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Abstract. This paper is devoted to a mathematical model with diffusion and cross-diffusion to describe the interaction
between vegetation and soil water. First, the existence of Hopf bifurcation and cross-diffusion-driven Turing instability are
discussed. Then, based on the nonlinear analysis, we obtain the exact parameters range for stationary patterns and show
the dynamical behavior near Turing bifurcation point. It is found that the model has the properties of gap, strip and spot
patterns. Moreover, the small water-uptake ability of vegetation roots promotes the growth of vegetation and the transitions
of vegetation pattern. But with the continuous increase of the water-uptake ability of vegetation roots, the local vegetation
biomass density increases and the isolation between vegetation patches also increases, which may induce the emergence of
desertification. In addition, our results reveal that the water consumption rate induces the transitions of vegetation pattern
and prohibits the increase of vegetation biomass density.
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1. Introduction

The disappearance of vegetation, which is referred as desertification, has become a serious environmental
problem, and the global ecosystems are threatened today more than ever before [1]. Various regular
vegetation patterns have been observed in many semi-arid regions around the world, such as spot patterns,
strip patterns, labyrinth patterns and gap patterns. The formation mechanism of vegetation patterns has
been studied by many scholars from different perspectives, see [2–12] and references therein.

Mathematically, many scholars have also established a series of water-vegetation models to study the
formation mechanism of various pattern structures [13–16]. Especially in 1999, based on ecological hy-
pothesis, Klausmeier [13] proposed the first mathematical model to describe the relationship between
vegetation biomass and water density. It captured the formation of striped vegetation patterns on hill-
slopes and explained the importance of nonlinear mechanisms in determining the vegetation pattern
formation in semi-arid regions. Shortly thereafter, Rietkerk et al. [17] divided the water into surface wa-
ter and underground water and constructed a spatial model to study the influence of spatial distribution
of runoff water on the formation of vegetation patterns. Then in 2003, Shnerb et al. [18] considered that
the competition of shrubs for a limited supply of water determined the spatial organization and presented
a general model of the water-shrubs reaction. Based on the model in [18], Wang et al. [19] pointed out that
the growth of vegetation can loosen the soil locally and the larger vegetation biomass density resulted
in the higher infiltration, which can decrease the death rate of the vegetation due to more soil water
available. Thus, they established a nondimensionalized water-vegetation model in the following form:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dω

dt
= R − pωb − ω,

db

dt
= ωb − (μ0 +

μ1

b + 1
)b,

ω(0) ≥ 0, �≡ 0, b(0) ≥ 0, �≡ 0,

(1.1)

where ω is the ground water density, b is the shrubs biomass density, R > 0 is the rainfall rate, p > 0
is the water consumption rate in the presence of vegetation, μ0 > 0 indicates mortality due to human
factors and μ1 > 0 indicates the infiltration feedback parameter of vegetation. Wang et al. [19] showed
that in the transition from global stability of bare-soil state for low rainfall to the global stability of high
vegetation state for high rainfall rate, oscillatory states or multiple equilibrium states can occur.

Cross-diffusion is used to describe attraction/repulsion between species, which is another important
diffusive process in the realistic diffusion and reaction models [20–22]. The concept of cross-diffusion was
founded for the first time by Kerner [23] and then projected to water-vegetation models by von Hard-
enberg et al. [24]. It is well known that precipitation is the main source of water needed for vegetation
growth, and vegetation can absorb this water through two ways. Firstly, it is directly absorbed by the
leaves. Secondly, the vegetation absorbs the water that penetrates into the soil through the roots. Ob-
viously, in the arid or semi-arid regions, the growth of vegetation depends mainly on the absorption of
water by the roots. Because the water resources are limited, the vegetation competes with each other for
water to survive. Accordingly, for the sake of modeling the competition of vegetation for water and water
transport due to water-uptake by roots, von Hardenberg et al. introduced a new term Δ(ω − βb) into
water-vegetation models. Then, a large number of experimental results have demonstrated that the cross-
diffusion is quite significant for the transition among different vegetation pattern structures [19,22,25].
Thus, following from [24,26–30], we consider the following model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ω
∂t = d1Δ(ω − βb) + R − pωb − ω, x ∈ Ω, t > 0,

∂b
∂t = d2Δb + ωb − (μ0 + μ1

b+1 )b, x ∈ Ω, t > 0,

∂ω
∂υ = ∂b

∂υ = 0, x ∈ ∂Ω, t > 0,

ω(x, 0) = ω0(x) ≥ 0, b(x, 0) = b0(x) ≥ 0, x ∈ Ω̄,

(1.2)

where Δ is Laplace operator, Ω is a bounded planar domain with a smooth boundary ∂Ω, υ is the
outward unit normal vector of the boundary ∂Ω, d1 > 0 is the water diffusion coefficient, d2 > 0 is
the diffusion coefficient of vegetation by clonal reproduction or seed dispersal. The cross-diffusion term
Δ(ω−βb) in the water equation describes the effect of vegetation by local uptake on the water transport,
where β represents the hydraulic diffusivity due to the suction of roots in the vadose zone. Specifically
speaking, the water-uptake by vegetation roots promotes the depletion of soil–water and forms the soil–
water gradients between this vegetation patch and the surrounding patch. The soil–water gradient will
give rise to the water transport toward the patch from the surrounding patch, and this effect can be
called as soil–water diffusion feedback. The parameter β stands for the feedback intensity and reflects
the water-uptake ability of vegetation roots. For system (1.2), Wang et al. [26] discussed the conditions
of the diffusion-induced instability and the cross-diffusion-induced instability of a homogenous uniform
steady state and found that either a fast diffusion speed of water or a great hydraulic diffusivity due to
the suction of roots may drive the instability of the homogenous steady state. When β = 0, we carried
out some qualitative analyses on the steady-state solutions to a diffusive water-vegetation model with
the infiltration feedback, and the effects of the water diffusion coefficient, the water consumption rate,
and the rainfall rate on the spatial distribution of vegetation were presented in [9].

The disappearance of vegetation may be a slow and gradual process in many forms, such as spotted
vegetation patterns, fairy rings, and tiger bush strips [13,31,32]. Vegetation patterns can be used to
describe the uneven distribution of vegetation in semi-arid areas and can serve as early warning signals
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for future ecosystem degradation. The amplitude equation is an effective tool, which can help us to give
the specific parameter range affecting the change of vegetation patterns [14,15,33,34].

Motivated by the above papers, we first consider the stability of positive equilibrium and the existence
of Hopf bifurcation. Then taking the water-uptake ability of vegetation roots β as the Turing bifurcation
parameter, Turing instability of the positive equilibrium is obtained when 0 < d1 ≤ d2, which is different
from the case of self-diffusion. The amplitude equation analysis for Turing pattern is carried out, which
can help us to derive parameter space more specific to confirm vegetation patterns such as spot patterns,
strip patterns and the coexistence patterns. Then, we explore the relationship among parameter and
pattern dynamics of the vegetation by numerical simulations and find that the small water-uptake ability
of vegetation roots promotes the growth of vegetation and the vegetation pattern transitions: gap patterns
→ strip patterns → spot patterns. When the water-uptake ability of vegetation roots is much larger, the
local vegetation biomass increases and the isolation between vegetation patches also increases, which can
lead to desertification. Additionally, as water consumption rate p increases, the pattern transitions: strip
patterns → spot patterns → uniform vegetation emerge and the vegetation biomass density decreases.

The rest of the paper is arranged as follows. In Sect. 2, the existence of Hopf bifurcation is given and
the cross-diffusion-induced Turing instability is considered. In Sect. 3, we apply the multi-scale analysis
method to derive the amplitude equations of system (1.2) near the critical value of Turing bifurcation. In
Sect. 4, we verify theoretical results with numerical simulations and analyze the influences of p and β on
the vegetation growth from the aspect of pattern structures and vegetation biomass density. In Sect. 5,
we give some discussions and conclusions.

2. Bifurcation analysis

In this section, we first give the stability of positive equilibrium and the existence of Hopf bifurcation for
system (1.1). Then, the conditions of Turing bifurcation for system (1.2) are obtained.

By simple calculations, we find that system (1.1) has a trivial (bare-soil) equilibrium (ω0, b0) = (R, 0)
for all parameters. A positive equilibrium (ω, b) satisfies

ω =
R

pb + 1
, R = (pb + 1)

(

μ0 +
μ1

b + 1

)

.

Thus, b is a positive root of the quadratic equation

pμ0b
2 + (μ0 + pμ0 + pμ1 − R)b + μ0 + μ1 − R = 0. (2.1)

Define

φ = (μ0 + pμ0 + pμ1 − R)2 + 4pμ0(R − μ0 − μ1),

R1 = μ0 + μ1, R2 = (
√

pμ1 +
√

(1 − p)μ0)2, b± =
R − μ0 − pμ0 − pμ1 ± √

φ

2pμ0
.

We can obtain the following result about positive equilibria of system (1.1). See [19] for detailed calcula-
tions.

Theorem 2.1. Assume that parameters R, p, μ0, μ1 are all positive.

(i) If either p ≥ 1 or 0 < p < 1 and μ1 ≤ pμ0

1 − p
, then system (1.1) has a unique positive equilibrium

(ω+, b+) = ( R
pb++1 , b+) when R > R1 and has no positive equilibrium when R ≤ R1.

(ii) If 0 < p < 1 and μ1 >
pμ0

1 − p
, then system (1.1) has a unique positive equilibrium (ω+, b+) =

( R
pb++1 , b+) when R ≥ R1 or R = R2, has two positive equilibria (ω±, b±) = (

R

pb± + 1
, b±) when

R2 < R < R1 and has no positive equilibrium when R < R2.
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From the above discussion, it is easy to check that system (1.1) has a unique positive equilibrium
E∗ = (ω∗, b∗) when

(H1) : R > R1 = μ0 + μ1

holds and

ω∗ =
R

pb∗ + 1
, b∗ =

R − μ0 − pμ0 − pμ1 +
√

φ

2pμ0
.

The linearization of system (1.2) in the neighborhood of E∗ is given by:
⎛

⎜
⎝

∂ω

∂t
∂b

∂t

⎞

⎟
⎠ = DΔ

(
ω
b

)

+ L

(
ω
b

)

, (2.2)

where

DΔ =

⎛

⎝
d1Δ −βd1Δ

0 d2Δ

⎞

⎠ , L =

⎛

⎝
a11 a12

a21 a22

⎞

⎠ =

⎛

⎜
⎝

−pb∗ − 1 −pω∗

b∗
μ1b∗

(b∗ + 1)2

⎞

⎟
⎠ .

It is easy to see that a11 < 0, a12 < 0, a21 > 0, a22 > 0. Then, we suppose that
(

ω
b

)

=
(

ω∗
b∗

)

+ ε

(
ωn

bn

)

eλt+inr + c.c. + o(ε2) (2.3)

represents the non-constant solution corresponding to system (1.2), where n = (nω, nb) is the wave
number vector, n := |n| =

√
n2

ω + n2
b is the wave number, r = (X,Y ) represents the two-dimensional

spatial vector, and c.c. is the complex conjugate term. Thus, by substituting (2.3) into (2.2), we obtain
the characteristic equation

λ2 − Tnλ + Dn = 0, n = 0, 1, 2, . . . , (2.4)

where
Tn = T0 − (d1 + d2)n2,

Dn = d1d2n
4 − (a11d2 + a22d1 + a21βd1)n2 + D0,

T0 = a11 + a22 =
μ1b∗

(b∗ + 1)2
− (pb∗ + 1),

D0 = a11a22 − a12a21 = pω∗b∗ − (pb∗ + 1)
μ1b∗

(b∗ + 1)2
> 0.

In the following, choose the water consumption rate p and the water-uptake ability of vegetation
roots β as controlled parameters, and consider the critical value of two bifurcations: Hopf and Turing
bifurcations. For the spatially homogeneous Hopf bifurcation, if it occurs, it is required to satisfy the
condition

Im(λn(p)) �= 0, Re(λn(p)) = 0, for n = 0.

When n = 0, the characteristic Eq. (2.4) becomes

λ2 − T0λ + D0 = 0, (2.5)

and so the Hopf condition is equivalent to the requirement T0 = 0 and D0 > 0. In order to solve T0 = 0,
let

Π(p) =
μ1

(b∗ + 1)2
− 1

b∗
=

−b2∗ − (2 − μ1)b∗ − 1
b∗(b∗ + 1)2

(2.6)
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so that T0 = b∗[Π(p) − p]. Consider the polynomial

K(b∗) = −b2∗ − (2 − μ1)b∗ − 1

with discriminant

Δ1 = μ2
1 − 4μ1.

When 0 < μ1 ≤ 4, we have Δ1 ≤ 0 and Π(p) ≤ 0. Then T0 = b∗[Π(p)−p] < 0 holds for any p which means
that the positive equilibrium E∗ is always locally stable. System (1.1) cannot undergo Hopf bifurcation.
Now we set

(H2) : μ1 > 4.

Under the condition (H2), it is not difficult to prove that when p > Π(p), we have T0 < 0 and E∗ is
locally asymptotically stable. When p < Π(p), the positive equilibrium E∗ becomes unstable.

At p = Π(p), (2.5) has a pair of purely imaginary roots ±i
√

D0. Then, we need to focus on the
transversality condition. Suppose that p∗ satisfies p∗ = Π(p∗) and

(H3) : R <
1
2
(p∗ + 1)(μ0 + μ1).

Let λ(p) be a root of (2.5) satisfying λ(p) = i
√

D0. Then, we have

∂

∂p
Re(λ(p))

∣
∣
∣
∣
p=p∗

=
1
2

[
1

b∗(p∗)
− 2μ1b∗(p∗)

[b∗(p∗) + 1]3

]
∂b∗(p)

∂p

∣
∣
∣
∣
p=p∗

− 1
2
b∗(p∗). (2.7)

By system (1.1), we know that b∗(p) satisfies
R

pb∗(p) + 1
− μ0 − μ1

b∗(p) + 1
= 0.

Then, we have

∂b∗(p)
∂p

∣
∣
∣
∣
p=p∗

=
R[b∗(p∗)]2

[p∗b∗(p∗) + 1]3 − Rp∗b∗(p∗)
. (2.8)

Substituting (2.8) into (2.7), we can get

∂

∂p
Re(λ(p))

∣
∣
∣
∣
p=p∗

=
b∗(p∗)[p∗b∗(p∗) + 1][R[1 − b∗(p∗)] − [b∗(p∗) + 1][p∗b∗(p∗) + 1]2]

2[b∗(p∗) + 1] [[p∗b∗(p∗) + 1]3 − Rp∗b∗(p∗)]
.

Since D0 > 0, it’s easy to know that [p∗b∗(p∗) + 1]3 − Rp∗b∗(p∗) < 0. From the condition (H3) and (2.1),

it follows that b∗(p∗) > 1. Thus, we have
∂

∂p
Re(λ(p))

∣
∣
∣
∣
p=p∗

> 0.

From the above discussion, we can state the following theorem.

Theorem 2.2. Suppose that the conditions (H1) and (H3) hold. Then for the positive equilibrium E∗ of
system (1.1), we have the following conclusions.

(i) When μ1 < 4, E∗ is locally asymptotically stable for any p and consequently there is no Hopf
bifurcation.

(ii) When (H2) holds, E∗ is locally asymptotically stable if p > Π(p) and unstable if 0 < p < Π(p).
(iii) When (H2) holds, system (1.1) undergoes on Hopf bifurcation at E∗ for p = Π(p).

Then we focus on the Turing instability for system (1.2) under the assumption that the positive
equilibrium point E∗ is asymptotically stable, i.e.,

(H4) : p > Π(p).

As we all know, the Turing-driven bifurcation occurs if

Im(λn(p)) = 0, Re(λn(p)) = 0, for n = nT �= 0,
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where

nT = 4

√
a11a22 − a12a21

d1d2
. (2.9)

Rewrite

Dn = d1d2n
4 − (a11d2 + a22d1 + a21βd1)n2 + D0. (2.10)

When β = 0 and 0 < d1 ≤ d2, we have

−(a11d2 + a22d1 + a21βd1) > −T0d1 > 0,

which, together with D0 > 0, implies that Dn > 0. Thus, the self-diffusion does not induce the Turing
instability when 0 < d1 ≤ d2. Then, assume that β �= 0 and 0 < d1 ≤ d2. We can obtain the following
results.

Lemma 2.1. Suppose that 0 < d1 ≤ d2, (H1) and (H4) hold. Define

C1 = a11d2 + a22d1 + a21βd1, (2.11)
C2 = (a11d2 + a22d1 + a21βd1)2 − 4d1d2D0, (2.12)

and

n1 =

[
C1 −

√
C2

1 − 4d1d2D0

2d1d2

] 1
2

, n2 =

[
C1 +

√
C2

1 − 4d1d2D0

2d1d2

] 1
2

.

If C1 > 0 and C2 > 0, then Dn < 0 for n1 < n < n2 and Dn > 0 for 0 < n < n1 or n > n2.

By (2.10), the minimum of Dn is obtained, which is denoted by Dmin
n =

−C2

4d1d2
. If C1 > 0 and C2 = 0,

we have Dmin
n = DnT

= 0. Thus, the critical value of Turing instability β(T ) for system (1.2) is given by
C2 = 0 as follows

β(T ) =
−(a11d2 + a22d1) + 2

√
d1d2D0

a21d1
. (2.13)

By Lemma 2.1, when β < β(T ), if C1 > 0, the two positive numbers n1 and n2 satisfy Dn < 0 for
n1 < n < n2 and Dn > 0 for 0 < n < n1 or n > n2. But when β > β(T ), we have Dn > 0 for any n ≥ 0.

Thus, if the conditions (H1) and (H4) hold, all roots of (2.4) have negative real parts when β < β(T ).
Otherwise, when β > β(T ), (2.4) has at least one positive real root. For β = β(T ), (2.4) has one zero root
and all other roots have negative real parts. Consequently, system (1.2) undergoes Turing bifurcation.

Summarizing the above discussion, we have the following results on cross-diffusion-driven Turing
instability.

Theorem 2.3. Suppose that the conditions 0 < d1 ≤ d2, (H1) and (H4) hold.
(i) When β = 0, E∗ is always locally asymptotically stable for system (1.2).
(ii) When 0 < β < β(T ), E∗ is locally asymptotically stable for system (1.2) and when β > β(T ), E∗ is

unstable for system (1.2). That is, the cross-diffusion-induced Turing instability occurs.

In Fig. 1, we set R = 18, μ0 = 6, μ1 = 8, d1 = 0.9, d2 = 1. It follows from (2.6) that p∗ = 1.5. When
p = p∗ = 1.5, by (2.13) that β(T ) = 12.7474. Then, we obtain the intersection between the Turing curve
β and the Hopf curve p in the β − p plane. As seen in Fig. 1, the intersection between the blue straight
line p = 1.5, which corresponds to T0 = 0 and the red curve β divides the positive quadrant into four
regions. E1 represents the stable region for the positive steady state E∗, which coincides with p > Π(p)
and β < β(T ). E2 is the Turing region that corresponds to β > β(T ). E3 is the Turing–Hopf region. E4

represents the Hopf region.
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Fig. 1. Bifurcation diagram of system (1.2) in the β − p plane carried out by setting R = 18, μ0 = 6, μ1 = 8, d1 = 0.9,
d2 = 1

In Fig. 2, we investigate the effect of the water consumption rate p and the water-uptake ability of
vegetation roots β on the real part of the eigenvalues Re(λ) in (2.4) for the linearized system (1.2). We
fix R = 18, μ0 = 6, μ1 = 8, d1 = 0.9 and d2 = 1. In addition, take β = 12.7474 in Fig. 2a and take p = 1.5
in Fig. 2b. In Fig. 2a, we can see the impact of the parameter p on Re(λn). It shows that the real part of
eigenvalues Re(λ) decreases as p increases. The Turing pattern begins to rise when p < 1.5. From Fig. 2b,
we can see that the real part of eigenvalues Re(λ) increases as β increases. When β > 12.7474, the real
part of some eigenvalues are positive and Turing pattern emerges.

Remark 2.1. Because of the great complexity in the formula (2.13), we cannot give an explicit relationship
between β and p. But we can obtain numerically the expression of p with respect to β when other
parameters are fixed.

3. Amplitude equations

In this section, we mainly focus on revealing the various kinds of spatiotemporal behavior near the critical
value of Turing bifurcation β(T ) by the method of multi-scale and weakly nonlinear analysis where the
amplitude equations associated with system (1.2) are derived in order to obtain the different pattern
formations generated by our model. Rewrite system (1.2) into the following form:

∂

∂t
U = L1U + N, (3.1)

where

U =

⎛

⎝
ω

b

⎞

⎠ L1 =

⎛

⎝
a11 + d1Δ a12 − βd1Δ

a21 a22 + d2Δ

⎞

⎠ , N =

⎛

⎝
f(ω, b)

g(ω, b)

⎞

⎠ (3.2)
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Fig. 2. Impact of p and β on dispersion of Re(λ). a we plot Re(λ) with respect to n and different values of p where
β = 12.7474. b we plot Re(λ) against n and different values of β where p = 1.5. Other parameters are R = 18, μ0 = 6,
μ1 = 8, d1 = 0.9, d2 = 1

with

f(ω, b) = −pωb, g(ω, b) = ωb + μ1(b∗ + 1)−3b2 − μ1(b∗ + 1)−4b3 + h.o.t.

Since we consider the behavior close to β = β(T ) in the following analysis, we expand the bifurcation
parameter β(T ) and the variable U with respect to a small parameter ε as

β − β(T ) = εβ(1) + ε2β(2) + ε3β(3) + o(ε4) (3.3)

and

U = ε

⎛

⎝
ω1

b1

⎞

⎠ + ε2

⎛

⎝
ω2

b2

⎞

⎠ + ε3

⎛

⎝
ω3

b3

⎞

⎠ + o(ε4). (3.4)

Similarly, the nonlinear term N can be expanded to the different order of ε as

N = ε2h2 + ε3h3 + o(ε4) (3.5)

with

h2 =

⎛

⎝
−pω1b1

ω1b1 + μ1(b∗ + 1)−3b21

⎞

⎠ ,

h3 =

⎛

⎝
−p(ω1b2 + ω2b1)

ω1b2 + ω2b1 + 2μ1(b∗ + 1)−3b1b2 − μ1(b∗ + 1)−4b31

⎞

⎠ .

Meanwhile, we can decompose the linear operator L1 into the following form:

L1 = LT + (β − β(T ))M, (3.6)
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where

LT =

⎛

⎝
a11 + d1Δ a12 − β(T )d1Δ

a21 a22 + d2Δ

⎞

⎠ , M =

⎛

⎝
b11 b12

b21 b22

⎞

⎠ =

⎛

⎝
0 −d1Δ

0 0

⎞

⎠ .

For the method of multi-scale analysis, the most critical is to separate the dynamical behavior of (2.2)
according to different time scale or spatial scale. Thus, we need to separate the timescale

T0 = t, T1 = εt, T2 = ε2t, . . . . (3.7)

Let us take wj , bj to be variables that vary slowly over time, so that they are independent of the slow
timescale T0. For a slow-varying amplitude A, we can get the derivative with respect to time t with

∂A

∂t
= ε

∂A

∂T1
+ ε2

∂A

∂T2
+ ε3

∂A

∂T3
+ o(ε4). (3.8)

Substituting (3.3)–(3.7) into (3.1) and expanding (3.1) with respect to various orders of ε, we have the
following three equations:

ε : LT

⎛

⎝
ω1

b1

⎞

⎠ = 0, (3.9)

ε2 : LT

⎛

⎝
ω2

b2

⎞

⎠ =
∂

∂T1

⎛

⎝
ω1

b1

⎞

⎠ − β(1)M

⎛

⎝
ω1

b1

⎞

⎠ − h2, (3.10)

ε3 : LT

⎛

⎝
ω3

b3

⎞

⎠ =
∂

∂T1

⎛

⎝
ω2

b2

⎞

⎠ +
∂

∂T2

⎛

⎝
ω1

b1

⎞

⎠ − β(1)M

⎛

⎝
ω2

b2

⎞

⎠ − β(2)M

⎛

⎝
ω1

b1

⎞

⎠ − h3. (3.11)

For the order of ε, by solving the (3.9), we get
⎛

⎝
ω1

b1

⎞

⎠ =

⎛

⎝
l1

1

⎞

⎠ (W1e
in1r + W2e

in2r + W3e
in3r) + c.c., (3.12)

where c.c. is the complex conjugate, |nj | = nT , j = 1, 2, 3,

l1 =
a11d2 + a21β

(T )d1 − a22d1
2a21d1

,

Wj , j = 1, 2, 3 is the amplitude of the pattern corresponding to the mode einjr. Its form depends on the
perturbational term of the higher order. In order to guarantee the existence of the nontrivial solution of
(3.10), we use the Fredholm solubility condition, which implies the vector function of the right-hand side
of (3.10) (i.e., (Fω, Fb)T ) must be orthogonal with the zero eigenvector of the adjoint operator L+

T of the
operator LT . By some calculations, we know

L+
T =

⎛

⎝
a11 + d1Δ a21

a12 − β(T )d1Δ a22 + d2Δ

⎞

⎠ .

The zero eigenvectors of L+
T are

⎛

⎝
1

l2

⎞

⎠ einjr, l2 =
(a21β

(T ) + a22)d1 − a11d2
2a21d2

, j = 1, 2, 3. (3.13)
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Let F j
ω and F j

b represent the coefficients corresponding to einjr in Fω and Fb. Then, we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
F 1

ω

F 1
b

⎞

⎠ =

⎛

⎜
⎜
⎝

l1
∂W1

∂T1

∂W1

∂T1

⎞

⎟
⎟
⎠ − β(1)

⎛

⎜
⎝

b12W1

0

⎞

⎟
⎠ −

⎛

⎜
⎝

−2pl1W 2W 3

[
2l1 + 2μ1(b∗ + 1)−3

]
W 2W 3

⎞

⎟
⎠ ,

⎛

⎜
⎝

F 2
ω

F 2
b

⎞

⎟
⎠ =

⎛

⎜
⎜
⎝

l1
∂W2

∂T1

∂W2

∂T1

⎞

⎟
⎟
⎠ − β(1)

⎛

⎜
⎝

b12W2

0

⎞

⎟
⎠ −

⎛

⎜
⎝

−2pl1W 1W 3

[
2l1 + 2μ1(b∗ + 1)−3

]
W 1W 3

⎞

⎟
⎠ ,

⎛

⎜
⎝

F 3
ω

F 3
b

⎞

⎟
⎠ =

⎛

⎜
⎜
⎝

l1
∂W3

∂T1

∂W3

∂T1

⎞

⎟
⎟
⎠ − β(1)

⎛

⎜
⎝

b12W3

0

⎞

⎟
⎠ −

⎛

⎜
⎝

−2pl1W 1W 2

[
2l1 + 2μ1(b∗ + 1)−3

]
W 1W 2

⎞

⎟
⎠ .

(3.14)

From the orthogonal condition

(1, l2)

⎛

⎝
F j

ω

F j
b

⎞

⎠ = 0,

we get
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(l1 + l2)
∂W1

∂T1
= β(1)b12W1 − [−2pl1 + 2l1l2 + 2l2μ1(b∗ + 1)−3

]
W 2W 3,

(l1 + l2)
∂W2

∂T1
= β(1)b12W2 − [−2pl1 + 2l1l2 + 2l2μ1(b∗ + 1)−3

]
W 1W 3,

(l1 + l2)
∂W3

∂T1
= β(1)b12W3 − [−2pl1 + 2l1l2 + 2l2μ1(b∗ + 1)−3

]
W 1W 2.

(3.15)

Next, assume that (3.10) has the following form
⎛

⎝
ω2

b2

⎞

⎠ =

⎛

⎝
X0

Y0

⎞

⎠ +
3∑

j=1

⎛

⎝
Xj

Yj

⎞

⎠ einjr +
3∑

j=1

⎛

⎝
Xjj

Yjj

⎞

⎠ e2injr +

⎛

⎝
X12

Y12

⎞

⎠ ei(n1−n2)r

+

⎛

⎝
X23

Y23

⎞

⎠ ei(n2−n3)r +

⎛

⎝
X31

Y31

⎞

⎠ ei(n3−n1)r + c.c., j = 1, 2, 3.

(3.16)

Substituting (3.16) into (3.10) and collecting the coefficients of e0, einjr, e2injr and ei(nj−nk)r, respectively,
we obtain

⎛

⎝
X0

Y0

⎞

⎠ =

⎛

⎝
x0

y0

⎞

⎠ (|W1|2 + |W2|2 + |W3|2), Xj = l1Yj ,

⎛

⎝
Xjj

Yjj

⎞

⎠ =

⎛

⎝
x11

y11

⎞

⎠ W 2
j ,

⎛

⎝
Xjk

Yjk

⎞

⎠ =

⎛

⎝
x∗

y∗

⎞

⎠ WjW k, j, k = 1, 2, 3, j �= k,
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where
⎛

⎝
x0

y0

⎞

⎠ =
2

a11a22 − a12a21

⎛

⎝
a22pl1 + a12

[
l1 + μ1(b∗ + 1)−3

]

−a21pl1 − a11

[
l1 + μ1(b∗ + 1)−3

]

⎞

⎠ ,

⎛

⎝
x11

y11

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(a22 − 4d2n
2
T )pl1 + (a12 + 4β(T )d1n

2
T )

[
l1 + μ1(b∗ + 1)−3

]

(a11 − 4d1n2
T )(a22 − 4d2n2

T ) − a21(a12 + 4β(T )d1n2
T )

−a21pl1 − (a11 − 4d1n
2
T )

[
l1 + μ1(b∗ + 1)−3

]

(a11 − 4d1n2
T )(a22 − 4d2n2

T ) − a21(a12 + 4β(T )d1n2
T )

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎝
x∗

y∗

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(a22 − 3d2n
2
T )pl1 + (a12 + 3β(T )d1n

2
T )

[
l1 + μ1(b∗ + 1)−3

]

(a11 − 3d1n2
T )(a22 − 3d2n2

T ) − a21(a12 + 3β(T )d1n2
T )

−a21pl1 − (a11 − 3d1n
2
T )

[
l1 + μ1(b∗ + 1)−3

]

(a11 − 3d1n2
T )(a22 − 3d2n2

T ) − a21(a12 + 3β(T )d1n2
T )

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Similarly, substituting (3.12) and (3.16) into (3.11) and using the Fredholm solvability condition, we can
get

(l1 + l2)
(

∂Y1

∂T1
+

∂W1

∂T2

)

= (β(1)Y1 + β(2)W1)b12 +
[
G1|W1|2 + G2(|W2|2 + |W3|2)

]
W1

+ 2
[−pl1 + l1l2 + μ1(b∗ + 1)−3l2

]
(W 2Y 3 + W 3Y 2),

where

G1 = −pM1 + l2(M1 + M3), G2 = −pM2 + l2(M2 + M4),

M1 = l1y0 + l1y11 + x0 + x11, M2 = l1y0 + l1y∗ + x0 + x∗,

M3 = 2μ1(b∗ + 1)−3(y0 + y11) − 3μ1(b∗ + 1)−4, M4 = 2μ1(b∗ + 1)−3(y0 + y∗) − 6μ1(b∗ + 1)−4.

In addition, the remaining two equations can be obtained by changing the subscript.
Combining Aj = εWj + ε2Yj , j = 1, 2, 3 and the above analysis, we get the following amplitude

equations:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

τ0
∂A1

∂t
= μA1 + hA2A3 − [

g1|A1|2 + g2(|A2|2 + |A3|2)
]
A1,

τ0
∂A2

∂t
= μA2 + hA1A3 − [

g1|A2|2 + g2(|A1|2 + |A3|2)
]
A2,

τ0
∂A3

∂t
= μA3 + hA1A2 − [

g1|A3|2 + g2(|A1|2 + |A2|3)
]
A3,

(3.17)

where

g1 = − G1

β(T )b12
, g2 = − G2

β(T )b12
,

τ0 =
l1 + l2
β(T )b12

, μ =
β − β(T )

β(T )
, h =

2
[
pl1 − l1l2 − μ1(b∗ + 1)−3l2

]

β(T )b12
.

Each amplitude can be decomposed into mode ρi = |Ai| and a corresponding phase angle θi. Then,
substituting Ai = ρie

iθi into (3.17) and separating the real and imaginary parts give the following four
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different differential equations of the real variables
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ0
∂θ

∂t
= −h

ρ21ρ
2
2 + ρ21ρ

2
3 + ρ22ρ

2
3

ρ1ρ2ρ3
sin θ,

τ0
∂ρ1
∂t

= μρ1 + hρ2ρ3 cos θ − g1ρ
3
1 − g2(ρ22 + ρ23)ρ1,

τ0
∂ρ2
∂t

= μρ2 + hρ1ρ3 cos θ − g1ρ
3
2 − g2(ρ21 + ρ23)ρ2,

τ0
∂ρ3
∂t

= μρ3 + hρ1ρ2 cos θ − g1ρ
3
3 − g2(ρ21 + ρ22)ρ3,

(3.18)

where θ = θ1 + θ2 + θ3.
The system (3.18) has four different kinds of pattern formations [14]:

(i) The homogeneous stationary state is given by

ρ1 = ρ2 = ρ3 = 0.

When μ < μ(2) = 0, this kind of pattern is stable. When μ > μ(2) = 0, this kind of pattern is
unstable.

(ii) The strip pattern formation is produced if

ρ1 =
√

μ

g1
�= 0, ρ2 = ρ3 = 0 and g2 > 0,

which is stable when μ > μ(3) =
g1h

2

(g2 − g1)2
and unstable when μ < μ(3).

(iii) The Hexagonal pattern is represented as

ρ1 = ρ2 = ρ3 = ρ∗
± =

|h| ± √
h2 + 4(g1 + 2g2)μ
2(g1 + 2g2)

with θ = 0 or θ = π. When μ > μ(1) =
−h2

4(g1 + 2g2)
, this kind of pattern exists and the solution ρ∗

+ =

|h| +
√

h2 + 4(g1 + 2g2)μ
2(g1 + 2g2)

is stable if μ < μ(4) =
(2g1 + g2)h2

(g2 − g1)2
. But ρ∗

− =
|h| − √

h2 + 4(g1 + 2g2)μ
2(g1 + 2g2)

is always unstable.
(iv) The mixed structure state is given by:

ρ1 =
|h|

g2 − g1
, ρ2 = ρ3 =

√

μ − g1ρ21
g1 + g2

,

which exists if g1 < g2 and μ > g1h2

(g2−g1)2
, and is always unstable.

4. Numerical simulations

In this section, numerical simulations are carried out to support and supplement theoretical analyses
above. Some rich and interesting phenomena are found. We know from Theorem 2.2 that the positive
equilibrium (ω∗, b∗) changes from stable to unstable for system (1.1). So we first simulate the Hopf
bifurcation at (ω∗, b∗) and obtain periodic solutions of (1.1) under certain parameter condition.

Next we mainly focus on the pattern formations of vegetation for system (1.2). The finite-difference
methods are adopted, and we restrict Ω in two-dimensional space. The boundary condition with a size of
50 × 50 is considered, and assume that the space step is dx = 1. Choose the initial value as the random
perturbation at (ω∗, b∗) and assume the time step is dt = 0.001. We run the simulations until each pattern
reaches a stationary state or does not change its main characteristics any longer.
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Fig. 3. The equilibrium E∗ of system (1.1) is locally asymptotically stable for R = 18, p = 2, μ0 = 6, μ1 = 8. a Time
diagram; b phase diagram

4.1. Hopf bifurcation

In Sect. 2, we establish the stability of positive equilibrium and the existence of Hopf bifurcation. In
this subsection, we shall give some numerical examples to verify Theorem 2.2. Choose R = 18, μ0 = 6,
μ1 = 8. It follows from (2.6) that p = Π(p) = 1.5. Take p = 2 > Π(p) and (ω∗, b∗) = (12.5830, 0.2153).
By Theorem 2.2, (ω∗, b∗) is locally asymptotically stable for system (1.1), see Fig. 3. Take p = 1 < Π(p)
and (ω∗, b∗) = (10.8000, 0.6667). By Theorem 2.2, (ω∗, b∗) loses its stability when p passes through the
critical value p = 1.5 and a Hopf bifurcation occurs, see Fig. 4. This tells us that if the water consumption
satisfies certain critical condition, system (1.1) will have time periodic solutions and the vegetation will
change periodically.

4.2. Pattern formation

If we choose suitable values of R, p, μ0, μ1, β, d1 and d2, we shall obtain the values of parameters of
h, g1, g2, μ, μ(1), μ(2), μ(3) and μ(4) according to the expressions of amplitude equation coefficients in
Sect. 3.

In order to observe the pattern formation of vegetation, we select three sets of parameter values as in
Table 1, and the corresponding pattern structures are shown in Fig. 5. Three typical pattern structures
(spot, mixed and strip pattern) occur when the parameters are chosen for different values. When the
first set of parameter values in Table 1 is taken, the controlled parameter μ is between μ(2) and μ(3), and
system (1.2) will present the spot patterns as in Fig. 5a, which shows that the uniform vegetation state
begins to lose its stability and spot patterns emerge slowly. When the second set of parameter values in
Table 1 is taken, the controlled parameter μ is between μ(3) and μ(4), the spot patterns begin to lose
stability and the strip patterns begin to appear. At this time, the mixed patterns occur as in Fig. 5b.
When the third set of parameter values in Table 1 is taken, the controlled parameter μ is greater than
μ(4) and the strip patterns emerge as in Fig. 5c. At this time, the spot patterns disappear and the strip
patterns begin to hold for the entire region.
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Fig. 4. System (1.1) produces the stable periodic orbits for R = 18, p = 1, μ0 = 6, μ1 = 8. a Time diagram; b phase
diagram

Table 1. The values of each parameter in Fig. 5

Order R p μ0 μ1 β d1 d2 μ(1) μ(2) μ(3) μ(4) μ

1 180 0.6 3 6 1.5 1 1.5 − 82.6970 0 0.4772 0.7166 0.2002
2 150 0.8 1 8 1.4 0.9 1 − 1.8175 0 0.2482 0.3814 0.3512
3 150 1 0.1 4 1.4 1 1.2 − 2.7671 0 0.0265 0.0398 0.1485

Fig. 5. Snapshots of contour pictures of different stationary-state pattern structures corresponding to the parameter values
in Table 1. a Spot pattern; b mixed pattern; c strip pattern

4.2.1. The effect of water consumption rate. Through numerical simulation, we explore the relation
between water consumption rate p and vegetation patterns, as shown in Figs. 6 and 7. From the color
scales of these simulation results, we conclude that vegetation biomass density gets smaller and smaller
with p increasing, which is negatively correlated. The small p induces the pattern transitions, which follows
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Fig. 6. Effects of the water consumption rate p on vegetation pattern structure. a p = 0.6; b p = 1; c p = 1.2. The other
parameters are fixed at R = 13, μ0 = 5, μ1 = 5.2, β = 0.1, d1 = 10 and d2 = 0.9

Fig. 7. Effects of the water consumption rate p on vegetation biomass density. a p = 1.2; b p = 2.2; c p = 3.2. The other
parameters are fixed at R = 14, μ1 = 5.2, μ0 = 5, β = 0.2, d1 = 10 and d2 = 0.2

the pattern sequence below: stripes → spots → bare soil, see Fig. 6. Many researchers have pointed out
that spot patterns are the early warning of desertification, so we can get that the water consumption rate
is of great significance in indicating desertification. Moreover, in general, the bigger vegetation density
corresponds to a more robust ecosystem. From the tendency of pattern phase transition, it can be found
that water consumption rate also has a vital influence on the ecosystem robustness.

4.2.2. The effect of water-uptake ability of vegetation roots. In order to explore the relation between
water-uptake ability of vegetation roots and vegetation pattern transitions, some simulation results are
shown as in Fig. 8. When β = 0, the gap patterns emerge, see Fig. 8a. When β increases slightly, the perfect
gap patterns disappear and strip patterns begin to emerge, see Fig. 8b. As β continues to increase, the
mixed patterns of strip and spot occur, see Fig. 8d and e. Finally, at even greater β, the spot patterns
occupy the whole space, see Fig. 8f. It can be seen that the pattern transitions occur as the water-uptake
ability of vegetation roots increases and conforms to the following sequence: gap patterns → strip patterns
→ spot patterns, which is in complete agreement with the pattern transition presented in [10,35].

The parameter β refers to the water-uptake ability of vegetation roots. The vegetation absorbed water
by roots reduces the water content, forms the water gradients and causes the water transport. When the
soil–water content is abundant and constant, the vegetation absorbs water more easily as the parameter
β increases. However, when we consider the water-uptake ability of vegetation roots in a water-limited
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Fig. 8. Effects of the water-uptake ability of vegetation roots β on vegetation biomass density. a β = 0; b β = 0.03; c
β = 0.06; d β = 0.09; e β = 0.12; f β = 0.15; the other parameters are fixed at R = 20, p = 0.8, μ0 = 5, μ1 = 5.2, d1 = 10
and d2 = 0.2

environment, for example, in the arid and semi-arid environment, the vegetation with higher water-uptake
ability of vegetation roots has greater potentiality to promote its own growth and inhibit the growth of
surrounding vegetation. When the vegetation patterns exist, as the water-uptake ability of vegetation
roots increases, different pattern forms emerge and ultimately induce the patch distribution.

4.2.3. The possible causes of desertification. In this subsection, define vegetation patch to be an area
covered by vegetation and surrounded by bare soil. We refer to isolation degree as the average distance
between vegetation patches, which can reveal the relationship between pattern structure and ecosystem
collapse [36].

The relation between the water-uptake ability of vegetation roots and average biomass density of the
vegetation is shown in Fig. 9. We find that the average density of vegetation is positively related to the
parameter β. That is, the water-uptake ability of vegetation roots is beneficial to increase the vegetation
density. In fact, the parameter β indicates the competition of vegetation for water by root uptake. In
the semi-arid region, the water is limited resource. When the rainfall capacity is a constant, the water-
uptake ability of vegetation roots reflects the requirement of vegetation for water. The water in the soil
is sufficient to sustain the survival of vegetation when β is small, thus the average density of vegetation
increases. When β is large enough, the vegetation requires plenty of water to survive. The competition
between vegetation is much stronger. The vegetation with higher water-uptake ability of vegetation roots
promotes its own growth and inhibits the growth of surrounding vegetation. So it can be seen from Fig. 8
that, when β is larger, although the local vegetation density increases, the isolation between vegetation
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Fig. 9. The relation between average density of the vegetation and water-uptake ability of vegetation roots. The curves
with different colors stand for different water-uptake ability of vegetation roots from β = 0.03 to β = 0.12. The other
parameters are fixed at R = 20, p = 0.8, μ0 = 5, μ1 = 5.2, d1 = 10 and d2 = 0.2

patches also increases, which is not beneficial to the ecological stability of vegetation, and desertification
is prone to occur.

5. Discussion

In the natural world, two species are in relationships of both coexistence and competition. For a water-
vegetation model, the specie water may be recognized as a restrained survival source by the other specie
vegetation. Meanwhile, the diffusion of vegetation brings an influence on the water since the water is
absorbed by the vegetation root. This phenomenon is caused by cross-diffusion. A great amount of works
for semi-arid ecosystem models discuss the stability and bifurcation based on Lyapunov method, but
some of the studiers don’t prefer to consider the diffusion effect, especially the cross-diffusion. So in this
paper, we consider a semi-arid ecosystem on vegetation and water with cross-diffusion. The stability and
Turing instability are first given. Then, a Hopf bifurcation to system (1.1) is obtained and the conditions
for the existence of periodic solutions of (1.1) are established. Based on a nonlinear analysis, we also
obtain the accurate parameters range of the model (1.2), which can produce the spatiotemporal patterns.
Furthermore, we consider the effect of water-uptake ability of vegetation roots and water consumption
rate on vegetation pattern formations. Note that the cross-diffusion coefficient β represents the water-
uptake ability of vegetation roots. The results indicate that cross-diffusion is a critical term to the Turing
spatial pattern formulation.

When β = 0, the Turing instability will not take place in system (1.2) when d1 ≤ d2, as discussed
in Sect. 2. When β is small, the water-uptake ability of vegetation roots can promote the increase of
vegetation biomass density and produce the transitions of vegetation patterns. However, when β is large,
the water-uptake ability of vegetation roots is not beneficial to the ecological stability of vegetation. Thus,
we put forward a conjecture with respect to the critical phenomenon: when the water-uptake ability of
vegetation roots is smaller than a threshold, the feedback will accelerate the growth of vegetation. If the
water-uptake ability of vegetation roots is larger than the threshold, it will lead to desertification.
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At present, most of our models consider the influence of rainfall on vegetation patterns. Research on
the influence of other factors on vegetation patterns is relatively scarce. In this work, we focus on the
influence of water consumption rate on the dynamical behaviors for system (1.2). It is revealed that there
is a negative correlation between water consumption rate and vegetation biomass density. That is to say,
the vegetation biomass density decreases as the increase of p and water consumption rate can induce the
transitions of vegetation patterns. The larger p is, the more unstable the system tends to be.

In this work, the results show that small change may induce the behavior shift between different
dynamical regions. We investigate the influences of parameter β and p on the pattern formation. However,
we all know that there are many factors affecting the structure of vegetation patterns, including natural
factors and human factors. It is still worth exploring how to establish a model that considers various
influencing factors. This will better protect our ecological environment.
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