (η̃1, η̃2)T . It further follows that

Pc(κ1, κ2) = (η̃1, η̃2)T (κ1, κ2) = (η̃1, η̃2)(T ;κ1, κ2) = e−cμT (ηH , ηV )(T ;κ1, κ2),

where (κ1, κ2) is the initial value of system (3.6) and (ηH , ηV )(t;κ1, κ2) is the solution of system (2.3)
with initial value (κ1, κ2) ∈ R

2
+. Consequently, one has

Pc(η∗
H , η∗

V ) = e−cμT (Bc(η∗
H , η∗

V )) = e−cμT r(μ)(η∗
H , η∗

V ),

where (η∗
H , η∗

V ) is a eigenvalue vector of the Poincaré map Bc of system (3.6) with the principal eigenvalue
r(μ). Obviously, if μ = λ(μ)

c , then (η∗
H , η∗

V ) is a fixed point of the Poincaré map Pc, where λ(μ) has been
defined in (2.3). Consequently, (η̃1, η̃2)t := (η̃1, η̃2)(t; η∗

H , η∗
V ) is a positive time-periodic solution of system

(3.6) with cμ = λ(μ).
According to [23, Theorem 3.8], we obtain that if R0 > 1, for each c > c∗, there exist μ1(c) and μ2(c)

such that 0 < μ1(c) < μ2(c) < ∞, Φ(μ1) = c and Φ(μ) < c, μ ∈ (μ1, μ2). Let ε2 ∈ (0, μ2 − μ1), which is
determined later, με2 = μ1 + ε2, λ(με2) := ln ρ(με2 )

T , Φ(με2) := infμε2>0
λ(με2 )

με2
and c∗ < cε2 := Φ(με2) < c,

where ρ(με2) is the spectral radius of the Poincaré map of the system as follows
{

dP1
dt (t) − d1μ

2
ε2P1(t) − S0

H

(
β1(t)P1(t) + β2(t)P2(t)

)
+ r1(t)P1(t) = −cε2με2P1(t),

dP2
dt (t) − d2μ

2
ε2P2(t) − S0

V β3(t)P1(t) + r2(t)P2(t) = −cε2με2P2.
(3.7)

On the same way, system (3.7) generates a positive time-periodic solution with the period T > 0, denoted
by (P1(t),P2(t)).

Based on the above arguments, we can obtain the following lemmas.

Lemma 3.1. The vector function
(v+

1

v+
2

)
(t, z) :=

(J1(t)
J2(t)

)
eμ1z satisfies the following equations

{
∂tv

+
1 (t, z) = d1∂zzv

+
1 (t, z) − c∂zv

+
1 (t, z) + S0

Hβ1(t)v+
1 (t, z) + S0

Hβ2(t)v+
2 (t, z) − r1(t)v+

1 (t, z),
∂tv

+
2 (t, z) = d2∂zzv

+
2 (t, z) − c∂zv

+
2 (t, z) + S0

V β3(t)v+
1 (t, z) − r2(t)v+

2 (t, z).
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Lemma 3.2. Assume that ε1 is sufficiently small with 0 < ε1 < min{μ1,
c

Di
}(i = 1, 2) and M := 1

ε1
is large

enough. Then the functions u−
1 (t, z) := max{S0

H(1 − Meε1z), 0} and u−
2 (t, z) := max{S0

V (1 − Meε1z), 0}
satisfy

{
∂tu

−
1 − D1∂zzu

−
1 + c∂zu

−
1 � −β1(t)u−

1 v+
1 − β2(t)u−

1 v+
2 ,

∂tu
−
2 − D2∂zzu

−
2 + c∂zu

−
2 � −β3(t)u−

2 v+
1 ,

∀z �= z1 := −ε−1
1 ln M. (3.8)

Proof. Here, we show that u−
1 satisfies (3.8). If z > −ε−1

1 ln M, then u−
1 (t, z) = 0, and thus, the first

equation of (3.8) is valid.
If z < −ε−1

1 ln M, then u−
1 (t, z) = S0

H(1 − Meε1z). In addition, it is needed only to prove that

Mε1e
ε1z(c − d1ε1) � S0

Hβ1(t)J1(t)eμ1z(1 − Meε1z) + S0
Hβ2(t)J2(t)eμ1z(1 − Meε1z).

Therefore, it is sufficient to verify

Mε1(c − d1ε1) � S0
H(β1(t)J1(t) + β2(t)J2(t))e(μ1−ε1)z = S0

H(β1(t)J1(t) + β2(t)J2(t))M−ε−1
1 (μ1−ε1),

i = 1, 2.

It is obvious that the above conclusion holds provided that M := 1
ε1

is sufficiently large. In addition,
u−
2 (t, z) is discussed similarly and thus we omit it. The proof is completed. �

Lemma 3.3. Suppose that ε2 with ε2 < min{ε1, μ2 − μ1} is sufficiently small and K is large enough such
that

K > max
[0,T ]

{
MS0

H(β1(t)J1(t) + β2(t)J2(t))
(c − cε2)με2P1(t)

,
MS0

V β3(t)J2(t)
(c − cε2)με2P2(t)

}

, (3.9)

where cε2 , με2 and Pi(t) have been defined in (3.7) and Ji(t)(i = 1, 2) has been defined in (3.5). Then the
function v−

i (t, z) := max{(Ji(t)eμ1z − Keμε2zPi(t)), 0}(i = 1, 2) satisfies
{

∂tv
−
1 − d1∂zzv

−
1 + c∂zv

−
1 � −r1(t)v−

1 + u−
1 (β1(t)v−

1 + β2(t)v−
2 ),

∂tv
−
2 − d2∂zzv

−
2 + c∂zv

−
2 � −r2(t)v−

2 + β3(t)u−
2 v−

1

for any z �= z2, z3, z2(t) := (ε2)−1 ln J1(t)
KP1(t)

, z3(t) := (ε2)−1 ln J2(t)
KP2(t)

and z2, z3 < z1.

Proof. There may be the two following cases z3(t) ≤ z2(t) and z2(t) < z3(t) for some t ∈ R. Next we
show z3(t) ≤ z2(t) for some t ∈ R and then we omit the condition of z2(t) > z3(t) for some t ∈ R.
If z > z2(t), then v−

i = 0 for i = 1, 2.
If z3(t) < z < z2(t) < z1 for some t ∈ R, then u−

1 (t, z) = S0
H(1 − Meε1z), v−

1 (t, z) = J1(t)eμ1z −
Keμε2zP1(t) and v−

2 (t, z) = 0. Due to (3.9), one can get

d1∂zzv
−
1 − c∂zv

−
1 − ∂tv

−
1 − r1(t)v−

1 + β1(t)v−
1 u−

1

= d1
[
μ2
1J1(t)eμ1z − μ2

ε2Keμε2zP1(t)
]
− c

[
μ1J1(t)eμ1z − με2Keμε2zP1(t)

]

−
[
J ′
1(t)e

μ1z − Keμε2zP ′
1(t)

]
− r1(t)

[
J1(t)eμ1z − Keμε2zP1(t)

]

+ S0
Hβ1(t)(1 − Meε1z)

[
J1(t)eμ1z − Keμε2zP1(t)

]

=
{

− J ′
1(t) + d1μ

2
1J1(t) − cμ1J1(t) + β1(t)S0

HJ1(t) − r1(t)J1(t)
}
eμ1z

− Keμε2z
{

− P ′
1(t) + d1μ

2
ε2P1(t) − cε2με2P1(t) − r1(t)P1(t) + β1(t)S0

HP1(t)
}

+ (c − cε2)με2P1(t)Keμε2z − MS0
Hβ1(t)eε1z(J1(t)eμ1z − Keμε2zP1(t))

� eμε2z
{
(c − cε2)με2P1(t)K − MS0

Hβ1(t)J1(t)
}

� 0.
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If z < z2(t), z3(t) < z1, then u−
1 (t, z) = S0

H(1 − Meε1z), v−
1 (t, z) = J1(t)eμ1z − Keμε2zP1(t) and

v−
2 (t, z) = J2(t)eμ1z − Keμε2zP2(t). Furthermore, we need to verify that

d1∂zzv
−
1 − c∂zv

−
1 − ∂tv

−
1 − r1(t)v−

1 + (β1(t)v−
1 + β2(t)v−

2 )u−
1

= d1
[
μ2
1J1(t)eμ1z − μ2

ε2Keμε2zP1(t)
]
− c

[
μ1J1(t)eμ1z − με2Keμε2zP1(t)

]

−
[
J ′
1(t)e

μ1z − Keμε2zP ′
1(t)

]
− r1(t)

[
J1(t)eμ1z − Keμε2zP1(t)

]

+ β1(t)S0
H(1 − Meε1z)

[
J1(t)eμ1z − Keμε2zP1(t)

]
+ β2(t)S0

H(1 − Meε1z)
[
J2(t)eμ1z − Keμε2zP2(t)

]

=
{

− J ′
1(t) + d1μ

2
1J1(t) − cμ1J1(t) + β1S

0
HJ1(t) + β2S

0
HJ2(t) − r1(t)J1(t)

}
eμ1z

− Keμε2z
{

− P ′
1(t) + d1μ

2
ε2P1(t) − cε2με2P1(t) + β1(t)S0

HP1(t) + β2(t)S0
HP2(t) − r1(t)P1(t)

}

+ (c − cε2)με2P1(t)Keμε2z − MS0
Heε1z

(
β1(t)v−

1 + β2(t)v−
2

)

� eμε2z
{
(c − cε2)με2P1(t)K − MS0

H

(
β1(t)J1(t) + β2(t)J2(t)

)}
� 0.

According to (3.9), the above inequality holds true. In addition, v−
2 is proved similarly. It completes the

proof. �

Let N > −min{z2, z3} and CN := C(R × [−N,N ],R4). Define a convex cone DN by

DN =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ū1, ū2, v̄1, v̄2) ∈ CN

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ūi(t, z) = ūi(t + T, z), ∀(t, z) ∈ R × [−N,N ],

v̄i(t, z) = v̄i(t + T, z), ∀(t, z) ∈ R × [−N,N ],

u−
i (t, z) � ūi(t, z) � S0

H(S0
V ), ∀(t, z) ∈ R × [−N,N ],

v−
i (t, z) � v̄i(t, z) � v+

i (t, z), ∀(t, z) ∈ R × [−N,N ],

ūi(t,±N) = u−
i (t,±N), ∀t ∈ R,

v̄i(t,±N) = v−
i (t,±N), ∀t ∈ R, i = 1, 2,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

For any given (ū1, ū2, v̄1, v̄2) ∈ DN , consider the following initial value problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tū1 − B1ū1 = p1[ū1, ū2, v̄1, v̄2], t > 0, z ∈ [−N,N ],
∂tū2 − B2ū2 = p2[ū1, ū2, v̄1, v̄2], t > 0, z ∈ [−N,N ],
∂tv̄1 − T1v̄1 = q1[ū1, ū2, v̄1, v̄2], t > 0, z ∈ [−N,N ],
∂tv̄2 − T2v̄2 = q2[ū1, ū2, v̄1, v̄2], t > 0, z ∈ [−N,N ],
ūi(0, z) = ūi0(z), v̄i(0, z) = v̄i0(z), z ∈ [−N,N ], ūi0, v̄i0 ∈ C([−N,N ]),
ūi(t,±N) = Ḡūi

(t,±N), v̄i(t,±N) = Ḡv̄i
(t,±N), ∀t > 0,

(3.10)

where

Biūi = Di∂zzūi − c∂zūi − αiūi, Tiv̄i = di∂zz v̄i − c∂z v̄i − χiv̄i, i = 1, 2,

p1[ū1, ū2, v̄1, v̄2] := α1ū1 −
(
β1v̄1(t, z) + β2v̄2(t, z)

)
ū1(t, z),

p2[ū1, ū2, v̄1, v̄2] := α2ū2 − β3v̄1(t, z)ū2(t, z),
q1[ū1, ū2, v̄1, v̄2] := χ1v̄1 +

(
β1v̄1(t, z) + β2v̄2(t, z)

)
ū1(t, z) − r1(t)v̄1,

q2[ū1, ū2, v̄1, v̄2] := χ2v̄2 + β3v̄1(t, z)ū2(t, z) − r2(t)v̄2,

α1 > max
t∈[0,T ]

{(β1(t)J1(t) + β2(t)J2(t))eμ1N}, α2 > max
t∈[0,T ]

β3(t)J1(t)eμ1N , χi > max
t∈[0,T ]

ri(t), i = 1, 2

and

Ḡūi
(t, z) :=

1
2
u−

i (t,−N) − z

2N
u−

i (t,−N), Ḡv̄i
(t, z) :=

1
2
v−

i (t,−N) − z

2N
v−

i (t,−N)

for any t ∈ [0, T ] and z ∈ [−N,N ]. It is easy to see that Ḡūi
(t,±N) = u−

i (t,±N) and Ḡv̄i
(t,±N) =

v−
i (t,±N) for t ∈ R and i = 1, 2. Moreover, the functions Ḡūi

and Ḡv̄i
are T -periodic and belong to
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C1,2(R × [−N,N ]). Set ũi(t, z) = ūi(t, z) − Ḡūi
(t, z), ṽi(t, z) = v̄i(t, z) − Ḡv̄i

(t, z), F̃ūi
= BiḠūi

(t, z) −
∂tḠūi

(t, z) and F̃v̄i
= TiḠv̄i

(t, z) − ∂tḠv̄i
(t, z) for i = 1, 2. Then the problem (3.10) reduces to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tũ1 − B1ũ1 = p1[ū1, ū2, v̄1, v̄2] + F̃ū1(t, z), t > 0, z ∈ [−N,N ],
∂tũ2 − B2ũ2 = p2[ū1, ū2, v̄1, v̄2] + F̃ū2(t, z), t > 0, z ∈ [−N,N ],
∂tṽ1 − T1ṽ1 = q1[ū1, ū2, v̄1, v̄2] + F̃v̄1(t, z), t > 0, z ∈ [−N,N ],
∂tṽ2 − T2ṽ2 = q2[ū1, ū2, v̄1, v̄2] + F̃v̄2(t, z), t > 0, z ∈ [−N,N ],
ũi(0, z) = ūi0(z) − Ḡūi

(0, z), ṽi(0, z) = v̄i0(z) − Ḡv̄i
(0, z), z ∈ [−N,N ], ũi0, ṽi0 ∈ C([−N,N ]),

ũi(t,±N) = 0, ṽi(t,±N) = 0, ∀t > 0.

(3.11)

The realization of Ai in C([−N,N ]) with the homogenous Dirichlet boundary condition can be defined
by

D(A0
i ) =

⎧
⎨

⎩
w ∈

⋂

p�1

W 2,p
loc ((−N,N)) : w,Aiw ∈ C([−N,N ]), w|±N = 0

⎫
⎬

⎭
,

A0
i w = Biw, A0

jw = Tiw, i = 1, 2, j = 3, 4.

In fact, D(Ai) =
{
u ∈ C2([−N,N ]), u|±N = 0

}
(see, e.g., [24, Section 5.1.2]). Assume that {Hi(t)}t�0

is the strongly continuous analytic semigroup generated by A0
i : D(A0

i ) ⊂ C([−N,N ]) → C([−N,N ]) for
i = 1, 2 (see [24]). Note that

Hi(t)w(x) = e−αit

N∫

−N

Γi(t, x, y)w(y)dy, i = 1, 2, w(x) ∈ C([−N,N ])

and

Hj(t)w(x) = e−χj−2t

N∫

−N

Γj(t, x, y)w(y)dy, i = 3, 4, w(x) ∈ C([−N,N ])

for t > 0 and x ∈ [−N,N ], where Γi(i = 1, 2) and Γj(j = 3, 4) are the Green functions associated with
Di∂xx − c∂x and di∂xx − c∂x and Dirichlet boundary condition, respectively. Then system (3.11) can be
treated as the following integral system

⎧
⎪⎪⎨

⎪⎪⎩

ũi(t, z) = Hi(t)ũi(0)(z) +
t∫

0

Hi(t − s)
(
pi[ū1, ū2, v̄1, v̄2](s) + F̃ūi

(s)
)
(z)ds, i = 1, 2,

ṽi(t, z) = Hi+2(t)ṽi(0)(z) +
t∫

0

Hi+2(t − s)
(
qi[ū1, ū2, v̄1, v̄2](s) + F̃v̄i

(s)
)
(z)ds, i = 1, 2,

where t � 0 and z ∈ [−N,N ], indicating that (ū1(t, z), ū2(t, z), v̄1(t, z), v̄2(t, z)) satisfies
⎧
⎪⎪⎨

⎪⎪⎩

ūi(t, z) = Hi(t)ũi(0)(z) +
t∫

0

Hi(t − s)
(
pi[ū1, ū2, v̄1, v̄2](s) + F̃ūi

(s)
)
(z)ds + Ḡūi

(t, z),

v̄i(t, z) = Hi+2(t)ṽi(0)(z) +
t∫

0

Hi+2(t − s)
(
qi[ū1, ū2, v̄1, v̄2](s) + F̃v̄i

(s)
)
(z)ds + Ḡv̄i

(t, z)
(3.12)

where t � 0, z ∈ [−N,N ] and i = 1, 2. A solution of (3.12) can be called as a mild solution of (3.11). Note
that pi[ū1, ū2, v̄1, v̄2], qi[ū1, ū2, v̄1, v̄2] ∈ C(R× [−N,N ]), then it follows from [24, Theorem 5.1.17] that the
functions ūi and v̄i(i = 1, 2) defined by (3.12) belong to C([0, 2T ] × [−N,N ])

⋂
Cθ,2θ([ε, 2T ] × [−N,N ])

for every ε ∈ (0, 2T ) and θ ∈ (0, 1). Define a set
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D0
N =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(u10, u20, v10, v20) ∈ C([−N,N ],R4)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u−
i (0, z) � ui0(z) � u+

i (0, z), ∀z ∈ [−N,N ],

v−
i (0, z) � vi0(z) � v+

i (0, z), ∀z ∈ [−N,N ],

ui0(±N) = u−
i (0,±N),

vi0(±N) = v−
i (0,±N),

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Obviously, D0
N is a closed and convex set.

Lemma 3.4. For any U0 := (u10, u20, v10, v20) ∈ D0
N , let (u1N (t, z;U0), u2N (t, z;U0), v1N (t, z;U0), v2N (t, z;

U0)) be the solutions of system (3.12) with the initial value U0. Then

u−
i (t, z) � uiN (t, z;U0) � S0

H(S0
V ), v−

i (t, z) � viN (t, z;U0) � v+
i (t, z), i = 1, 2

for any (t, z) ∈ [0,∞) × [−N,N ].

Proof. The argumentations are essentially same as those in [53, Lemma 3.3] and [48, Lemma 2.4], so we
omit them. �

For a given U0 := (u10, u20, v10, v20) ∈ D0
N , define a map F : D0

N → C([−N,N ],R4) by

F [u10, u20, v10, v20](·) = (u1N (t, z;U0), u2N (t, z;U0), v1N (t, z;U0), v2N (t, z;U0)),

where (u1N (t, z;U0), u2N (t, z;U0), v1N (t, z;U0), v2N (t, z;U0)) is the solution of system (3.12) with the
initial value U0. In view of Lemma 3.4 and the periodicity of u−

i , v−
i and v+

i , we have F [D0
N ] ∈ D0

N .
Obviously, D0

N is a complete metric space with a distance induced by the supreme norm. For any U1
0 :=

(u1
10, u

1
20, v

1
10, v

1
20) and U2

0 := (u2
10, u

2
20, v

2
10, v

2
20) ∈ D0

N , (3.12) indicates

‖uiN (T, z;U1
0 ) − uiN (T, z;U2

0 )‖ = sup
z∈[−N,N ]

|e−αiT

N∫

−N

Γi(T, z, y)
(
U1
0 − U2

0

)
dy|

�e−αiT ‖U1
0 − U2

0 ‖C([−N,N ]), i = 1, 2.

On the same way,

‖viN (T, z;U1
0 ) − viN (T, z;U2

0 )‖ � e−χiT ‖U1
0 − U2

0 ‖C([−N,N ]), i = 1, 2.

Since e−αiT , e−χiT < 1 for i = 1, 2, one has that F : D0
N → D0

N is a contraction map. As a consequence, the
Banach fixed point theorem implies that F admits a unique fixed point U∗

0 := (u∗
10, u

∗
20, v

∗
10, v

∗
20) ∈ D0

N . Let
(u∗

1N (t, z), u∗
2N (t, z), v∗

1N (t, z), v∗
2N (t, z)) = (u1N (t, z;U∗

0 ), u2N (t, z;U∗
0 ), v1N (t, z;U∗

0 ), v2N (t, z;U∗
0 )) for t ∈

(0,+∞) and z ∈ [−N,N ], where (u1N (t, z;U∗
0 ), u2N (t, z;U∗

0 ), v1N (t, z;U∗
0 ), v2N (t, z;U∗

0 )) is the solution of
system (3.10) with the initial value U∗

0 . Furthermore, using the similar arguments to these in [53], one has
(u∗

1N (t, z), u∗
2N (t, z), v∗

1N (t, z), v∗
2N (t, z)) = (u∗

1N (t+T, z), u∗
2N (t+T, z), v∗

1N (t+T, z), v∗
2N (t+T, z)) for all

t ∈ [0,∞) and z ∈ [−N,N ]. According to Lemma 3.4, we can get (u∗
1N (t, z), u∗

2N (t, z), v∗
1N (t, z), v∗

2N (t, z)) ∈
DN . Then (u∗

1N (t, z), u∗
2N (t, z), v∗

1N (t, z), v∗
2N (t, z)) satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u∗
iN (t) = Hi(t − s)(u∗

iN (s) − Ḡūi(s)) +
t∫

s

Hi(t − m)
(
fi[u

∗
1N , u∗

2N , v∗
1N , v∗

2N ](m) + F̃ūi(m)
)
dm + Ḡūi(t),

v∗
iN (t) = Hi+2(t − s)(v∗

iN (s) − Ḡv̄i(s)) +
t∫

s

Hi+2(t − m)
(
gi[u

∗
1N , u∗

2N , v∗
1N , v∗

2N ](m) + F̃v̄i(m)
)
dm

+Ḡv̄i(t)

(3.13)

for any t � s and i = 1, 2. On the basis of the above discussion, we obtain the theorem as follows.

Theorem 3.5. For any given (u1N , u2N , v1N , v2N ) ∈ DN , there exists a unique solution (u∗
1N , u∗

2N , v∗
1N ,

v∗
2N ) ∈ DN satisfying (3.13).

By virtue of Theorem 3.5, we can define an operator R : DN → DN by R(u1N , u2N , v1N , v2N ) =
(u∗

1N , u∗
2N , v∗

1N , v∗
2N ). In what follows, by using the similar arguments to those in [53, Lemma 3.5] and

[48, Lemma 2.6], we present the complete continuity of the operator R without proof.
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Lemma 3.6. The operator R : DN → DN is completely continuous.

Based on the above arguments, the Schauder’s fixed point theorem expresses that R admits a fixed
point (u∗

1N , u∗
2N , v∗

1N , v∗
2N ) ∈ DN . In addition, (u∗

1N (t + T, ·), u∗
2N (t + T, ·), v∗

1N (t + T, ·), v∗
2N (t + T, ·)) =

(u∗
1N (t, ·), u∗

2N (t, ·), v∗
1N (t, ·), v∗

2N (t, ·)) for all t ∈ R. Note that u∗
iN , v∗

iN ∈ C
θ
2 ,θ(R × [−N,N ]) for some

θ ∈ (0, 1) and i = 1, 2. By [24, Theorem 5.1.18 and 5.1.19], u∗
iN , v∗

iN ∈ C1,2(R× [−N,N ])(i = 1, 2) satisfy
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu
∗
1N = D1∂zzu

∗
1N − c∂zu

∗
1N −

(
β1(t)v∗

1N + β2(t)v∗
2N

)
u∗
1N , ∀t ∈ R, z ∈ [−N,N ],

∂tu
∗
2N = D2∂zzu

∗
2N − c∂zu

∗
2N − β3(t)u∗

2Nv∗
1N , ∀t ∈ R, z ∈ [−N,N ],

∂tv
∗
1N = d1∂zzv

∗
1N − c∂zv

∗
1N +

(
β1(t)v∗

1N + β2(t)v∗
2N

)
u∗
1N − r1(t)v∗

1N , ∀t ∈ R, z ∈ [−N,N ],
∂tv

∗
2N = d2∂zzv

∗
2N − c∂zv

∗
2N + β3(t)u∗

2Nv∗
1N − r2(t)v∗

2N , ∀t ∈ R, z ∈ [−N,N ],
u∗

iN (t,±N) = u−
i (t,±N), v∗

i (t,±N) = v−
iN (t,±N), ∀t ∈ R,

(3.14)

where i = 1, 2. Similar to [53, Theorem 3.6] and [48, Theorem 2.7], we have the following local uniform
estimates on u∗

i and v∗
i (i = 1, 2).

Lemma 3.7. Let p � 2. For any given L > 0, there exists a constant C := C(p, L) > 0 such that for any
N > max{L,−min{z2, z3}} large enough, there hold

‖u∗
iN‖W 1,2

p ([0,T ]×[−L,L]), ‖v∗
iN‖W 1,2

p ([0,T ]×[−L,L]) � C.

In addition, there exists a constant Ĉ := Ĉ(L) > 0 such that, for any z0 ∈ R,

‖u∗
iN‖

C
1+θ
2 ,1+θ([0,T ]×[z0−L,z0+L])

, ‖v∗
iN‖

C
1+θ
2 ,1+θ([0,T ]×[z0−L,z0+L])

� Ĉ

for any N > max{L + |z0|,−min{z2, z3}}, θ ∈ (0, 1) and i = 1, 2.

Now, we estimate the solution of system (3.14), denoted by (u∗
1N , u∗

2N , v∗
1N , v∗

2N ).

Proposition 3.8. Let N be large enough satisfying N > −min{z2, z3}. There exists a constant C0 inde-
pendent upon N such that

1
T

N∫

−N

T∫

0

(β1(t)v∗
1N (t, z) + β2(t)v∗

2N (t, z))u∗
1N (t, z)dtdz < C0,

1
T

N∫

−N

T∫

0

β3(t)v∗
1N (t, z)u∗

2N (t, z)dtdz < C0,

1
T

N∫

−N

T∫

0

v∗
iN (t, z)dtdz < C0,

T∫

0

∂zu
∗
iN (t, z)dtdz � 0, i = 1, 2

for any z ∈ [−N,N ].

Proof. We firstly define

ũ∗
iN (z) =

1
T

T∫

0

u∗
iN (t, z)dt, ṽ∗

iN (z) =
1
T

T∫

0

v∗
iN (t, z)dt,

ũ±
i (z) =

1
T

T∫

0

u±
i (t, z)dt, ṽ±

i (z) =
1
T

T∫

0

v±
i (t, z)dt, ∀z ∈ [−N,N ].
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Obviously,

ũ−
i (z) � ũ∗

iN (z) � ũ+
i (z), ṽ−

i (z) � ṽ∗
iN (z) � ṽ+

i (z), i = 1, 2, ∀z ∈ [−N,N ].

According to (3.14), we have

cũ∗
1N,z(z) = D1ũ

∗
1N,zz(z) − 1

T

T∫

0

(β1(t)v∗
1N (t, z) + β2(t)v∗

2N (t, z))u∗
1N (t, z)dt, ∀z ∈ [−N,N ], (3.15)

where ũ∗
1N,z(z) := dũ∗

1N (z)
dz and ũ∗

1N,zz(z) := d2ũ∗
1N (z)
dz2 . It follows from (3.15) that

(
e− cz

D1 ũ∗
1N,z

)

z
=e− cz

D1

(

ũ∗
1N,zz − c

D1
ũ∗
1N,z

)

=
e− cz

D1

D1T

T∫

0

(β1(t)v∗
1N (t, z) + β2(t)v∗

2N (t, z))u∗
1N (t, z)dt, ∀z ∈ [−N,N ].

Then integrating two sides of the above equation from z ∈ [−N,N) to N yields

ũ∗
1N,z(z) = e− c(N−z)

D1 ũ∗
1N,z(N) − 1

D1T

N∫

z

e− c(ξ−z)
D1

T∫

0

(β1(t)v∗
1N (t, ξ) + β2(t)v∗

2N (t, ξ))u∗
1N (t, ξ)dtdξ.(3.16)

Due to ũ∗
1N (z) � 0 for z ∈ [−N,N ] and ũ∗

1N (N) = ũ−
1 (N) = 0, one has ũ∗

1N,z(N) � 0. According to (3.16),
it has ũ∗

1N,z(z) � 0 and ũ∗
1N,z(z) �≡ 0 on [−N,N ]. By using ũ∗

1N,z(−N) � ũ−
1,z(−N) = −S0

H Mε1e
−ε1N �

−S0
H , integrating from −N to N for equation (3.15) leads to

1
T

N∫

−N

T∫

0

(β1(t)v∗
1N (t, z) + β2(t)v∗

2N (t, z))u∗
1N (t, z)dtdz

= c
(
ũ∗
1N (−N) − ũ∗

1N (N)
)

+ D1(ũ∗
1N,z(N) − ũ∗

1N,z(−N))

� (c + D1)S0
H .

In addition, 1
T

N∫

−N

T∫

0

β3(t)v∗
1N (t, z)u∗

2N (t, z)dtdz < C0 can be discussed similarly.

Let r̄1 := maxt∈[0,T ] r1(t). Then, ṽ∗
1N (z) satisfies

− d1ṽ
∗
1N,zz(z) + cṽ∗

1N,z(z) + r̄1ṽ
∗
1N (z)

=
1
T

T∫

0

(β1(t)v∗
1N (t, z) + β2(t)v∗

2N (t, z))u∗
1N (t, z)dt − 1

T

T∫

0

(r1(t) − r̄1)v∗
1N (t, z)dt.

Similarly, one has ṽ∗
1N,z(N) � 0, ṽ∗

1N,z(−N) � ṽ−
1,z(−N) � −Kμε2e

−ε2N P̃1, ṽ∗
1N (N) = 0 and ṽ∗

1N (−N) =

ṽ−
1 (−N), where P̃1 :=

T∫

0

P1(t)dt and P1(t) has been defined in Lemma 3.3. Then by integrating the two

sides of the last equality on [−N,N ], one has
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N∫

−N

ṽ∗
1N (z)dz � d1

r̄1
(ṽ∗

1N,z(N) − ṽ∗
1N,z(−N)) +

c

r̄1
(ṽ∗

1N (−N) − ṽ∗
1N (N))

+
1

r̄1T

N∫

−N

T∫

0

(β1(t)v∗
1N (t, z) + β2(t)v∗

2N (t, z))u∗
1N (t, z)dtdz

� 1
r̄1

(
d1Kμε2e

−ε2N P̃1 + cṽ−
1N (−N) + (c + D1)S0

H

)
.

Furthermore, 1
T

T∫

0

N∫

−N

v∗
2N (z)dtdz � C0 can be proved similarly. It completes the proof. �

Theorem 3.9. Assume that R0 > 1. For any c > c∗, system (3.2) admits a time-periodic solution

(u∗
1, u

∗
2, v

∗
1 , v

∗
2) satisfying (3.3). In addition, there hold 0 < 1

T

T∫

0

v∗
1(t, z)dt � (S0

H − S∞
H ) and

0 < 1
T

T∫

0

v∗
2(t, z)dt � (S0

V − S∞
V ) for any z ∈ R, and

1
T

+∞∫

−∞

T∫

0

r1(t)v∗
1(t, z)dtdz =

1
T

+∞∫

−∞

T∫

0

(β1(t)v∗
1(t, z) + β2(t)v∗

2(t, z))u∗
1(t, z)dtdz = c(S0

H − S∞
H ),

1
T

+∞∫

−∞

T∫

0

r2(t)v∗
2(t, z)dtdz =

1
T

+∞∫

−∞

T∫

0

β3(t)v∗
1(t, z)u∗

2(t, z)dtdz = c(S0
V − S∞

V ).

Proof. The proof is divided into four steps.
Firstly, we show existence of a periodic solution for system (3.2). Assume that {nm}m�1 is an increasing

sequence such that nm � −min{z2, z3} for m ∈ N
+ and limm→∞ nm = ∞. It then follows that the

solution sequence (u1,nm
, u2,nm

, v1,nm
, v2,nm

) ∈ Dnm
satisfies Lemma 3.7 and (3.14). By virtue of the

periodicity of the solution sequence (u1,nm
, u2,nm

, v1,nm
, v2,nm

) with t ∈ R, we can extract a subsequence
of it, still denoted by (u1,nm

, u2,nm
, v1,nm

, v2,nm
), converging to a function (u∗

1, u
∗
2, v

∗
1 , v

∗
2) ∈ Cloc(R4) in

the following topologies

(u1,nm
, u2,nm

, v1,nm
, v2,nm

) → (u∗
1, u

∗
2, v

∗
1 , v

∗
2) in C

1+β
2 ,1+β

loc (R4), in H1
loc(R

4)

and in L2
loc(R,H2

loc(R
4)) weakly, (3.17)

where β ∈ (0, θ) and θ ∈ (0, 1). Clearly,

(u∗
1, u

∗
2, v

∗
1 , v

∗
2) ∈ C

1+β
2 ,1+β

loc (R4) ∩ H1
loc(R

4) ∩ L2
loc(R,H2

loc(R
4)).

It follows from Lemma 3.7 that for any N > 0, there exists a constant C3 such that

‖u∗
i ‖C

1+θ
2 ,1+θ([0,T ]×[−N,N ])

, ‖v∗
i ‖

C
1+θ
2 ,1+θ([0,T ]×[−N,N ])

� C3. (3.18)

Then using the similar arguments to those in [48, Theorem 2.9], (u∗
1, u

∗
2, v

∗
1 , v

∗
2) satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu
∗
1(t, z) = D1∂zzu

∗
1(t, z) − c∂zu

∗
1(t, z) − u∗

1(t, z)(β1(t)v∗
1(t, z) + β2(t)v∗

2(t, z)),
∂tv

∗
1(t, z) = d1∂zzv

∗
1(t, z) − c∂zv

∗
1(t, z) + u∗

1(t, z)(β1(t)v∗
1(t, z) + β2(t)v∗

2(t, z)) − r1(t)v∗
1(t, z),

∂tu
∗
2(t, z) = D2∂zzu

∗
2(t, z) − c∂zu

∗
2(t, z) − β3(t)u∗

2(t, z)v∗
1(t, z),

∂tv
∗
2(t, z) = d2∂zzv

∗
2(t, z) − c∂zv

∗
2(t, z) + β3(t)u∗

2(t, z)v∗
1(t, z) − r2(t)v∗

2(t, z),
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where (t, z) ∈ R
2. It further follows from Proposition 3.8 that there exists a constant C0 > 0 such that

1
T

+∞∫

−∞

T∫

0

(β1(t)v∗
1(t, z) + β2(t)v∗

2(t, z))u∗
1(t, z)dtdz < C0,

1
T

+∞∫

−∞

T∫

0

β3(t)v∗
1(t, z)u∗

2(t, z)dtdz < C0,

1
T

+∞∫

−∞

T∫

0

v∗
i (t, z)dtdz < C0,

T∫

0

∂zu
∗
i (t, z)dtdz � 0, i = 1, 2.

(3.19)

Note that (u∗
1, u

∗
2, v

∗
1 , v

∗
2) satisfies that

u−
i (t, z) � u∗

i (t, z) � S0
H(S0

V ), v−
i (t, z) � v∗

i (t, z) � v+
i (t, z), i = 1, 2, ∀(t, z) ∈ R

2.

As a consequence, there holds u∗
i (t, z) → S0

H(S0
V ) and v∗

i (t, z) → 0 uniformly for t ∈ R and i = 1, 2, as
z → −∞.

Secondly, we prove the asymptotic behavior of v∗
i as z → +∞. Define v̂1(z) = 1

T

T∫

0

v∗
1(t, z)dt. Then

v̂1(t) satisfies

− d1v̂1,zz(z) + cv̂1,z(z) + r̄1v̂1(z)

=
1
T

T∫

0

(β1(t)v∗
1(t, z) + β2(t)v∗

2(t, z))u∗
1(t, z)dt − 1

T

T∫

0

(r1(t) − r̄1)v∗
1(t, z)dt,

(3.20)

where r̄1 := maxt∈[0,T ] r1(t). Denote the two roots of the characteristic equation

−d1η
2 + cη + r̄1 = 0

by

η± :=
c ±

√
c2 + 4d1r̄1
2d1

.

Furthermore, let ρ := d1(η+ − η−) =
√

c2 + 4d1r̄1. Then it is easy to see that η− < 0 < η+. It follows
from (3.20) that

v̂1(z) =
1

ρT

z∫

−∞
eη−(z−y)

⎡

⎣

T∫

0

(β1(t)v∗
1(t, y) + β2(t)v∗

2(t, y))u∗
1(t, y) − 1

T

T∫

0

(r1(t) − r̄1)v∗
1(t, y)

⎤

⎦ dtdy

+
1

ρT

+∞∫

z

eη+(z−y)

⎡

⎣

T∫

0

(β1(t)v∗
1(t, y) + β2(t)v∗

2(t, y))u∗
1(t, y) − 1

T

T∫

0

(r1(t) − r̄1)v∗
1(t, y)

⎤

⎦ dtdy
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and

v̂1,z(z) =
η−

ρT

z∫

−∞
eη−(z−y)

⎡

⎣

T∫

0

(β1(t)v∗
1(t, y) + β2(t)v∗

2(t, y))u∗
1(t, y) − 1

T

T∫

0

(r1(t) − r̄1)v∗
1(t, y)

⎤

⎦ dtdy

+
η+

ρT

+∞∫

z

eη+(z−y)

⎡

⎣

T∫

0

(β1(t)v∗
1(t, y) + β2(t)v∗

2(t, y))u∗
1(t, y) − 1

T

T∫

0

(r1(t) − r̄1)v∗
1(t, y)

⎤

⎦ dtdy

� η−

ρT

z∫

−∞
eη−(z−y)

T∫

0

(β1(t)v∗
1(t, y) + β2(t)v∗

2(t, y))u∗
1(t, y)dtdy

+
η+

ρT

+∞∫

z

eη+(z−y)

T∫

0

(β1(t)v∗
1(t, y) + β2(t)v∗

2(t, y))u∗
1(t, y)dtdy

=
η−

ρT

+∞∫

0

eη−y

T∫

0

(β1(t)v∗
1(t, z − y) + β2(t)v∗

2(t, z − y))u∗
1(t, z − y)dtdy

+
η+

ρT

∫ 0

−∞
eη+y

T∫

0

(β1(t)v∗
1(t, z − y) + β2(t)v∗

2(t, z − y))u∗
1(t, z − y)dtdy.

According to ρ := d1(η+ − η−) and η− < 0 < η+, it has

‖v̂1,z‖ � 1
d1T

+∞∫

−∞

T∫

0

(β1(t)v∗
1(t, z) + β2(t)v∗

2(t, z))u∗
1(t, z)dtdz,

which implies that v̂1,z(z) is uniformly bounded. Consequently, following
+∞∫

−∞
v̂1(z)dz < C0, we must have

v̂1(z) → 0 as z → +∞. Using the similar arguments to those in [48, Theorem 2.9], v∗
1(t, z) → 0 as

z → +∞ uniformly for each t ∈ R. As a consequence, v∗
1(t, z) � C0 holds for any (t, z) ∈ R

2. On the
same way, v∗

2(t, z) → 0 as z → +∞ uniformly for every t ∈ R.
Thirdly, the asymptotic behavior of u∗

i (i = 1, 2) is shown. By using the estimate of (3.18) and Laudau-
type inequality (see, e.g., [3,20]), one has

‖∂zu
∗
1‖L∞([0,T ]×(−∞,M)) � 2‖u∗

1 − S0
H‖L∞([0,T ]×(−∞,M))‖∂zzu

∗
1‖L∞([0,T ]×(−∞,M)).

As a consequence,

lim
z→−∞ ∂zu

∗
1(t, z) = 0 uniformly for t ∈ R.

Define û∗
1(z) = 1

T

T∫

0

u∗
1(t, z)dt. It is easy to see that û∗

1,z(z) → 0 as z → −∞. In addition, û∗
1(z) satisfies

cû∗
1,z(z) = d1û

∗
1,zz(z) − 1

T

T∫

0

(β1(t)v∗
1(t, z) + β2(t)v∗

2(t, z))u∗
1(t, z)dt, (3.21)

which implies that

(e− cz
d1 û∗

1,z(z))z = e− cz
d1 (û∗

1,zz(z) − c

d1
û∗
1,z(z)) =

e− cz
d1

d1T

T∫

0

(β1(t)v∗
1(t, z) + β2(t)v∗

2(t, z))u∗
1(t, z)dt.
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Then, an integration from z to ∞ for the above equality yields

e− cz
d1 û∗

1,z(z) = −
∞∫

z

e− cy
d1

d1T

T∫

0

(β1(t)v∗
1(t, y) + β2(t)v∗

2(t, y))u∗
1(t, y)dtdy,

indicating that û∗
1,z(z) < 0 for z ∈ R. Furthermore, û∗

1(∞) exists and û∗
1(∞) < û∗

1(−∞) = S0
H . barbălat’s

lemma implies that û∗
1,z(z) → 0 as z → ∞. Integrating two sides of (3.21) from −∞ to ∞ on z leads to

1
T

∞∫

−∞

T∫

0

(β1(t)v∗
1(t, z) + β2(t)v∗

2(t, z))u∗
1(t, z)dtdz = c(S0

H − û1(∞)) = c(S0
H − S∞

H ),

where S∞
H := û1(∞) < S0

H . Using the similar arguments to those in [40, Theorem 2.10] and [48, Theorem
2.9], we get u∗

1(t, z) → S∞
H uniformly for t ∈ R, as z → +∞. In addition, u∗

2(t, z) can be discussed
similarly.

Finally, we discuss the properties of v∗
1 . Since v̂1 satisfies

−d1v̂1,zz(z) + cv̂1,z(z) =
1
T

T∫

0

(β1(t)v∗
1(t, z) + β2(t)v∗

2(t, z))u∗
1(t, z)dt − 1

T

T∫

0

r1(t)v∗
1(t, z)dt. (3.22)

An integrating of (3.22) on R leads to

1
T

T∫

0

∞∫

−∞
r1(t)v∗

1(t, z)dtdz

=
1
T

T∫

0

∞∫

−∞
(β1(t)v∗

1(t, z) + β2(t)v∗
2(t, z))u∗

1(t, z)dtdz = c(S0
H − S∞

H ).

By using the above arguments on the asymptotic behavior of v∗
1(t, z) as z → −∞, it is obvious that

lim
z→±∞ ∂zv

∗
1(t, z) = 0 uniformly for t ∈ R.

For any t ∈ R, consider the following equation

cv̄1,z(z) = d1v̄1,zz(z) +
1
T

T∫

0

r1(t)v∗
1(t, z)dt, ∀z ∈ R. (3.23)

Then the solution of (3.23) satisfies

v̄1(z) =
1
cT

z∫

−∞

T∫

0

r1(t)v∗
1(t, y)dtdy

+
1
cT

+∞∫

z

e
c(z−y)

d1

T∫

0

r1(t)v∗
1(t, y)dtdy.

Based on (3.22) and L’Hôpital’s rule, it follows that

lim
z→−∞ v̄1(z) = 0, lim

z→+∞ v̄1(z) =
1
T

T∫

0

∞∫

−∞
(β1(t)v∗

1(t, z) + β2(t)v∗
2(t, z))u∗

1(t, z)dtdz = c(S0
H − S∞

H )
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and

lim
z→±∞ v̄1,z(z) = 0.

Define a new function

v̌1(z) := v̂1(z) + v̄1(z), ∀z ∈ R,

where v̂1(z) = 1
T

T∫

0

v∗
1(t, z)dt. On the basis of (3.22) and (3.23), v̌1(z) satisfies

−d1v̌1,zz(z) + cv̌1,z(z) =
1
T

T∫

0

(β1(t)v∗
1(t, z) + β2(t)v∗

2(t, z))u∗
1(t, z)dt.

Multiplying two sides of the above equation by e− c
d1z and integrating from z to ∞, one has

v̌1,z(z) =
1

d2T

∞∫

z

e− c(z−y)
d2

T∫

0

(β1(t)v∗
1(t, y) + β2(t)v∗

2(t, y))u∗
1(t, y)dtdy.

Then, it is easy to see that v̌1(z) is non-decreasing in R and limz→∞ v̌1(z) = S0
H − S∞

H , indicating
that v̌1(z) � S0

H − S∞
H for all z ∈ R. In light of the definition of v̌1(z) and v̄1(z), we conclude that

v̂1(z) � v̌1(z) � S0
H −S∞

H on R. That is, 0 � 1
T

T∫

0

v∗
1(t, z)dt � S0

H −S∞
H for any z ∈ R. In addition, v∗

2(t, z)

has the similar conclusion as v∗
1(t, z). The proof is completed. �

Remark 3.10. The existence of critical periodic traveling waves is complex, which will be investigated in
our future work.

4. Non-existence of periodic traveling wave solutions

In the section, we establish the non-existence of the time-periodic traveling wave solutions of model (1.1)
for these cases as below: R0 � 1 or R0 > 1 and 0 < c < c∗.

4.1. Case 1: R0 > 1 and 0 < c < c∗

With the aim of it, we need to study the following lemma. Firstly, for some c ∈ (0, c∗), fix c0 ∈ (c, c∗).
Let υc0 = c0

2 , d1 = d2 = 1 and ε be small enough, consider the following system
{

dη̃1
dt (t) = υ2

c0 η̃1(t) + (β1(t)η̃1(t) + β2(t)η̃2(t))S0
H(1 − ε) − r1(t)η̃1(t),

dη̃2
dt (t) = υ2

c0 η̃2(t) + β3(t)η̃1(t)S0
V (1 − ε) − r2(t)η̃2(t).

(4.1)

Denote the solution map of system (4.1) by (ηε
1, η

ε
2)t(η̃10, η̃20) := (ηε

1, η
ε
2)(t; η̃10, η̃20), where (ηε

1, η
ε
2)(t; η̃10,

η̃20) is the solution of system (4.1) with initial value (η̃10, η̃20) ∈ R
2
+. In addition, let λc0,ε = ln ρε(υc0 )

T ,
where ρε(υc0) is the spectral radius of the Poincaré map Bc0,ε := (ηε

1, η
ε
2)T of system (4.1). By using the

similar arguments as those in [45], (η∗
1 , η

∗
2) is a eigenvalue vector of Bc0,ε associated with the corresponding

principal eigenvalue ρε(υc0).
Based on the above arguments, we can obtain the following conclusion.
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Lemma 4.1. Suppose that υc0 = c0
2 , L > 0 is large enough and ε > 0 is small enough, consider the

principal eigenvalue problem of the cooperative elliptic system as below
{

dη̄1
dt (t) − υ2

c0 η̄1(t) − (β1(t)η̄1(t) + β2(t)η̄2(t))S0
H(1 − ε) + r1(t)η̄1(t) = −λc0,εη̄1,

dη̄2
dt (t) − υ2

c0 η̄2(t) − β3(t)S0
V η̄1(t)(1 − ε) + r2(t)η̄2(t) = −λc0,εη̄2,

(4.2)

Then system (4.2) generates a positive time-periodic solution with the period T > 0.

Proof. Consider the following system
{

dη̃1
dt (t) = (υ2

c0 − λ)η̃1(t) + (β1(t)η̃1(t) + β2(t)η̃2(t))S0
H(1 − ε) − r1(t)η̃1(t),

dη̃2
dt (t) = (υ2

c0 − λ)η̃2(t) + β3(t)η̃1(t)S0
V (1 − ε) − r2(t)η̃2(t).

(4.3)

Define the semiflow of system (4.3) by (η̃1, η̃2)t(η̃10, η̃20) := (η̃1, η̃2)(t; η̃10, η̃20), where (η̃1, η̃2)(t; η̃10, η̃20)
is the solution of system (4.3) with initial value (η̃10, η̃20) ∈ R

2
+. In addition, denote the Poincaré map of

system (4.3) by Pc0,ε := (η̃1, η̃2)T . It further follows that

Pc0,ε(κ1, κ2) = (η̃1, η̃2)T (κ1, κ2) = (η̃1, η̃2)(T ;κ1, κ2) = e−λT (ηε
1, η

ε
2)(T ;κ1, κ2),

where (κ1, κ2) is the initial value of system (4.3) and (ηε
1, η

ε
2) is the solution of system (4.1). Consequently,

one has

Pc0,ε(η∗
1 , η

∗
2) = e−λT (Bc0,ε(η∗

1 , η
∗
2)) = e−λT ρε(νc0)(η

∗
1 , η

∗
2),

where (η∗
1 , η

∗
2) has been defined in (4.1). If λ = λc0,ε = ln ρε(υc0 )

T , then (η∗
1 , η

∗
2) is a fixed point of the

Poincaré map Pc0,ε. As a consequence, (η̃1, η̃2)t := (η̃1, η̃2)(t; η∗
1 , η

∗
2) is a positive time-periodic solution

of system (4.3) with λ = λc0,ε. This completes the proof. �

Theorem 4.2. Assume that R0 > 1, 0 < c < c∗ and d1 = d2 = 1. Then system (1.1) admits no nontrivial
T -periodic traveling waves (u1, u2, v1, v2) satisfying (3.2) and (3.3).

Proof. Suppose, by a contradiction way, that there exists such a solution (u1, u2, v1, v2) satisfying (3.2)
and (3.3) for some c < c∗. Firstly, according to limt→−∞ u1(t, z) = S0

H , ∀t ∈ R, we can choose a Mε > 0
large enough and a ε > 0 sufficiently small such that

S0
H − ε � u1(t, z) � S0

H + ε, ∀z < −Mε (4.4)

uniformly for t ∈ R. Let y1, y2 < −Mε, we take into account the following system
⎧
⎪⎨

⎪⎩

(∂t + c0∂z − Δ + r1(t)) w1(t, z) = S0
H(1 − ε)(β1(t)w1(t, z) + β2(t)w2(t, z)),

(∂t + c0∂z − Δ + r2(t)) w2(t, z) = S0
V (1 − ε)β3(t)w1(t, z), t � 0, z ∈ (y1, y2),

w1(t, y1) = w1(t, y2) = 0, w2(t, y1) = w2(t, y2) = 0, t � 0.

(4.5)

Furthermore, one has

c < c∗
ε := inf

μ>0

ln rε(μ)
Tμ

� ln rε(υc0)
Tυc0

=
λc0,ε

υc0

,

expressing that cυc0 < λc0,ε, where λc0,ε has been defined in Lemma 4.1, rε(μ) and c∗
ε have been defined

in (2.5) and υc0 = c0
2 .

Secondly, denote
(
w̄1
w̄2

)
(t, z) := eλ∗teυc0zp(z)

(
k1(t)
k2(t)

)
, where λ∗ ∈ (0, λc0,ε−c0υc0) is a constant, (k1(t), k2(t))

is a solution of system (4.2) and p(z) is the eigenfunction of the principal eigenvalue problem as below
⎧
⎪⎨

⎪⎩

−∂zzp(z) = ρLp(z), z ∈ (y1, y2),
p(z) > 0, z ∈ (y1, y2),
p(y1) = p(y2) = 0,
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where L := |y1 − y2|. Furthermore, one has limL→∞ ρL = 0, indicating that λ∗ + c0υc0 − λc0,ε + ρL � 0.
According to Lemma 4.1 and the above arguments, plugging w̄1(t, z) into the first equation of system
(4.5) becomes to

(∂t + c0∂z − Δ + r1(t)) w̄1(t, z) − S0
H(1 − ε0)

(
β1(t)w̄1(t, z) + β2(t)w̄2(t, z)

)

= λ∗w̄1(t, z) + eλ∗teυc0xp(z)k′
1(t) + c0

(
υc0e

υc0zp(z) + eυc0zp′(z)
)
eλ∗tk1(t) −

(
υ2

c0e
υc0zp(z)

+ 2υc0e
υc0zp′(z) + eυc0zp′′(z)

)
eλ∗tk1(t) − S0

H(1 − ε0)
(
β1(t)w̄1(t, z) + β2(t)w̄2(t, z)

)
+ r1(t)w̄1(t, z)

= λ∗w̄1(t, z) + c0υc0w̄1(t, z) + (c0 − 2υc0)p
′(z)eυc0zk1(t)eλ∗t − p′′(z)eυc0zk1(t)eλ∗t + p(z)eλ∗teυc0z

(
k′
1(t) − υ2

c0k1(t) + r1(t)k1(t) − S0
H(1 − ε0)

(
β1(t)k1(t) + β2(t)k2(t)

))

=
(
λ∗ + c0υc0 − λc0,ε + ρL

)
w̄1(t, z) � 0.

(4.6)

Thirdly, let δ > 0 be small enough such that v1(0, z) � δw̄1(0, z), ∀z ∈ (y1, y2). Consider functions
ui(t, z + (c − c0)t) and vi(t, z + (c − c0)t) for any t ∈ R and z ∈ (y1, y2). Denote v̂i(t, z) := vi(t, z + (c −
c0)t)(i = 1, 2), which satisfies

∂tv̂1(t, z) = Δv̂1(t, z) − c0∂z v̂1(t, z) + u1(t, z + (c − c0)t)
(
β1(t)v̂1(t, z) + β2(t)v̂2(t, z)

)
− r1(t)v̂1(t, z).

In view of c − c0 < 0, z ∈ (y1, y2) and y1 < y2 < −Mε, one has z + (c − c0)t < −Mε, ∀t � 0, z ∈ [y1, y2].
Due to (4.4), v̂1(t, z) satisfies

∂tv̂1(t, z) � Δv̂1(t, z) − c0∂z v̂1(t, z) + S0
H(1 − ε)

(
β1(t)v̂1(t, z) + β2(t)v̂2(t, z)

)
− r1(t)v̂1(t, z)

for any t � 0 and z ∈ [y1, y2]. Since there are

δw̄1(0, z) � v̂1(0, z) for z ∈ (y1, y2) and

w̄1(t, z) = 0 � v̂1(t, z) for t � 0 and z = y1 or y2,

we infer from the parabolic maximum principle that

w̄1(t, z) = eλ∗teυc0zp(z)k1(t) � v1(t, z + (c − c0)t), ∀t � 0, z ∈ (y1, y2).

Due to λ∗ > 0, we obtain v1(t, z +(c− c0)t) → ∞ as t → ∞, which leads to a contradiction. On the same
way, v2 is proved similarly and thus we omit it. The proof is completed. �

4.2. Case 2: R0 < 1

Theorem 4.3. Assume that R0 < 1. Then for any c � 0, system (3.2) admits no nontrivial T -periodic
solution (u1, u2, v1, v2) satisfying (3.3).

Proof. Assume that there exists a nontrivial T -periodic solution (u1, u2, v1, v2) of system (3.2)–(3.3) by

a contradiction way. Let v̄i(t) :=
+∞∫

−∞
vi(t, z)dz on R for i = 1, 2. Obviously, v̄i(t) = v̄i(t + T ), ∀t ∈ R for

i = 1, 2. In light of inequality (3.19), one gets that v̄i(t) is bounded on [0, T ). In addition, for any given
t ∈ [0, T ), there exists a ε0(t) depending upon t such that

v̄i(t) > ε0(t). (4.7)

Furthermore, it follows from ui(t, z) � S0
H(S0

V )(i = 1, 2) that
{

∂tv1(t, z) � d1∂zzv1(t, z) − c∂zv1(t, z) +
(
β1(t)S0

H − r1(t)
)
v1(t, z) + β2(t)S0

Hv∗
2(t, z),

∂tv2(t, z) � d2∂zzv2(t, z) − c∂zv2(t, z) + β3(t)S0
V v1(t, z) − r2(t)v2(t, z).
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Integrating both two side of the above equations from −∞ to ∞, we obtain
{

dv̄1
dt �

(
β1(t)S0

H − r1(t)
)
v̄1(t) + β2(t)S0

H v̄2(t),
dv̄2
dt � β3(t)S0

V v̄1(t) − r2(t)v̄2.

Then by using the parabolic maximum principle, one has

(v̄1(t), v̄2(t)) � (ṽ1(t), ṽ2(t)), t � 0,

where (ṽ1(t), ṽ2(t)) is the solution of the system as below
⎧
⎪⎨

⎪⎩

dṽ1
dt =

(
β1(t)S0

H − r1(t)
)
ṽ1(t) + β2(t)S0

H ṽ2(t),
dṽ2
dt = β3(t)S0

V ṽ1(t) − r2(t)ṽ2(t),
ṽ1(0) = v̄1(0), ṽ2(0) = v̄2(0).

Due to [50, Theorem 2.1] associated with R0 < 1, one has limt→+∞ ṽi(t) = 0(i = 1, 2), implying that

lim
t→+∞ v̄i(t) = 0, i = 1, 2,

which leads to a contradiction with (4.7). This completes the proof. �

4.3. Case 3: R0 = 1

Theorem 4.4. Assume that R0 = 1. Then for any c � 0, system (3.2) admits no nontrivial T -periodic
solution (u1, u2, v1, v2) satisfying (3.3).

Proof. Assume that there exists a nontrivial T -periodic solution (u1, u2, v1, v2) of system (3.2)–(3.3) by

a contradiction way. Let v̄i(t) :=
+∞∫

−∞
vi(t, z)dz on R for i = 1, 2. Due to (3.19), we can get that v̄i(t)

bounded on [0, T ]. In addition, v̄i(t) satisfies
dv̄1
dt

= S0
H(β1(t)v̄1(t) + β2(t)v̄2(t)) − r1(t)v̄1(t) + f1(t),

dv̄2
dt

= S0
V β3(t)v̄1(t) − r2(t)v̄2 + f2(t),

(4.8)

where f1(t) = β1(t)
+∞∫

−∞
(u1(t, z) − S0

H)v1(t, z)dz + β2(t)
+∞∫

−∞
(u1(t, z) − S0

H)v2(t, z)dz and f2(t) = β3(t)

+∞∫

−∞
(u2(t, z) − S0

V )v1(t, z)dz and f(t) = (f1(t), f2(t))T . System (4.8) owns a positive T -periodic solution

v̄(t) := (v̄1(t), v̄2(t))T . Thus, we get

v̄(t) = U(t, 0)v̄(0) +

t∫

0

U(t, t − s)
(
F(t − s)v̄(t − s) + f(t)

)
ds, ∀t � 0, (4.9)

where U(t, s) and F(t) have been defined in Sect. 2. In addition, it is not difficult to show that u1(t, z) �
S0

H for (t, z) ∈ R
2. In fact, suppose that there exists (t0, z0) such that max(t,z)∈R2 u1(t, z) = u1(t0, z0) >

S0
H . Thus,

0 =∂tu1(t, z) |(t0,z0)

= d1∂zzu1(t, z) |(t0,z0) −c∂zu1(t, z) |(t0,z0) −u1(t0, z0)(β1(t0)v1(t0, z0) + β2(t0)v2(t0, z0)) < 0,

which is a contradiction. Furthermore, u2(t, z) can be proved similarly. As a consequence, it has

fi(t) � 0, ∀t ∈ [0, T ]. (4.10)
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Consider the following problem:⎧
⎪⎨

⎪⎩

dṽ1
dt =

(
S0

Hβ1(t) − r1(t)
)
ṽ1(t) + β2(t)S0

H ṽ2(t),
dṽ2
dt = S0

V β3(t)ṽ1(t) − r2(t)ṽ2(t),
ṽ1(0) = v̄1(0), ṽ2(0) = v̄2(0).

Due to [50, Theorem 2.1] associated with R0 = 1, there exists a positive T -periodic solution ṽ(t) :=
(ṽ1(t), ṽ2(t))T satisfying the above problem. A straightforward computation leads to

ṽ(t) = U(t, 0)ṽ(0) +

t∫

0

U(t, t − s)F(t − s)ṽ(t − s)ds, ∀t � 0. (4.11)

It further follows from the parabolic maximum principle together with (4.10) that
ṽ(t) � v̄(t),∀t ∈ [0,+∞). (4.12)

However, due to the periodicity of v̄(t) and ṽ(t), one has ṽ(T ) = ṽ(0) = v̄(0) = v̄(T ), that is,

U(T, 0)v̄(0) +

T∫

0

U(T, T − s)
(
F(T − s)v̄(T − s) + f(T − s)

)
ds

= U(T, 0)ṽ(0) +

T∫

0

U(T, T − s)F(T − s)ṽ(T − s)ds.

In view of (4.10), one has

0 >

T∫

0

U(T, T − s)f(T − s)ds =

T∫

0

U(T, T − s)F(T − s)
(
ṽ(T − s) − v̄(T − s)

)
ds,

implying that there exists a t0 ∈ [0, T ) satisfying

ṽ(t0) < v̄(t0).

As a consequence, it contradicts with (4.12). It completes the proof. �
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