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Abstract. This article deals with the behaviors of solutions to the initial-boundary value problem for a fourth-order parabolic
equation with gradient nonlinearity. More precisely, we first get a threshold result for the solutions to exist globally or to
blow up in finite time when the initial energy is subcritical and critical, and give an upper bound estimate of the lifespan.
Furthermore, we derive the sufficient conditions for the existence of global and blow-up solutions for supercritical initial
energy. Finally, we also give a lower bound estimate of the lifespan and obtain some estimates for blow-up rate. These
results extend and improve some recent results.
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1. Introduction

In this paper, we consider the following initial-boundary value problem for a fourth-order parabolic
equation with gradient nonlinearity:

⎧
⎪⎨

⎪⎩

ut + (−Δ)2u = −∇ · (|∇u|p−2∇u), (x, t) ∈ Ω × (0, T ),
∂νu = ∂νΔu = 0, (x, t) ∈ ∂Ω × (0, T ),
u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain in R
N (N � 2) with smooth boundary, u0 ∈ L2(Ω), T > 0, and ∂ν denotes

the outer normal derivative to ∂Ω. Moreover, the parameter p satisfies one of the following conditions:
(H1) 2 < p < ∞, if N = 2; 2 < p < 2N

N−2 , if N > 2.

(H2) 2 < p < 2 + 4
N+2 , N ≥ 2.

In recent years, the epitaxial growth of nanoscale thin films has attracted considerable attentions in
materials science. To clarify such phenomena, we first sketch the lines along which the studied model is
derived. Due to Zangwill in [14], for a spatial variable x in the domain Ω = [0, L]2, the continuum model
for epitaxial thin-film growth reads

ut = g − ∇ · j + η, (1.2)
where u(x, t) denotes the height of a film in epitaxial growth with g = g(x, t), j = j(x, t) and η = η(x, t)
being the deposition flux, all processes of moving atoms along the surface and Gaussian noise, respectively.
Purely phenomenologically, one can expand j(x, t) in a power series involving the surface slope ∇u and
various powers and derivatives thereof. This simple case (to keep only “sensible” terms (see [14] for
details)) is

j = A1∇u + A2∇(Δu) + A3|∇u|2∇u. (1.3)
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The spatial derivatives in (1.3) have the following physical interpretations:

A1Δu : diffusion due to evaporation − condensation [2, 10];

A2Δ2u : capillarity driven surface diffusion [5, 10];

A3∇ · (|∇u|p−2∇u) : (upward) hopping of atoms [1].

Hence, if we drop Gaussian noise, then Eq. (1.2) becomes

ut + A1Δu + A2Δ2u + A3∇ · (|∇u|p−2∇u) = g. (1.4)

Since these models describe the complex process of making a thin-film layer on a substrate by chemical
vapor deposition, one of some interesting problems is to analyze these processes quantitatively on the
correct scale so that we can deeply understand and optimize the particular properties of the film. These
equations such as (1.4) under different initial and boundary conditions have been investigated extensively
during the past few years. King et al. [7] studied the existence of global-in-time solutions and large time
behavior of solutions to (1.4) in an appropriate function space for the case A1 = A3 = 1 and g = 0. Later,
Sandjo et al. [12] proved the local and global existence of solutions for similar problems. Recently, for the
case A1 = 0, A2 = 1, A3 = 1 and g = 0, Ishige et al. [6] first obtained the local existence and singularity
behavior on the whole space. Later, Miyake and Okabe [9] combined the well-known potential well method
with the Galerkin method to derive the precise asymptotic behavior of global-in-time solution to problem
(1.1) when the initial energy is subcritical. However, some problems are unsolved in [9].

• Whether or not will the advection term ∇ · (|∇u|p−2∇u) cause the finite-time blow-up?
• Whether or not can the supercritical initial energy also cause the finite-time blow-up?
• If the finite-time blow-up happens, can we give some estimates for blow-up rate?
In this paper, we give a positive answer to the problems above. To be precise, we combine some

energy estimates from [9] and the modified potential well method, which was first proposed by Payne
and Sattinger [11,13], with differential inequality arguments to prove that the solution globally exists
when the initial energy starts from the stable set and fails to globally exist when the initial energy starts
from the unstable set. For the high initial energy, to remedy the failure of potential well method, we
borrow some ideas inspired by the study of dynamical system to prove that the functional

∫

Ω

|u|2dx is

monotonically increasing with respect to time variable, which helps us establish a substitute for unstable
sets. Meanwhile, we also obtain an upper bound of the lifespan. Finally, we obtain a lower bound estimate
for the lifespan by constructing a first-order differential inequality. These results extended and improved
some existing results [9].

This paper is organized as follows. In Sect. 2, we give some notations, definitions and lemmas con-
cerning the basic properties of the related functionals and sets. Sections 3, 4 and 5 will be devoted to the
cases J(u0) < d, J(u0) = d and J(u0) > d, respectively. In Sect. 6, we consider the lower bound estimate
for the lifespan.

2. Preliminaries

In this section, we first introduce some notations and definitions that will be used throughout the paper.
In what follows, we denote by ‖ · ‖r(r ≥ 1) the norm in Lr(Ω) and by (·, ·) the L2(Ω)-inner product. C
denotes a generic positive constant, which may differ at each appearance. In addition, we set

V :=
{

ϕ ∈ H1
(
0, T ;L2

N (Ω)
) ∩ L2

(
0, T ;H2

N (Ω)
) | ∇ϕ ∈ (Lp (0, T ;Lp(Ω)))N

}
,
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where

L2
N (Ω) :=

⎧
⎨

⎩
v ∈ L2(Ω) |

∫

Ω

vdx = 0

⎫
⎬

⎭
⊂ L2(Ω),

H2
N (Ω) :=

{
v ∈ H2(Ω) ∩ L2

N (Ω) | ∂νv = 0 on ∂Ω
} ⊂ H2(Ω).

We mention several remarks on L2
N (Ω) and H2

N (Ω). As stated in [7], the map Δ : H2
N (Ω) → L2

N (Ω)
is a homeomorphism and hence there exists a constant c1 = c1(N) > 0 such that

c−1
1

2∑

k=0

‖∇kv‖2
2 ≤ ‖v‖2

H2
N

:= ‖Δv‖2
2, v ∈ H2

N (Ω).

Before stating our main results, we introduce the definition of weak solution to problem (1.1) in [9].

Definition 2.1. [9] Let u0 ∈ L2
N (Ω) and T > 0. We say that a function

u ∈ C
(
0, T ;L2

N (Ω)
) ∩ L2

(
0, T ;H2

N (Ω)
)

with ∇u ∈ (Lp (0, T ;Lp(Ω)))N

is a solution to problem (1.1) in Ω × [0, T ] if u satisfies
∫

Ω

[u(T )ϕ(T ) − u0ϕ(0)] dx

−
T∫

0

∫

Ω

u∂tϕdxdt +

T∫

0

∫

Ω

[∇u∇ϕ − |∇u|p−2∇u · ∇ϕ
]
dxdt = 0, (2.1)

for all ϕ ∈ V . Moreover, we say that u is a global-in-time solution to problem (1.1) if u is a solution to
problem (1.1) in Ω × [0, T ′] for all T ′ > 0.

3. The case J(u0) < d

In this section, on the basis of reference [9], we continue to study the blow-up properties of solutions to
problem (1.1) under the condition that J(u0) < d, and we will give the threshold result of solutions to
exist globally or to blow up in finite time. First, we give the definition of the solution blow-up in finite
time.

Definition 3.1. Let u(t) be a weak solution to problem (1.1), define the maximal existence time of u(t)
by

T ∗ = sup{T > 0 : u = u(t) exists on [0, T ]}.

We say that u(t) blows up at a finite time T ∗ < ∞ provided that

lim
t→T ∗

‖u‖2
2 = +∞.

In order to investigate the blow-up properties of solutions to problem (1.1), we introduce the following
functionals. For u ∈ H2

N (Ω), define the energy functional associated with problem (1.1)

J(u) =
1
2
‖Δu‖2

2 − 1
p
‖∇u‖p

p, ∀ t ≥ 0. (3.1)
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By a simple calculation and density argument, it is not hard to verify that J(u) is a nonincreasing function
on [0,+∞) and satisfies

d

dt
J(u) = −‖ut‖2

2 ≤ 0, ∀ t ≥ 0, i.e., J(u0) = J(u) +

t∫

0

‖us‖2
2 ds, (3.2)

where

J(u0) =
1
2
‖Δu0‖2

2 − 1
p
‖∇u0‖p

p.

Further, we also define Nehari functional

I(u) =< J ′(u), u >= ‖Δu‖2
2 − ‖∇u‖p

p, (3.3)

and the Nehari manifold
N = {u ∈ H2

N (Ω)\{0} | I(u) = 0}.

Owing to p ≤ 2∗, it is obvious to find that both J(u) and I(u) are well defined. So we define

W = {u ∈ H2
N (Ω) | J(u) < d, I(u) > 0} ∪ {0},

V = {u ∈ H2
N (Ω) | J(u) < d, I(u) < 0},

where
d = inf

u∈H2
N (Ω)\{0}

sup
λ≥0

J(λu) = inf
u∈N

J(u)

is the depth of the potential well W .
Next, we state some existing results of the precise asymptotic behavior [9].

Theorem 3.1. [9] Let (H1) hold and u0 ∈ W . Then problem (1.1) possesses the unique global-in-time
solution u satisfying

‖Δu‖2 = O
(
e−μ2

1t
)

as t → ∞.

Obviously, when u0 ∈ V , there are seldom any results. Subsequently, we give the main result about
the blow-up properties of solutions to problem (1.1).

Theorem 3.2. Let (H1) hold and u be a weak solution of problem (1.1) with u0 ∈ L2
N (Ω). If u0 ∈ V , then

there exists a finite time T ∗ such that u blows up at T ∗. Moreover, T ∗ can be estimated from above as
follows

T ∗ ≤ pd

(p − 2)2Bp(d − J(u0))‖u0‖p−2
2

.

Proofs of Theorem 3.2 begin with the following two important lemmas.

Lemma 3.1. The potential depth d is positive.

Proof. From the definition of d, we obtain

d = inf
u∈H2

N (Ω)\{0}
sup
λ≥0

J(λu) = inf
u∈H2

N (Ω)\{0}

{
λ2

0

2
‖Δu‖2

2 − λp
0

p
‖∇u‖p

p

}

= inf
u∈H2

N (Ω)\{0}

{
1
2

(‖Δu‖2
2

‖∇u‖p
p

) 2
p−2

‖Δu‖2
2 − 1

p

(‖Δu‖2
2

‖∇u‖p
p

) p
p−2

‖∇u‖p
p

}

=
p − 2
2p

inf
u∈H2

N (Ω)\{0}

(‖Δu‖2
2

‖∇u‖2
p

) p
p−2

=
p − 2
2p

S
p

p−2
p > 0, (3.4)
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where

Sp = inf
u∈H2

N (Ω)\{0}
‖Δu‖2

2

‖∇u‖2
p

, i.e., Sp‖∇u‖2
p ≤ ‖Δu‖2

2.

�

The following lemma shows that the set V is invariant under the semi-flow of problem (1.1). Meanwhile,
as a by-product, we also establish the precise relation between min

{
‖∇u‖p

p, ‖Δu‖2
2

}
and the depth d.

Lemma 3.2. Assume that (H1) holds and u0 ∈ V . Then u(t) ∈ V for all t ∈ [0, T ∗) and

d <
p − 2
2p

min
{‖∇u‖p

p, ‖Δu‖2
2

}
. (3.5)

Proof. We first prove u(t) ∈ V for all t ∈ [0, T ∗) by arguing by contradiction. If there exists t′ > 0 such
that u(t′) ∈ V , then from I(u0) < 0 and the continuity of I(u(t)) with respect to time variable t, we know
that there exists a t0 ∈ [0, T ∗) such that I(u(t)) < 0 for all t ∈ [0, t0) and I(u(t0)) = 0, then u(t0) ∈ N .

On the one hand, the fact u(t0) ∈ N and the definition of d show

J(u(t0)) ≥ d. (3.6)

On the other hand, due to the monotonicity of J(u), we get J(u) ≤ J(u0) < d for all t ∈ [0, T ∗), which
contradicts with (3.6). Consequently, we prove that u(t) ∈ V for all t ∈ [0, T ∗).

Next, we will prove (3.5). According to u(t) ∈ V for all t ∈ [0, T ∗), we know I(u) < 0, which implies
‖Δu‖2

2 < ‖∇u‖p
p. Then, to utilize the embedding inequality Sp‖∇u‖2

p ≤ ‖Δu‖2
2 and the definition of d,

we obtain (3.5). �

Proof of Theorem 3.2.. Let

F1(t) =
1
2

∫

Ω

|u|2dx.

Taking a derivative of F1(t), and combining with problem (1.1), Green formula, Lemma 3.2 and embedding
inequality, we obtain

F ′
1(t) =

∫

Ω

uutdx =
∫

Ω

u
(−Δ2u − Δpu

)
dx = −

∫

Ω

|Δu|2dx +
∫

Ω

|∇u|pdx

=
p − 2

p

∫

Ω

|∇u|pdx − 2J(u) >

(

1 − J(u0)
d

)
p − 2

p

∫

Ω

|∇u|pdx

≥ Bp

(

1 − J(u0)
d

)
p − 2

p

⎛

⎝

∫

Ω

|u|2dx

⎞

⎠

p
2

=
(√

2B
)p

(

1 − J(u0)
d

)
p − 2

p
F

p
2

1 (t) := CF
p
2

1 (t), ∀ t ∈ [0, T ∗), (3.7)

where B‖u‖2 ≤ ‖∇u‖p and C =
(√

2B
)p

(
1 − J(u0)

d

)
p−2

p .

A simple integration of (3.7) over (0, t) is easy to calculate that

‖u‖2
2 ≥ 2

[(
1
2‖u0‖2

2

)1− p
2 − p−2

2 Ct
] 2

p−2
. (3.8)
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Therefore,
lim

t→ 2
C(p−2) ( 1

2‖u0‖2
2)

1− p
2

‖u‖2
2 = +∞. (3.9)

At the same time, it is easy to see that the upper bound for the blow-up time T ∗ satisfies

T ∗ ≤ pd

(p − 2)2Bp(d − J(u0))‖u0‖p−2
2

. (3.10)

The proof of Theorem 3.2 is complete. �

To sum up, we may obtain the following sharp results for the subcritical case.

Remark 3.1. (Sharp condition for J(u0) < d.) Let (H1) hold and u0 ∈ H2
N (Ω). Assume that J(u0) < d.

If I(u0) > 0, then problem (1.1) admits a global weak solution; if I(u0) < 0, then the solution to problem
(1.1) blows up in finite time.

4. The case J(u0) = d

For the critical case J(u0) = d, the invariance of W cannot be true in general. To overcome this difficulty,
we borrow some ideas from [8]; we find out a substitute for unstable sets to obtain similar results as the
subcritical case. First, we give a key lemma.

Lemma 4.1. Let (H1) hold. Then for any u ∈ H2
N (Ω)\{0}, we have

(i) lim
λ→0+

J(λu) = 0, lim
λ→+∞

J(λu) = −∞.

(ii) There exists a unique λ∗ = λ∗(u) > 0 such that d
dtJ(λu)|λ=λ∗ = 0. J(λu) is increasing on

0 < λ ≤ λ∗, decreasing on λ∗ ≤ λ < +∞ and takes its maximum at λ = λ∗.
(iii) I(λu) > 0 on 0 < λ < λ∗, I(λu) < 0 on λ∗ < λ < +∞ and I(λ∗u) = 0.

Since the proof is standard, we will omit more details here. The interested readers may refer to
[3,4,8,15]. The forthcoming theorem deals with the critical case.

Theorem 4.1. (Global Existence for J(u0) = d.) Let (H1) hold and u0 ∈ H2
N (Ω). If J(u0) = d and

I(u0) ≥ 0, then problem (1.1) admits a global weak solution.

Proof. Let λk = 1 − 1
k , k = 1, 2, . . .. Consider the following initial boundary value problem
⎧
⎪⎨

⎪⎩

ut + (−Δ)2u = −∇ · (|∇u|p−2∇u), (x, t) ∈ Ω × (0, T ),
∂νu = ∂νΔu = 0, (x, t) ∈ ∂Ω × (0, T ),
u(x, 0) = λku0(x) � uk

0 , x ∈ Ω.

(4.1)

Noticing that I(u0) ≥ 0, by Lemma 4.1(iii) we can deduce that there exists a unique λ∗ = λ∗(u0) ≥ 1
such that I(λ∗u0) = 0. Then from 0 < λk < 1 ≤ λ∗ and Lemma 4.1(ii), we get I(uk

0) = I(λku0) > 0 and
J(uk

0) = J(λku0) < J(u0) = d. In view of Theorem 3.1 in [9], it follows that for each k problem (4.1)
admits a global weak solution uk ∈ C

(
0, T ;L2

N (Ω)
)∩ L2

(
0, T ;H2

N (Ω)
)

with ∇uk ∈ (Lp (0, T ;Lp(Ω)))N

and uk ∈ W for 0 ≤ t < ∞ satisfying
t∫

0

‖uk
s‖2

2 ds + J(uk) = J(uk
0) < d.

Applying the arguments similar to those in Theorem 3.1, we see that there exist a subsequence of {uk} and
a function u such that u is a weak solution of problem (1.1) with I(u) ≥ 0 and J(u) ≤ d for 0 ≤ t < ∞.

�
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Theorem 4.2. (Blow-up for J(u0) = d.) Let (H1) hold and u be a weak solution of problem (1.1) with
u0 ∈ H2

N (Ω). If J(u0) = d and I(u0) < 0, then there exists a finite time T ∗ such that u blows up at T ∗.

Proof. Similarly to the proof of Theorem 3.2, we can get

F ′
1(t) ≥ p − 2

p

∫

Ω

|∇u|pdx − 2J(u).

Since J(u0) = d, I(u0) < 0, by the continuity of J(u) and I(u) with respect to t, there exists a t0 > 0
such that J(u(x, t)) > 0 and I(u(x, t)) < 0 for 0 < t ≤ t0. From (ut, u) = −I(u), we have ut ≡ 0 for
0 < t ≤ t0. Furthermore, we have

J(u(t0)) ≤ d −
t0∫

0

‖us‖2
2 ds < d.

Taking t = t0 as the initial time and by Lemma 3.2, we know that u(x, t) ∈ V for t > t0. The reminder
of the proof is almost the same as that of Theorem 3.2 and hence is omitted. �

In short, we also have the following conclusions.

Remark 4.1. (Sharp condition for J(u0) = d.) Let (H1) hold and u0 ∈ H2
N (Ω). Assume that J(u0) = d.

If I(u0) ≥ 0, then problem (1.1) admits a global weak solution; if I(u0) < 0, then problem (1.1) admits
no global weak solution.

5. The case J(u0) > d

In this section, inspired by some ideas from [4], we will investigate the conditions to ensure the existence
of global solutions or blow-up solutions to problem (1.1) with J(u0) > d. Before moving on to our result,
let us pause to give some pivotal sets and functionals.

N+ = {u ∈ H2
N (Ω)\{0} | I(u) > 0}, N− = {u ∈ H2

N (Ω)\{0} | I(u) < 0},

Jα =
{
u ∈ H2

N (Ω)\{0} | J(u) < α
}

,

N α = N ∩ Jα = {u ∈ N | J(u) < α} , ∀ α > d.

Also define
λα = inf

{‖u‖2
2 | u ∈ N α

}
, Λα = sup

{‖u‖2
2 | u ∈ N α

}
. (5.1)

It is clear that λα (Λα) is nonincreasing (nondecreasing) with respect to α. In addition, we introduce the
following three sets:

B =
{
u0 ∈ H2

N (Ω) | the solution u = u(t) of (1.1) blows up in finite time
}

,

G =
{
u0 ∈ H2

N (Ω) | the solution u = u(t) of (1.1) exists for all t > 0
}

,

G0 =
{
u0 ∈ H2

N (Ω) | u(t) → 0 in H2
N (Ω) as t → ∞}

.

To better analyze the behavior of the solutions to problem (1.1) with high energy level, we first present
some useful lemmas.

Lemma 5.1. Let (H1) hold. Then
(i) 0 is away from both N and N−, i.e., dist(0,N ) > 0, dist(0,N−) > 0.
(ii) For any α > 0, the set Jα ∩ N+ is bounded in H2

N (Ω).
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Proof. (i) For any u ∈ N , according to the definition of d and I(u), we have

d ≤ J(u) =
1
2
‖Δu‖2

2 − 1
p
‖∇u‖p

p =
p − 2
2p

‖Δu‖2
2, (5.2)

which implies

‖Δu‖2
2 ≥ 2pd

p − 2
.

Therefore, we know that dist(0,N ) = inf
u∈N

‖u‖H2
N

= inf
u∈N

‖Δu‖2 > 0.

For any u ∈ N−, from the embedding inequality, we have

‖Δu‖2
2 < ‖∇u‖p

p ≤ S
− p

2
p ‖Δu‖p

2, (5.3)

which implies

‖Δu‖2
2 ≥ S

p
p−2
p ,

where Sp > 0 is given in Lemma 3.1. Thus, dist(0,N−) = inf
u∈N−

‖u‖H2
N

= inf
u∈N−

‖Δu‖2 > 0.

(ii) For any u ∈ Jα ∩ N+, we obtain

α ≥ J(u) =
1
p
I(u) +

p − 2
2p

‖Δu‖2
2 >

p − 2
2p

‖Δu‖2
2, (5.4)

which yields

‖u‖2
H2

N
= ‖Δu‖2

2 <
2pα

p − 2
.

Therefore, the set Jα ∩ N+ is bounded in H2
N (Ω). �

Next, we discuss the properties of λα and Λα.

Lemma 5.2. Let (H1) hold. Then for any α > d, λα and Λα defined in (5.1) satisfy 0 < λα ≤ Λα ≤
Mα < +∞.

Proof. First, we prove Λα ≤ Mα < +∞, where Λα = sup
{‖u‖2

2 | u ∈ N α
}

. For any u ∈ N α,

J(u) =
1
2
I(u) +

p − 2
2p

‖∇u‖p
p =

p − 2
2p

‖∇u‖p
p ≤ α, (5.5)

which implies

‖∇u‖p
p ≤ 2pα

p − 2
.

Then from embedding inequality, we have

‖u‖2
2 ≤ B−2‖∇u‖2

p ≤ B−2

(
2pα

p − 2

) 2
p

:= Mα.

Therefore, we get Λα ≤ Mα < +∞.
Next, we prove λα > 0, where λα = inf

{‖u‖2
2 | u ∈ N α

}
. The Gagliardo–Nirenberg inequality indi-

cates that there exists a positive constant B2 such that

‖∇u‖p ≤ B2‖Δu‖θ
2‖u‖1−θ

2 ,

where θ = 1
2 + N(p−2)

4p ∈ (
1
2 , 1

)
. Moreover, noticing that u ∈ N ⇒ ‖Δu‖

2
p

2 = ‖∇u‖p, we have

‖u‖2
2 ≥ B

− 2
1−θ

2

(‖Δu‖2
2

) 1
1−θ ( 2

p −θ)
.

Obviously, by Lemma 5.1(i) and the definition of N α, the right-hand side of the above inequality
remains bounded away from 0 no matter what the sign of 2

p − θ is. Therefore, λα > 0. �
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In the following, we give a criterion for the existence of global solutions that tend to 0 as t tends to
∞ or finite-time blow-up solutions in terms of λα and Λα for supercritical initial energy, i.e., J(u0) > d.
Noticing that λJ(u0) > 0, Theorem 5.1(i) is nontrivial. Our main results are as follows:

Theorem 5.1. Let (H1) hold and J(u0) > d. Then we have
(1) If u0 ∈ N+ and ‖u0‖2

2 ≤ λJ(u0), then u0 ∈ G. That is, the weak solution u of problem (1.1) exists
globally and u(t) → 0 as t → +∞.

(2) If u0 ∈ N− and ‖u0‖2
2 ≥ ΛJ(u0), then u0 ∈ B. That is, the weak solution u of problem (1.1) blows

up in finite time.

Proof. We denote by ω(u0) = ∩t≥0{u(s) : s ≥ t} the ω−limit of u0. And as shown by Definition 3.1, T ∗

represents the maximum existence time of the solution.
(1) If u0 ∈ N+ and ‖u0‖2

2 ≤ λJ(u0).
First, we claim that u ∈ N+, for all t ∈ [0, T ∗). By contradiction, there exists a t0 ∈ (0, T ∗) such that

u ∈ N+ for t ∈ [0, t0) and u(t0) ∈ N . Taking ϕ = u in the definition of weak solution (2.1), we obtain

d

dt
‖u‖2

2 = 2(u, ut) = −2I(u) < 0, ∀ t ∈ [0, t0). (5.6)

Then, we have
‖u(t0)‖2

2 < ‖u0‖2
2 ≤ λJ(u0). (5.7)

On the other hand, (5.6) implies that ut ≡ 0 for (x, t) ∈ Ω × (0, t0). It follows from (3.2) that
J(u(t0)) < J(u0), which yields u(t0) ∈ JJ(u0). Therefore, u(t0) ∈ N J(u0). By the definition of λJ(u0), we
obtain

‖u(t0)‖2
2 ≥ λJ(u0), (5.8)

which contradicts (5.7). Therefore, u ∈ N+, for all t ∈ [0, T ∗). Further, we know that u ∈ N+ ∩JJ(u0) for
all t ∈ [0, T ∗).

Next, Lemma 5.1(ii) shows that the orbit u(t) remains bounded in H2
N (Ω) for t ∈ [0, T ∗) so that

T ∗ = ∞.
Finally, we prove ω(u0) = 0, i.e., u(t) → 0 when t → +∞. For any ω ∈ ω(u0), from (5.6) and the

hypothesis, we can infer that
‖ω‖2

2 < ‖u0‖2
2 ≤ λJ(u0). (5.9)

In addition, according to (3.2), we can deduce ω ∈ JJ(u0) from J(ω) < J(u0). Notice that (5.9) and
λJ(u0) = inf

{‖u‖2
2 |u ∈ N J(u0)

}
, we obtain ω /∈ N J(u0), further ω /∈ N . Thus, ω(u0) ∩ N = ∅, which

indicates ω(u0) = {0}. Therefore, the weak solution u of problem (1.1) exists globally and u(t) → 0 as
t → +∞.

(2) If u0 ∈ N− and ‖u0‖2
2 ≥ ΛJ(u0).

We first claim that u ∈ N−, for all t ∈ [0, T ∗). By contradiction, there exists a t0 ∈ (0, T ∗) such that
u ∈ N− for t ∈ [0, t1) and u(t1) ∈ N . Similar to case (1), we get u(t1) ∈ N J(u0). Review the definition of
ΛJ(u0), we get

‖u(t1)‖2
2 ≤ ΛJ(u0). (5.10)

Moreover, noticing that I(u(t)) < 0 for t ∈ [0, t1), it follows from (5.6) that

d

dt
‖u‖2

2 = 2(u, ut) = −2I(u) > 0, ∀ t ∈ [0, t1). (5.11)

Then, we have
‖u(t1)‖2

2 > ‖u0‖2
2 ≥ ΛJ(u0), (5.12)

which contradicts (5.10). Therefore, u ∈ N− for all t ∈ [0, T ∗). Further, we obtain u ∈ N− ∩ JJ(u0) for
all t ∈ [0, T ∗).
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Next, we prove that ω(u0) ∩ N = ∅, T ∗ < +∞. If not, suppose T ∗ = +∞, then for any ω ∈ ω(u0), we
have

‖ω‖2
2 > ‖u0‖2

2 ≥ ΛJ(u0), (5.13)

and J(ω) < J(u0) from (5.11) and (3.2), respectively. The second inequality implies ω ∈ JJ(u0). Noting
that the definition of ΛJ(u0) and (5.13), we derive ω /∈ N J(u0), further ω /∈ N . Thus, ω(u0) ∩ N = ∅,
which indicates ω(u0) = {0}, which is contradictive with Lemma 5.1(i). Hence, ω(u0) = ∅, T ∗ < +∞.
That is, the weak solution u of problem (1.1) blows up in finite time.

Based on the above discussion, we have completed the proof of Theorem 5.1. �

Proposition 5.1. If J(u0) satisfies d < J(u0) < p−2
2p Bp‖u0‖p

2, then u0 ∈ N−∩B. That is, the weak solution
u of problem (1.1) blows up in finite time.

Proof. From (3.3), (3.1) and embedding inequality, we obtain

J(u0) =
1
2
I(u0) +

p − 2
2p

‖∇u0‖p
p ≥ 1

2
I(u0) +

p − 2
2p

Bp‖u0‖p
2.

Combining the above inequality with the given assumption, we can obtain I(u0) < 0, i.e., u0 ∈ N−. In
addition, according to the assumption and Lemma 5.2, we know that

‖u0‖2
2 > B−2

(
2pJ(u0)
p − 2

) 2
p

= MJ(u0) ≥ ΛJ(u0).

Finally, by utilizing Theorem 5.1, it is easy to derive the conclusion of Proposition 5.1. �

Theorem 5.2. For any M > d, there exists initial value uM ∈ N− such that J(uM ) ≥ M and uM ∈ B.
Proof. Assume that M > d and Ω1,Ω2 are two arbitrary disjoint open subdomains of Ω. Furthermore,
we assume that ν ∈ H2

N (Ω1) is an arbitrary nonzero function. Then, we take ξ > 0 large enough such
that

J(ξu) =
ξ2

2
‖Δu‖2

2 − ξp

p
‖∇u‖p

p ≤ 0, M <
p − 2
2p

Bp‖ξν‖p
2.

We fix such a number ξ > 0 and choose a function μ ∈ H2
N (Ω2) satisfying M = J(μ) + J(ξν). Extend ν

and μ to be 0 in Ω\Ω1 and Ω\Ω2, respectively, and set uM = μ + ξν, then J(uM ) = J(μ) + J(ξν) = M ,
and it follows that

p − 2
2p

Bp‖uM‖p
2 ≥ p − 2

2p
Bp‖ξν‖p

2 > M = J(uM ) > d.

By Proposition 5.1 it is seen that uM ∈ N− ∩ B. �

6. Lower bound for the lifespan

We all know that the upper bound guarantees blowing up of the solution and the importance of the lower
bound is that it may provide us a safe time interval for operation if we use problem (1.1) to model a
physical process. In this section, we mainly give the lower bound estimate for the lifespan.

Theorem 6.1. If T ∗ is blow-up time, then T ∗ satisfies the following estimate

T ∗ ≥ ‖u0‖−2κ
2

B
2pκ
p−2
2 κ

, 2 < p ≤ p∗, N ≥ 2,

where κ = 4(p−2)
8−2p−N(p−2) and p∗ = 2 + 4

N+2 .
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Proof. Set

F2(t) =
∫

Ω

|u|2dx.

Taking the first derivative of F2(t), then using Gagliardo–Nirenberg inequality, we have

F ′
2(t) =

∫

Ω

uutdx =
∫

Ω

u
(−Δ2u − Δpu

)
dx

= −‖Δu‖2
2 + ‖∇u‖p

p

≤ −‖Δu‖2
2 + Bp

2‖Δu‖θp
2 ‖u‖(1−θ)p

2 , (6.1)

where θp = N(p−2)
4 + p

2 . Since 2 < p ≤ p∗, this shows θp > 2. Then, together with the ε-Young’s inequality,
we have

F ′
2(t) ≤ −‖Δu‖2

2 + Bp
2

(
εβ‖Δu‖2

2 + ε−β′‖u‖(1−θ)pβ′

2

)
, (6.2)

where β = 2
θp and β′ = 2

2−θp . Next, we choose ε, such that Bp
2εβ = 1, which implies Bp

2ε−β′
= Bpβ′

2 by
virtue of 1

β + 1
β′ = 1. Then (6.2) can be reduced to

F ′
2(t) ≤ Bpβ′

2 F
(1−θ)pβ′

2
2 (t). (6.3)

A simple integration of (6.3) over (0, t) is easy to calculate that

‖u‖2
2 ≤

[
1

‖u0‖−2κ
2 − Bpβ′

2 κt

] 1
κ

. (6.4)

Therefore,
lim

t→κ−1B−pβ′
2 ‖u0‖−2κ

2

‖u‖2
2 = +∞. (6.5)

In other words, we also obtain some estimate for the upper bound of the blow-up time T ∗

T ∗ ≥ κ−1B
2pκ
2−p

2 ‖u0‖−2κ
2 , 2 < p ≤ p∗, N ≥ 2, (6.6)

where κ = 4(p−2)
8−2p−N(p−2) . �

Remark 6.1. From the above analysis, it is not difficult to find, if all the assumptions in Theorems 3.2
and 6.1 hold, then the following blow-up rate holds

C1 (T ∗
1 − t)− 2

p−2 ≤ ‖u‖2
2 ≤ C2 (T ∗

2 − t)− 2
p−2 , 2 < p ≤ 2 +

4
N + 2

, N ≥ 2,

where T ∗
1 = pd

(p−2)2Bp(d−J(u0))‖u0‖p−2
2

, T ∗
2 = κ−1B

2pκ
2−p

2 ‖u0‖−2κ
2 , κ = 4(p−2)

8−2p−N(p−2) .
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