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The essential spectrum of the volume integral operator in electromagnetic scattering
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Abstract. Scattering of time-harmonic electromagnetic waves by penetrable obstacles admits an equivalent formulation in
terms of a strongly singular volume integral equation (VIE). For the case of piecewise-constant physical parameters and
Lipschitz interfaces, we give a characterization of the essential spectrum of the magnetic and the electromagnetic operators
which describe the VIE, based on the spectral properties of the normal derivative of the Laplace single-layer potential
1
2
I+ K′

0. This extends the results obtained in a previous paper (Costabel et al., 2012) which were available only for smooth
domains. The results on the spectrum will then be used to derive necessary and sufficient conditions to ensure that the
diffraction problem is well-posed in the Fredholm sense. Also, we use the employed spectral methods to show that the
construction of regularizers for the operators which appear in the VIE needs only the determination of a regularizer for the
operator λI + K′

0.
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1. Introduction

We deal with the electromagnetic scattering of time-harmonic electromagnetic waves by a bounded pene-
trable medium of compact support. This scattering phenomenon is governed by Maxwell’s system. As an
efficient tool to treat this transmission problem in numerical modeling and simulation, one could convert
it into an equivalent volume integral equation defined only on the support of the scattering body. This
equation sometimes simply called “volume integral equation” (VIE) of electromagnetic scattering has
been widely used by physicists for numerical calculations; see, for example [1,2,10,17]. However, to the
author’s best knowledge, very few publications can be found in the literature that address the mathe-
matical properties, such as the unique solvability of the integral equations under consideration, see, for
example, previous studies [5–7,9,12,13].

This VIE involves three strongly singular volume integral operators: the dielectric, the magnetic, and
the electromagnetic operators. For scatterers with Lipschitz boundary and in the situation where the
physical parameters are piecewise constant, the essential spectrum of the dielectric operator has been
obtained in the previous study [6]. However, in this last paper, the essential spectrum of the magnetic
and electromagnetic operators has been determined only for smooth domains. The first objective of our
study is to extend those results to the Lipschitz case. We will show that this spectrum depends on the
spectral properties of the normal derivative of the single-layer potential for the Laplace equation 1

2 I+K ′
0

on the zero-mean elements of H− 1
2 (Γ) (where K ′

0 is no longer compact when the boundary of the scatterer
Γ is only Lipschitz).

The knowledge of such a spectrum plays an important role in the development of numerical methods
for solving the integral equations (choice of an iterative algorithm, convergence rate, construction of a
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proper preconditioner, etc). This research is motivated by various applications in physics and engineering
such as electromagnetic resonances, metamaterials (negative refraction index), etc.

In [17], it was shown by numerical computations that the eigenvalues of the coefficient matrix arising
from a discretization of the volume integral equation of electromagnetic scattering for a compact spherical
scatterer consist of a line segment plus some isolated point. In [10], a mathematical analysis of the
essential spectrum (in the dielectric case) based on the Mikhlin’s theory [16] of singular integral operators
(construction of symbol of the volume integral operator) was given under the assumption of Hölder
continuity of the physical parameters: the essential spectrum is given by the value 1 union an essential
continuous part. However, for the case of discontinuous parameters and under numerical observations, one
may affirm that the line segment connecting 1 and the relative permittivity parameter is contained in the
essential spectrum which is not true as explained in the previous paper [6]. In fact, for a smooth boundary,
the essential spectrum consists of the endpoints and the midpoint of that segment. Furthermore, it was
demonstrated in [9] that the endpoints of the segment are isolated points of the essential spectrum for
the case of a Lipschitz domain.

In [12,13], and under some sufficient hypotheses on the physical parameters (in particular the positivity
or the negativity criterion), it has been demonstrated, using the Fredholm alternative, that the VIE is
uniquely solvable. However, through the analysis of the essential spectrum of the integral operators, we will
give in this paper the necessary and sufficient conditions on the physical coefficients to ensure the unique
solvability of the problem, without any additional assumption on the coefficients’ sign. These obtained
conditions, if they are satisfied, guarantee also the existence of an operator, which applied to the VIE,
transforms it into the form “identity plus compact”. Such an operator will be called a “regularizer” for the
one describing the VIE. Within this context, our second goal is then to find an explicit representation of
that regularizer in terms of some integral operators. This is of great interest in the numerical techniques
for solving the VIE as explained in [19]. In this paper, we will give a method to get a formula for this
regularizer when the boundary of the domain is Lipschitz, by only knowing a regularizer for λI+K ′

0. This
approach shares some common points with the one used in the spectral analysis of the VIE. Moreover,
this argument will also work in the case when the boundary is smooth because in this situation K ′

0 is
compact. However, as far as we know, there are no papers where the construction of a regularizer for
λI + K ′

0 is discussed in the Lipschitz situation. This will be the subject of future work.
Before going on, we would like to point out that in the two-dimensional configuration, some results

on the spectrum of the volume integral operator for the electromagnetic transmission problem have been
established in a previous study [7].

The outline of this paper is as follows. First, we carefully present in Sect. 2 the electromagnetism trans-
mission problem and give its volume integral formulation. Next, we collect in Sect. 3 some preliminaries
and notations that will be used in the sequel. Then in Sect. 4, we treat the magnetic and the electro-
magnetic case where the spectrum of the volume integral operator is derived for a Lipschitz domain. The
obtained results are then used to deduce necessary and sufficient conditions on the physical parameters
for the well-posedness in the Fredholm sense of the general electromagnetic problem. Finally, the last
section is devoted to the construction of regularizers in the dielectric, magnetic, and electromagnetic
configuration.

2. Electromagnetic scattering by a penetrable, homogeneous, isotropic object and its volume
integral equation formulation

Throughout this work, we denote by Ω ⊂ R
3 a bounded open set with a Lipschitz boundary Γ. Moreover,

we use the standard notation for Sobolev spaces Hm, and we denote spaces of vector-valued functions by
boldface letters.
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We consider the diffraction of a time-harmonic electromagnetic wave (Ei, Hi) by an obstacle Ω sur-
rounded by a homogeneous medium with constant real positive electric permittivity ε0, magnetic per-
meability μ0, and vanishing electric conductivity σ0. The incoming wave (Ei, Hi) satisfies the free-space
Maxwell’s equations:

curlEi − ikHi = 0, curlHi + ikEi = J, in R
3, (1)

where k = w
√

ε0μ0 is the wave number, w > 0 the frequency, and J is the current density assumed to be
of compact support that is disjoint from Ω, and divergence-free.

In this paper, we consider the case where the dielectric permittivity ε and the magnetic permeability
μ are piecewise-constant functions:

ε = ε0, μ = μ0 in R
3\Ω; ε = εrε0, μ = μrμ0 in Ω. (2)

Here, the relative permittivity εr and permeability μr can be arbitrarily complex number.
We then define the total wave (E,H) by:

E = Ei + Es,H = Hi + Hs, (3)

where (Es,Hs) is the scattered field satisfying the Silver-Müller radiation condition:

lim
r→0

(Hs × x − rEs) = 0 (4)

uniformly for all direction x̂ = x/|x|, where r = |x|.
We require that (E,H) satisfy the following Maxwell’s equations:

curlE − ikμrH = 0, curlH + ikεrE = J, in R
3. (5)

In addition, we need the following boundary transmission conditions:

[n × E]Γ = 0, [n · μrH]Γ = 0, [n × H]Γ = 0, [n · εrE]Γ = 0, (6)

where n is the unit outward normal to the boundary Γ and the brackets [·]Γ denotes the jump across Γ.
Let

H(curl,Ω) = {u ∈ L
2(Ω); curlu ∈ L

2(Ω)}.

Following the idea developed in [12, Section 2], we will show that the scattering problem (1) to (6) is
equivalent to the following volume integral equation (VIE):

Find u in H(curl,Ω) such that u(x) − ηAku(x) − νBku(x) = ui(x), (7)

where ui is a given data, η = 1 − εr is the electric contrast, ν = 1 − 1
μr

is the magnetic contrast, and
where the integral operators Ak and Bk are given, for x ∈ Ω by:

Aku(x) = (−∇div − k2)
∫

Ω

gk(x − y)u(y) dy (the dielectric operator), (8)

Bku(x) = curl
∫

Ω

gk(x − y) curlu(y) dy (the magnetic operator). (9)

Here, gk is the fundamental solution of the Helmholtz equation Δu + k2u = 0:

gk(x − y) =
eik|x−y|

4π|x − y| , x �= y. (10)

We start by taking the electric field E as the unknown. We note that the argument works also for the
magnetic field H because E and H play symmetrical roles by interchanging −μr and εr in (5).

Eliminating H from the system (5) gives:

curl
(

1
μr

curlE
)

− k2εrE = ikJ in R
3.
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Doing the same operation to the field Ei with the system (1) leads to:

curlcurlEi − k2Ei = ikJ in R
3.

By taking the difference between the two above equations, we find that the scattered field Es is a solution
of the following equation:

curl
(

1
μr

curlEs

)
− k2εrEs = curl

((
− 1

μr
+ 1

)
curlEi

)

+ k2(εr − 1)Ei in R
3.

If we use the expressions η = 1 − εr and ν = 1 − 1
μr

, the last formula becomes:

curl
(

1
μr

curlEs

)
− k2εrEs = curl(νcurlEi) − k2ηEiv in R

3. (11)

Moreover, consider the following boundary transmission conditions and the Silver-Müller condition that
are satisfied by Es:

[n · Es]Γ = 0, [n × Es]Γ = 0, [n · curlEs]Γ = 0,

[
n × 1

μr
curlEs

]
Γ

= 0 (12)

lim
r→0

r(curlEs × x̂ − ikEs) = 0

uniformly for all direction x̂ =
x

|x| , where r = |x|. (13)

Then, we have the following lemma which states that the system (11) to (13) is equivalent to the following
integral equation:

Find Es in H(curl,Ω) such that

Es(x) = −η (k2 + ∇div)
∫

Ω

[Es(y) + Ei(y)]gk(x − y) dy

+ ν curl
∫

Ω

[curlEs(y) + curlEi(y)]gk(x − y) dy. (14)

Lemma 2.1. [12, Theorem 2.3] Let k ∈ C\{0} with Re k ≥ 0 and Im k ≥ 0. Define

Hloc(curl,R3) = {v : R3 → C
3 |v B ∈ H(curl, B) for all balls B ⊆ R

3}.

1. Let v ∈ Hloc(curl,R3) be a solution of the problem (11) to (13). Then, v Ω ∈ H(curl,Ω) solves (14).
2. Let v ∈ H(curl,Ω) solve (14). Then, v can be extended by the right side of (14) to a solution of the

system (11) to (13).

With the help of (3), we obtain as a consequence the following:

Corollary 2.2. Let (E,H) be a solution to the problem (1) to (6) and consider u = E Ω ∈ H(curl,Ω).
Then, u solves (7).

Conversely, let u ∈ H(curl,Ω) be a solution of (7) with ui = Ei. If we use the formula (7) to extend
u to all of R

3 and if we define (E,H) = (u, 1
ikμr

curlu), then (E,H) is a solution to the diffraction
problem (1) to (6).

Remark 1. The fact that the coefficients η and ν vanish outside of Ω permits to consider the volume
integral equation (7) on any domain Ω̂ with Ω ⊂ Ω̂ ⊂ R

3. If u solves (7) on Ω̂, one can employ the same
expression (7) to extend u outside of Ω̂. Note that the resulting function u will not depend on Ω̂ and will
be a solution to the corresponding original scattering problem.
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Recall that a bounded linear operator T mapping a Banach space X to itself is said to be a Weyl
operator if T is a Fredholm operator of index zero. The Weyl essential spectrum of T , denoted by σess(T ),
is then given by the set of all complex numbers λ for which the operator λI − T is not Weyl.

Then, the first challenge that will be addressed in the present paper is to find conditions on the complex
numbers η and ν for which the strongly singular volume integral operators I − νBk and I − ηAk − νBk

are Fredholm of index zero in the space H(curl,Ω). In other words, when doesn’t the number 1 belong
to the Weyl essential spectrum of the operators νBk and ηAk + νBk. To find an answer to this question,
we will study in Sect. 4 the sets σess(Bk) and σess(ηAk + νBk) for a Lipschitz domain Ω. This extends
the results obtained in [6] which are valid only for smooth Ω. In this context, we would like to point
out that in the dielectric configuration, the essential spectrum of Ak is already known for a Lipschitz
domain so conditions for the solvability of the dielectric volume integral equation can be deduced, see the
previous work [6]. We also note that many of the operators studied in the next can be written as compact
perturbations of self-adjoint operators in some Hilbert spaces, which implies that if they are Fredholm,
they are of index zero.

If we define a regularizer for a bounded operator as:

Definition 2.3. Let X and Y be two vector spaces. Suppose E ∈ L (X,Y ) and F ∈ L (Y,X). If FE =
I+KX where KX : X → X is compact, then F is called a left regularizer for E. Likewise, if EF = I+KY

where KY : Y → Y is compact, then F is called a right regularizer for E. If F is both a left and a right
regularizer for E, then we say that F is a two-sided regularizer (or simply a regularizer) for E.

Then, the second goal of this work is to find, on the space H(curl,Ω), an expression of a regularizer for
the operator I− ηAk − νBk. This topic will be discussed in Sect. 5. We note that the proofs of the results
obtained in this section share some common points with those of the preceding one, like the spectral
analysis techniques.

To address all the above-mentioned questions, we begin by collecting some definitions and tools, which
will be the subject of the next section.

3. Preliminary results

3.1. Function spaces, integral operators

We use the function spaces:

H(div,Ω) = {u ∈ L
2(Ω); divu ∈ L2(Ω)}, (15)

H(div0,Ω) = {u ∈ H(div,Ω); divu = 0}, (16)

H0(div0,Ω) = {u ∈ H(div0,Ω);n · u = 0}. (17)

As abbreviations for the restrictions onto the boundary Γ, we write for the trace and the normal derivative
of a scalar function u:

γ0u = u Γ and ∂nu = n · ∇u Γ,

and for the normal trace of a vector function u:

γnu = n · u Γ.

We introduce then the Newton potential:

Nku(x) :=
∫

R3

gk(x − y)u(y) dy, (18)
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and the single-layer potential:

Skv(x) :=
∫

Γ

gk(x − y) v(y) ds(y), (19)

where gk is defined by formula (10).
We note that the operator Nk is bounded from H

s
comp(R3) into H

s+2
loc (R3), ∀s ∈ R and Sk is bounded

from H− 1
2+s(Γ) into H1+s

loc (R3) for |s| < 1
2 , see for example [18, Chapter 3].

Moreover, given a potential Φ, for x ∈ Γ we set:

Φ±(x) := lim
h→0+

Φ(x ± hn(x)),

∂±
n(x)Φ(x) := lim

h→0+
∇Φ(x ± hn(x)) · n(x).

In the paper, we will use the following jump relation [3, Chapter 3]:

Lemma 3.1. For u ∈ H− 1
2 (Γ) and x ∈ Γ:

∂∓
n(x)(Sku)(x) = K ′

ku(x) ± 1
2
u(x),

where

K ′
ku(x) =

∫

Γ

u(y) ∂n(x)gk(x − y) ds(y).

As an important tool, we need the essential spectrum of the operator: ∂nS0 = 1
2 I + K ′

0 in the space
H− 1

2 (Γ). Let us define:

Σ = σess

(
1
2 I + K ′

0

)
. (20)

The following result is known [4, Theorem 1]:

Lemma 3.2. Let Γ be the boundary of a bounded Lipschitz domain Ω ⊂ R
3. If we define H

− 1
2∗ (Γ) =⎧⎨

⎩v ∈ H− 1
2 (Γ);

∫

Γ

v ds = 0

⎫⎬
⎭, then we have:

1
2
I + K ′

0 : H− 1
2 (Γ) → H− 1

2 (Γ)

is a self-adjoint contraction with respect to a certain scalar product in H
− 1

2∗ (Γ). Its essential spectrum Σ
is a compact subset of the open interval (0, 1).

If Γ is smooth (of class C1+α, α > 0), then K ′
0 is compact, hence Σ = { 1

2}.

3.2. Some spectral analysis tools

We start this paragraph with one of the most used tools in our paper, which is the following (a proof can
be found in [11, page 38]):

Lemma 3.3. (Recombination Lemma) Let X and Y be two vector spaces, S : Y → X and T : X → Y
two linear operators. Then we have:

σess(ST )\{0} = σess(TS)\{0}.
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Remark 2. There is another version of the last lemma whose statement is as follows:
Let X and Y be vector spaces and S : Y → X and T : X → Y linear operators. Then for λ �= 0, T

induces isomorphisms from ker(λI− ST ) to ker(λI− TS) and from X/(λI− ST )X to Y/(λI− TS)Y . In
particular, λI− ST is Fredholm of index zero in X if and only if λI− TS is Fredholm of index zero in Y .

In addition, we will need to reinterpret the “Recombination Lemma” in terms of regularization oper-
ators, which is given by the following lemma:

Lemma 3.4. Let X and Y be two vector spaces, S : Y → X and T : X → Y two linear operators and
λ �= 0.

If (λI − ST )′ is a regularizer for λI − ST on X, then:

(λI − TS)′ =
1
λ

T (λI − ST )′S +
1
λ
I

is a regularizer for λI − TS on Y .

Proof. For λ �= 0, let (λI− ST )′ denote a regularizer for λI− ST on X. This implies the existence of two
compact operators Kl and Kr on X such that:{

(λI − ST )′(λI − ST ) = I + Kl,

(λI − ST )(λI − ST )′ = I + Kr.

We then have:(
1
λ

T (λI − ST )′S +
1
λ
I

)
(λI − TS) =

1
λ

T (λI − ST )′S(λI − TS) +
1
λ

(λI − TS)

=
1
λ

T (λI − ST )′(λI − ST )S + I − 1
λ

TS

=
1
λ

T (I + Kl)S + I − 1
λ

TS = I +
1
λ

TKlS.

The operator TKlS : Y → Y is clearly compact. From this, we deduce that 1
λT (λI− ST )′S + 1

λ I is a left
regularizer on Y for λI − TS.

In the same manner, we check that 1
λT (λI − ST )′S + 1

λ I is also a right regularizer on Y for λI − TS.
�

Note that the above lemma gives another proof of the recombination lemma (Lemma 3.3) because it
immediately implies, for λ �= 0, λI− ST and λI− TS are simultaneously Fredholm or are simultaneously
not Fredholm.

As another important tool, we will employ the following results on the essential spectrum of upper
triangular operator matrix:

Lemma 3.5. Let X and Y be two Hilbert spaces. Let also C : X → X, E : Y → Y and D : Y → X be
bounded linear operators. Define the operator matrix MD =

(
C D
0 E

)
. Then, we have:

1. (
C 0
0 E

)
is Fredholm of index zero =⇒ MD is Fredholm of index

zero for all D in L (Y,X).

In particular, we have:

σess(MD) ⊆ σess

(
C 0
0 E

)
⊆ σess(C) ∪ σess(E). (21)

Moreover, (21) holds as equality if C and E are self-adjoint.
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2. If
(

C̃ D̃

0 Ẽ

)
is a regularizer for

(
C D
0 E

)
on X × Y , then C̃ = C ′ and Ẽ = E′ are regularizers for C

and E on X and Y , respectively.
Conversely, if C ′ and E′ are regularizers for C and E on X and Y , respectively, then:(

C ′ −C ′DE′

0 E′

)
is a regularizer for

(
C D
0 E

)
on X × Y.

Proof. For the first affirmation, we refer the reader to the paper [14]. Let us prove now the second
statement.

Assume that
(

C̃ D̃

0 Ẽ

)
is a regularizer for

(
C D
0 E

)
on X × Y . Then, we have:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
C̃ D̃

0 Ẽ

)(
C D

0 E

)
=

(
I 0
0 I

)
+

(
K1,l K2,l

K3,l K4,l

)
=

(
I + K1,l K2,l

K3,l I + K4,l

)
,

(
C D

0 E

)(
C̃ D̃

0 Ẽ

)
=

(
I 0
0 I

)
+

(
K1,r K2,r

K3,r K4,r

)
=

(
I + K1,r K2,r

K3,r I + K4,r

)
,

where, for i = 1, . . . , 4, Ki,l and Ki,r are some compact operators.
But, we also have: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
C̃ D̃

0 Ẽ

) (
C D

0 E

)
=

(
C̃C C̃D + D̃E

0 ẼE

)
,

(
C D

0 E

) (
C̃ D̃

0 Ẽ

)
=

(
CC̃ CD̃ + DẼ

0 EẼ

)
.

By identification, we find the relations:{
C̃C = I + K1,l

CC̃ = I + K1,r

,

{
ẼE = I + K4,l

EẼ = I + K4,r

,

which mean that C̃ and Ẽ are regularizers for C and E, respectively.
Reciprocally, suppose that C ′ and E′ are regularizers for C and E on X and Y , respectively, i.e., there

exist some compact operators KC,l, KC,r, KE,l and KE,r such that we have:{
C ′C = I + KC,l

CC ′ = I + KC,r

,

{
E′E = I + KE,l

EE′ = I + KE,r

.

We now write: (
C ′ −C ′DE′

0 E′

)(
C D
0 E

)
=

(
C ′C C ′D − C ′DE′E

0 E′E

)

=
(
I + KC,l C ′D(I − E′E)

0 I + KE,l

)

=
(
I + KC,l C ′D(−KE,l)

0 I + KE,l

)

=
(
I 0
0 I

)
+

(
KC,l −C ′DKE,l

0 KE,l

)
.

The matrix operator
(

KC,l −C ′DKE,l

0 KE,l

)
is compact, so

(
C ′ −C ′DE′

0 E′

)
is a left regularizer for

(
C D
0 E

)
.

Following the same steps, we show that
(

C ′ −C ′DE′

0 E′

)
is also a right regularizer.
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This ends the proof of the lemma. �

We finish this paragraph with a characterization of Fredholm operators which is known as the Atkinson
theorem:

Lemma 3.6. [15, theorem 2.24] Let X and Y be two vector spaces. For E ∈ L (X,Y ), the following
statements are equivalent:

• E is Fredholm,
• E has a left regularizer and a right regularizer,
• E has a regularizer.

4. Results on the essential spectrum and the well-posedness

4.1. The essential spectrum of the magnetic volume integral operator

We first consider the magnetic scattering problem. When the dielectric contrast η is null, the volume
integral equation involves only the operator Bk given by formula (9) and writes:

Find u in H(curl,Ω) such that u(x) − νBku(x) = ui(x). (22)

We start by recalling some facts related to the operator Bk that have been established in [6, Section 4]:

Lemma 4.1. The operator Bk is bounded from H(curl,Ω) to itself, it cannot be extended to L
2(Ω) as a

bounded operator and it has the same essential spectrum as the operator B0.

Thanks to the above result, we need to only focus on the essential spectrum of B0 on H(curl,Ω). We
use the same decomposition of the space H(curl,Ω) as the one employed in the previous work, namely
the following decomposition which is satisfied both for the L

2(Ω) and H(curl,Ω) norm:

H(curl,Ω) = ∇H1
0 (Ω) ⊕ X,

with X = H(curl,Ω) ∩ H(div0,Ω) and where H(div0,Ω) is defined by (16).
On the space ∇H1

0 (Ω), B0 is the null operator because curl∇ = 0. We then consider the space X.
We will give another method different from the one used in the previous paper [6] which allows us to
deduce the essential spectrum of the restriction of B0 to the subspace X, even for Lipschitz domains. This
approach is based on the application of Lemma 3.3 twice. We then have the following:

Theorem 4.2. Let Ω ⊂ R
3 be a bounded Lipschitz domain. The essential spectrum of the operator Bk in

H(curl,Ω) is given by:

σess(Bk) = {0} ∪ {1 − Σ} ∪ {1},

where Σ is defined in (20).

Proof. First, let us remember the expression of the operator B0 in H(curl,Ω):

B0u(x) = curl
∫

Ω

g0(x − y) curlu(y) dy = curlN0 curlu(x)

with N0 the Newton potential defined by formula (18) for k = 0.
We will use twice Lemma 3.3:
First, we apply the lemma to these choices of maps:

X = X, Y = H(div0,Ω)
T : X → Y

u �→ curlu
S : Y → X

w �→ curlN0w.
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We found then that σess(B0)\{0} = σess(curlcurlN0)\{0}.
Now, let us simplify the expression of the operator curlcurlN0 on the subspace X. We have, for u ∈ X:

curlcurlN0u = (∇div − Δ)N0u

= −A0u − ΔN0u,

where A0 is the volume integral operator defined in formula (8).
Using the fact that the restriction of A0 on the set H(div0,Ω) is the operator ∇S0γn where S0 is the

single layer associated to the Laplace operator defined by (19) (see [6, Section 3]) and that the Newton
potential N0 satisfies −ΔN0u = u in the distributional sense [18, Theorem 3.14], we deduce:

curlcurlN0u = (I − ∇S0γn)u. (23)

This leads to the first relation:

σess(B0)\{0} = σess(I − ∇S0γn)\{0}.

Second, we apply the same lemma to:

X = H(div0,Ω), Y = H
− 1

2∗ (Γ),

T : X → Y
w �→ γnw

S : Y → X
ϕ �→ ∇S0ϕ,

where H
− 1

2∗ (Γ) is the space of zero-mean elements of H− 1
2 (Γ) (see Lemma 3.2).

This gives rise, with the help of Lemma 3.1, to the following second identity:

σess(I − ∇S0γn)\{1} = σess

(
1
2
I − K ′

0

)
\{1}.

To end the proof, we will show that the value 1 belongs to the essential spectrum of B0 using the fact that
its restriction on the subspace Y := H0(div0,Ω) ∩ {u ∈ H(curl,Ω);n × u = 0} is the identity operator.

Indeed, integration by parts and the identity (23) give, for u ∈ Y:

B0u = curl

⎛
⎝

∫

Ω

curly(g0(x − y)u(y)) dy + curl
∫

Ω

g0(x − y)u(y) dy

⎞
⎠

= curl
∫

Γ

g0(x − y)n × u(y) ds(y) + curlcurl
∫

Ω

g(x − y)u(y) dy

= (I − ∇S0γn)u
= u.

�

Remark 3. The identities obtained in the above proof enable one to have information for the surface-
operators system B̂0 introduced in [6, Formula (7)], namely the operator:

B̂0 =

⎛
⎜⎝

1
2
I − K ′

0 n · curlS0

−n × ∇S0 M0 +
1
2
I

⎞
⎟⎠

which is defined on the space H− 1
2 (Γ) × H

− 1
2× (divΓ,Γ).

In fact, we deduce that σess(B̂0) = {1 − Σ} for a Lipschitz boundary Γ.

As a straightforward corollary of the previous theorem, we obtain the following sufficient and necessary
conditions for the solvability of the magnetic volume integral equation (22):
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Corollary 4.3. Let Ω ⊂ R
3 be a bounded Lipschitz domain. Let the coefficient μr be a complex constant.

Then the integral operator of Eq. (22), namely I − νBk, is Fredholm in H(curl,Ω) if and only if:

μr �= 0 and μr �= 1 − 1
σ

for all σ ∈ Σ.

4.2. The essential spectrum of the complete volume integral operator

We first remind the reader that the general configuration is modeled by the volume integral equation (7)
defined in H(curl,Ω) and involving the operator ηAk + νBk, where Ak and Bk are given by (8) and (9).

In this section, we will determine the essential spectrum of the operator ηAk +νBk in H(curl,Ω) when
the domain Ω is Lipschitz. We obtain the following:

Theorem 4.4. Let Ω ⊂ R
3 be a bounded Lipschitz domain. For any η, ν ∈ C, the essential spectrum of the

operator ηAk + νBk in the space H(curl,Ω) is given by:

σess(ηAk + νBk) = {0, η, ν} ∪ ηΣ ∪ ν(1 − Σ),

where Σ is defined in (20).

Proof. We begin by recalling that, in H(curl,Ω), we have the following property [6, Sections 3 and 4]:

ηAk + νBk has the same essential spectrum as ηA0 + νB0. (24)

Thanks to this result, it suffices to consider the operator ηA0 +νB0. Once again, we will use the following
orthogonal decomposition:

H(curl,Ω) = ∇H1
0 (Ω) ⊕ X

with X = H(curl,Ω) ∩ H(div0,Ω).
For the space ∇H1

0 (Ω), we obtain the essential spectrum of ηA0 which is the set {η} because the
restriction of A0 to that subspace is the identity operator [6, Theorem 3.2].

Let us focus now on the second space X = H(div0,Ω) ∩ H(curl,Ω). For a Lipschitz boundary, we will
proceed as follows.

First, we remember that [6, Section 3]:

A0u = ∇S0γnu, for u ∈ H(div0,Ω).

We then apply Lemma 3.3 to (we may also take H
− 1

2∗ (Γ) instead of H− 1
2 (Γ)):

X = X, Y = H− 1
2 (Γ) × H(div0,Ω),

T : X → Y,u �→ (γnu, curlu),

S : Y → X, (φ,w) �→ η∇S0φ + ν curlN0w.

(25)

This gives:

σess(ηA0 + νB0)\{0} = σess(TS)\{0}.

Moreover, due to Lemma 3.1 and formula (23), we get:

TS =
(

η ∂nS0 ν γncurl N0

0 ν curl curlN0

)
=

⎛
⎝η

(
1
2
I + K ′

0

)
ν γncurl N0

0 ν(I − ∇S0γn)

⎞
⎠ .

The next step is to employ the first statement of Lemma 3.5 with C = η
(

1
2 I + K ′

0

)
and E = ν(I−∇S0γn)

which are self-adjoint [6, Section 3]. We already know the essential spectrum of the operator I − ∇S0γn
in the space H(div0,Ω) which is the set {1} ∪ (1 − Σ) (see the proof of Theorem 4.2). The result follows.
�
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From the precedent theorem, we could deduce the following:

Corollary 4.5. Let Ω ⊂ R
3 be a bounded Lipschitz domain. Let the coefficients εr and μr be complex

constants.
Then the integral operator of Eq. (7), namely I− ηAk − νBk, is Fredholm in H(curl,Ω) if and only if:

εr �= 0, μr �= 0 and εr �= 1 − 1
σ

, μr �= 1 − 1
σ

for all σ ∈ Σ. (26)

According to the approach given above, with the help of Remark 2, we could deduce the following
theorem which states that the electromagnetic volume integral equation (7) (and so the Maxwell trans-
mission problem) is well-posed in the Fredholm sense if and only if two scalar integral equations, one
involving the electric permittivity and the other one the magnetic permeability, are well-posed:

Theorem 4.6. Let Ω ⊂ R
3 be a bounded Lipschitz domain. Let the coefficients εr and μr be complex

constants.
Then, the electromagnetic volume integral equation (I−ηAk +νBk)u = f is well-posed in the Fredholm

sense in H(curl,Ω) if and only if the following two independent scalar problems are well-posed:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Problem 1: Find u1 ∈ H− 1
2 (Γ) such that(

I − η
(

1
2 I + K ′

0

))
u1 = f1, f1 ∈ H− 1

2 (Γ) is a data,

Problem 2: Find u2 ∈ H− 1
2 (Γ) such that(

(1 − ν)I + ν
(

1
2 I + K ′

0

))
u2 = f2, f2 ∈ H− 1

2 (Γ) is a data,

with 1
2 I + K ′

0 the adjoint Neumann–Poincaré operator defined in Sect. 3.1.

Before closing this section, we would like to mention that, in our future research, we intend to con-
centrate on the identification of the two scalar transmission problems which are equivalent to the two
integral equations described in the above theorem and to compare the result with that obtained, in a
slightly different functional framework, in [8] for the case of Maxwell’s problem modeling the propagation
of waves in composite objects mixing positive and negative materials.

5. Construction of regularizers for the volume integral operators

If the complex constant εr and μr are chosen such that the operator I − ηAk + νBk is Fredholm on
H(curl,Ω), i.e., they satisfy the condition (26) in Corollary 4.5, then the goal of the present section is to
give an explicit construction of an operator which, applied to the volume integral equation (7), transforms
it to the form “identity plus compact”. In other words, we wish to find a regularizer for the operator
I − ηAk + νBk (existence of such an operator is assured by Lemma 3.6).

5.1. Results

In this paragraph, we will give explicit formulas for the regularizers for Ak, Bk, and their linear combi-
nations with the identity operator, by only knowing a regularizer for λI + K ′

0. This regularizer is trivial,
of course, if the boundary is smooth, since in this case K ′

0 is compact (see Lemma 3.2) but the argument
works for the Lipschitz case.

Recall that N0 and S0 denote, respectively, the single-layer potential and the Newton potential, γn is
the normal trace operator, and that Σ denotes the essential spectrum of 1

2 I + K ′
0 (see Sect. 3.1).

We begin with the dielectric case (ν = 0) and its corresponding integral equation which is the following:

Find u ∈ H(curl,Ω) such that u(x) − ηAku(x) = ui(x). (27)
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We first recall the following results for the dielectric operator which will be employed in the next [6,
Theorem 3.1]:

Lemma 5.1. Let Ω ⊂ R
3 be a bounded Lipschitz domain. Then we have:

• The operator Ak can be extended to L
2(Ω) as a bounded operator. It has H(curl,Ω) and H(div,Ω)

as invariant subspaces.
• For ui in H(curl,Ω) ∩ H(div,Ω), the integral equation (27) in L

2(Ω) has the same solutions as in
H(curl,Ω) or in H(div,Ω).

• Ak − A0 defines a compact operator on L
2(Ω).

Thanks to this result, one can understand that the construction of a regularizer can be investigated
in L

2(Ω). We then have:

Theorem 5.2. (The dielectric case) Let Ω ⊂ R
3 be a bounded Lipschitz domain. Let the coefficient εr be

a complex constant verifying:

εr �= 0, and εr �= 1 − 1
σ

for all σ ∈ Σ.

If we denote by Rη a regularizer for 2−η
2 I − ηK ′

0 on H− 1
2 (Γ), then the operator:

η

1 − η
P∇H1

0
+ η∇S0RηγnPW + I (28)

is a regularizer for I−ηAk on L
2(Ω), where P∇H1

0
and PW are the orthogonal projections onto ∇H1

0 and
W = ∇H1(Ω) ∩ H(div0,Ω), respectively.

In particular, if Γ is smooth then (28) becomes:

η

1 − η
P∇H1

0
+

2η

2 − η
∇S0γnPW + I.

Next, we consider the volume integral equation formulation for the magnetic case (η = 0):

Find u in H(curl,Ω) such that u(x) − νBku(x) = ui(x).

In this situation, we have the following:

Theorem 5.3. (The magnetic case) Let Ω ⊂ R
3 be a bounded Lipschitz domain. Let the coefficient μr be

a complex constant such that:

μr �= 0, and μr �= 1 − 1
σ

for all σ ∈ Σ.

If we denote by Rν a regularizer for 2−ν
2 I + νK ′

0 on H− 1
2 (Γ), and by PX the orthogonal projection onto

the subspace X = H(curl,Ω) ∩ H(div0,Ω), then the operator:
(

ν

1 − ν
curlN0curl − ν2

1 − ν
curlN0∇S0Rνγncurl

)
PX + I

is a regularizer for I − νBk on H(curl,Ω).
In particular, if Γ is smooth then the last expression becomes:(

ν

1 − ν
curlN0curl − 2ν2

(1 − ν)(2 − ν)
curlN0∇S0γncurl

)
PX + I.

We finish this paragraph with a result for the general configuration:
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Theorem 5.4. (The electromagnetic case) Let Ω ⊂ R
3 be a bounded Lipschitz domain. Let the coefficients

εr and μr be complex constants satisfying:

εr �= 0, μr �= 0 and εr �= 1 − 1
σ

, μr �= 1 − 1
σ

for all σ ∈ Σ.

If we denote by Rη (resp. Rν) a regularizer for 2−η
2 I − ηK ′

0 (resp. 2−ν
2 I + νK ′

0) on H− 1
2 (Γ), and by PX

the orthogonal projection onto the subspace X = H(curl,Ω) ∩ H(div0,Ω), then the operator:

1
1 − η

I +
(

LMN − η

1 − η
I

)
PX,

where

L : (u,v) ∈ H− 1
2 (Γ) × H(div0,Ω) �→ η∇S0u + νcurlN0v ∈ X,

N : a ∈ X �→ (γna, curla) ∈ H− 1
2 × H(div0,Ω),

and

M : H− 1
2 × H(div0,Ω) → H− 1

2 × H(div0,Ω)

(v,w) �→
⎛
⎝Rη

ν

1 − ν
RηγncurlN0 (I − ν∇S0Rνγn)

0
1

1 − ν
I − ν

1 − ν
∇S0Rνγn

⎞
⎠

(
v
w

)
,

is a regularizer for I − ηAk − νBk on H(curl,Ω).
In particular, if Γ is smooth then the operator matrix M becomes:⎛

⎜⎝
2

2 − η
I

2ν

(1 − ν)(2 − η)
γncurlN0

(
I − 2ν

2 − ν
∇S0γn

)

0
1

1 − ν
I − 2ν

(1 − ν)(2 − ν)
∇S0γn

⎞
⎟⎠ .

5.2. Proof

The steps to proving the last three theorems are based on the ideas described in the previous work [6]
and the previous section on the essential spectrum, in addition to the two Lemmas 3.4 and 3.5.

Let us begin with the proof of the first theorem:

Proof of Theorem 5.2. First, note that the given assumption on εr guarantees that the operator I−ηA is
Fredholm on L

2(Ω) [6, Corollary 3.3], and hence the existence of a regularizer for that operator is assured
(Lemma 3.6).

We already know that Ak − A0 defines a compact operator (Lemma 5.1). Thus, it suffices to search a
regularizer for I − ηA0 on L

2(Ω).
We use the following orthogonal decomposition:

L
2(Ω) = ∇H1

0 (Ω) ⊕ H0(div0,Ω) ⊕ W,

where

W = ∇H1 ∩ H(div0,Ω).

We construct a regularizer for I − ηA0 on each subspace mentioned in the above decomposition then we
end up using the properties of the associated orthogonal projections.

Using the fact that [6, Section 3]

A0 = I on ∇H1
0 (Ω), A0 = 0 on H0(div0,Ω), and A0 = ∇S0γn on W, (29)
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we get:

(I − ηA0) ∇H1
0 (Ω) = (1 − η)I, (I − ηA0) H0(div0,Ω) = I,

(I − ηA0) W
= I − η∇S0γn

So, we could take 1
1−η I and I as regularizers for I− ηA0 on the first two subspaces, in the order. For the

third subspace, we apply Lemma 3.4 to these choices of maps for λ = 1:

Y = W, X = H− 1
2 (Γ), T = η∇S0, S = γn.

This gives:

((I − ηA0) W
)′ = (I − η∇S0γn)′

= η∇S0 (I − ηγn∇S0)
′
γn + I

= η∇S0

(
I − η

(
1
2
I + K ′

0

))′
γn + I

= η∇S0

(
2 − η

2
I − ηK ′

0

)′
γn + I.

and the desired statement follows. �

We now pass on to the proof of the second theorem:

Proof of Theorem 5.3. We start in the same manner as was done at the beginning of the precedent proof.
Due to the hypothesis on μr, with the help of Lemma 3.6 and Corollary 4.3, the operator I− νBk has

a regularizer on H(curl,Ω).
Because the difference Bk − B0 is compact on H(curl,Ω), we could consider the operator I − νB0.
We will use once again the following orthogonal decomposition:

H(curl,Ω) = ∇H1
0 (Ω) ⊕ X (30)

with X = H(curl,Ω) ∩ H(div0,Ω).
As a regularizer on ∇H1

0 (Ω) for (I − νB0) X
= I is trivial, let us focus on the second subspace X.

Remember that (I − νB0)u = (I − νcurlN0curl)u for u ∈ H(curl,Ω), and so also on X. For λ = 1, we
apply then Lemma 3.4 in the case where

Y = X, X = H(div0,Ω),
S : Y → X, u �→ curlu,

T : X → Y, w �→ νcurlN0w.

This gives, for u ∈ X and using formula (23):

(I − νcurlN0curl)′u = (νcurlN0(I − νcurlcurlN0)′curl + I)u

= (νcurlN0(I − ν(I − ∇S0γn))′curl + I)u

= (νcurlN0((1 − ν)I + ν∇S0γn)′curl + I)u. (31)

To obtain a regularizer for (1 − ν)I + ν∇S0γn, we use again Lemma 3.4 for λ = 1 − ν �= 0 with:

X = H− 1
2 (Γ), Y = H(div0,Ω),

S : Y → X, u �→ γnu,

T : X → Y, v �→ −ν∇S0v.
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This leads to:

((1 − ν)I + ν∇S0γn)′ =
−ν

1 − ν
∇S0((1 − ν)I + νγn∇S0)′γn +

1
1 − ν

I.

=
1

1 − ν
I − ν

1 − ν
∇S0

(
2 − ν

2
I + νK ′

0

)′
γn. (32)

If we use this last identity in expression (31), we find on X:

(I − νcurlN0curl)′ =
ν

1 − ν
curlN0curl − ν2

1 − ν
curlN0∇S0Rνγncurl + I,

where Rν =
(

2−ν
2 I + νK ′

0

)′ denotes a regularizer for 2−ν
2 I + νK ′

0 on H− 1
2 (Γ).

This completes the proof of the theorem. �

We end this paper with a demonstration of the third and last theorem:

Proof of Theorem 5.4. In a similar way to the previous proof, the hypothesis on εr and μr guarantee the
existence of a regularizer for I − ηAk + νBk on H(curl,Ω).

Using property (24), we need only consider the operator I − ηA0 − νB0.
We will use the same orthogonal decomposition as in the precedent proof, i.e., the decomposition (30).
With the help of (29), we obtain:
• For u ∈ ∇H1

0 (Ω), (I − ηA0 + νB0)u = (I − ηA0)u = (1 − η)u.
• On the second subspace X:

(I − ηA0 − νB0)u = (I − η∇S0γn − νcurlN0curl)u.

To find a regularizer for I−ηA0−νB0 on X, we apply the second statement of Lemma 3.4 to the operators
S and T defined by (25) for λ = 1. This gives:

(I − ηA0 − νB0)′ = S(I − TS)′T + I,

where (I − TS)′ is a regularizer on H− 1
2 (Γ) × H(div0,Ω) for

I − TS =

(2 − η

2
I − ηK ′

0 −νγncurlN0

0 I − νcurlcurlN0

)
.

To find an expression of (I − TS)′, we write the last operator matrix in the form
(

C D
0 E

)
where

C : v ∈ H− 1
2 (Γ) �→ 2 − η

2
v − ηK ′

0v ∈ H− 1
2 (Γ),

D : u ∈ H(div0,Ω) �→ −νγncurlN0u ∈ H− 1
2 (Γ),

E : u ∈ H(div0,Ω) �→ u − νcurlcurlN0u ∈ H(div0,Ω),

and then apply the second statement of Lemma 3.5. This gives a regularizer of the form:

(I − TS)′ =
(

C ′ −C ′DE′

0 E′

)
,

where C ′ and E′ are regularizers for C and E on H− 1
2 (Γ) and H(div0,Ω), respectively.

We already know from the precedent proof that:

E = I − νcurlcurlN0 = (1 − ν)I + ν∇S0γn.

Also, we have obtained from that proof an expression of ((1 − ν)I+ ν∇S0γn)′, see formula (32), and the
statement of the theorem follows. �
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