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Abstract. In this paper, we investigate the existence of solutions for a class of integrodifferential Kirchhoff equations. These
equations involve a nonlocal operator with a measurable kernel that satisfies “structural properties” that are more general
than the standard kernel of the fractional Laplacian operator. Additionally, the potential can be periodic or asymptotically
periodic, and the nonlinear term exhibits critical exponential growth in the sense of Trudinger–Moser inequality. To guarantee
the existence of solutions, we employ variational methods, specifically the mountain-pass theorem. In this context, it is
important to emphasize that we have additional difficulties due to the lack of compactness in our problem, because we deal
with critical growth nonlinearities in unbounded domains. Moreover, the Kirchhoff term adds complexity to the problem,
as it requires suitable calculations for control the estimate the minimax level, representing the main challenge in this work.
Finally, we consider two different approaches to estimate the minimax level. The first approach is based on a hypothesis
proposed by D. M. Cao, while the second one involves a slightly weaker assumption addressed by Adimurthi and Miyagaki.
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1. Introduction

In this paper, we are concerned with the existence of solutions for a class of integrodifferential Kirchhoff
equations

[−m(‖u‖2)]LKu + V (x)u = f(x, u) in R, (1.1)

where V and f are functions that satisfy mild conditions, m : R+ → R+ is the Kirchhoff function, R+

denotes [0,+∞), and LKu stands for the integrodifferential operator defined by

− LKu(x) = 2P.V.

∫

R

(u(x) − u(y))K(x, y) dy. (1.2)

Here K(x, y) = K(x − y) and belongs to a class of singular symmetric kernels, and P.V. means “in the
principal value sense”.

If K(x) = CN,s|x|−(N+2s), where

CN,s =

⎛
⎝
∫

RN

1 − cos(ζ1)
|ζ|N+2s

dζ

⎞
⎠

−1

,
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this is, when −LK is the fractional Laplacian operator (−Δ)s, 0 < s < 1, (see [1]), several papers have
studied the existence of solutions for equations of this type,

m

⎛
⎜⎝

∫

RN ×RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy

⎞
⎟⎠ (−Δ)su + V (x)u = f(x, u) in R

N , (1.3)

with m : R+ → R+ the Kirchhoff function, whose prototype, due to Kirchhoff himself, is m(t) = a +
bγtγ−1, a, b ≥ 0, a + b > 0, γ ≥ 1.

Moreover, when s → 1− then problem (1.3) formally reduces to the well-known Kirchhoff equation in
the literature with m(t) = a + tb

−
⎛
⎝a + b

∫

RN

|∇u|2 dx

⎞
⎠Δu + V (x)u = f(u) inR

N ,

which is related to the stationary analogous of the Kirchhoff-type equation

−∂2u

∂t2

⎛
⎝a + b

∫

Ω

|∇u|2 dx

⎞
⎠Δu = f(t, x, u), in Ω,

where Ω is a bounded domain in R
N , u denotes the displacement, f is the external force, b is the initial

tension and a is related to the intrinsic properties of the string. Equations of this type were first proposed
by Kirchhoff [2] to describe the transversal oscillations of a stretched string. Besides, we also point out
that such nonlocal problems appear in other fields like biological systems, where u describes a process
depending on the average of itself. In this direction, we refer readers to Chipot and Lovat [3], Alves and
Corrêa [4]. There is extensive literature on this subject, when a > 0, that is in the so-called non-degenerate
case. We cite e.g. [5–7], as well as the references therein. For the degenerate case, there are a few papers,
see [8,9], as well as the references therein. We mention in passing that in [10] variational techniques were
used for the first time to handle Kirchhoff elliptic problems.

Fiscella and Valdinoci [6], proposed the following stationary Kirchhoff variational equation with critical
growth

⎧⎪⎪⎨
⎪⎪⎩

m

⎛
⎝
∫

RN

∫

RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy

⎞
⎠ (−Δ)su = λf(x, u) + |u|2∗

s−2u in Ω,

u = 0 in R
N \ Ω,

(1.4)

where Ω ⊂ R
N is an open bounded set and 2∗

s =
2N

N − 2s
. This equation models nonlocal aspects of the

tension arising from measurements of the fractional length of the string. They obtained the existence of
nonnegative solutions when m is an increasing and continuous function, there exists m0 > 0 such that
m(t) ≥ m0 = m(0) for any t ∈ R+ and f is a continuous function with subcritical growth satisfying suit-
able assumptions. Autuori et al. [8] considered the existence and the asymptotic behavior of nonnegative
solutions of (1.4) for the degenerate case.

To the best of our knowledge, there are few papers in the literature on fractional Kirchhoff equations
in R

N . Recently, Ambrosio and Isernia [11] considered the fractional Kirchhoff problem
⎛
⎝a + b

∫

RN

|(−Δ)
s
2 u|2 dx

⎞
⎠ (−Δ)su = f(u) in R

N ,
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where f is an odd subcritical nonlinearity satisfying the well-known Berestycki and Lions [12] assumptions.
By minimax arguments, the authors established a multiplicity result in the radial space Hα

rad(R
N ) when

the parameter b > 0 is sufficiently small.
Liu et al. [7] ensure the existence of positive ground state solutions to the following fractional Kirchhoff

equation with the Berestycki–Lions type conditions of critical type⎛
⎝a + b

∫

RN

|(−Δ)
s
2 u|2 dx

⎞
⎠ (−Δ)su + V (x)u = f(u) in R

N ,

where u ∈ Hs(RN ), u > 0, a, b are positive constants and N > 2s.
Motivated by some of these works de Albuquerque et al. [5], studied the existence of bound and ground

state solutions for fractional Kirchhoff equations of the form(
a + b[u]21/2

)
(−Δ)1/2u + V (x)u = f(x, u) in R, (1.5)

where a > 0, b ≥ 0, (−Δ)1/2 denotes the square root of the Laplacian and the term

[u]1/2 =

⎛
⎝
∫

R2

|u(x) − u(y)|2
|x − y|2 dxdy

⎞
⎠

1/2

is the so-called Gagliardo semi-norm of the function u, V is a bounded potential which may change
the sign and the nonlinear term f(x, u) has the critical exponential growth in the sense of Trudinger–
Moser, generalizing the results in [13] by de Souza and Araújo, who address the problem of the fractional
Schrödinger equations. We emphasize that the results in [13] were also improved by Barboza et al. [14],
once, who treated a problem with a more general non-local operator. More specifically, they studied the
following integrodifferential Schrödinger equation

LKu + V (x)u = f(x, u) inR
N , (1.6)

when V is a nonnegative and bounded potential, and the nonlinear term f(x, u) has critical exponential
growth with respect to the Trudinger–Moser inequality. This problem is a version of (1.5) in case a = 1
and b = 0 but generalizing the operator.

We highlight that, when LK is the fractional Laplacian operator, (1.6) had been studied by other
authors under many different assumptions on the potential V (x) and nonlinearity f(x, u). Almost all
works and therein references considered nonlinearities involving polynomial growth of subcritical type in
terms of the Sobolev embedding when N > 2s. In the borderline case N = 2s, this is, N = 1 and s = 1/2,
Sobolev embedding states that H1/2(R) ↪→ Lq(R) for any q ∈ [2,+∞), but H1/2(R) is not continuous
embedded in L∞(R); for details see [1,15]. In this case, the maximal growth which allows us to treat
this problem type variationally in H1/2(R) is motivated by the Trudinger–Moser inequality proved by
Ozawa [15] and improved by Iula [16], Kozono et al. [17] and Takahashi [18]. Precisely, by combining
some of the results contained in previous studies, it is established

sup
u∈H1/2(R)
‖u‖1/2≤1

∫

R

(eαu2 − 1) dx < ∞ ;α ∈ [0, π], (1.7)

where

‖u‖1/2 :=

⎛
⎝ 1

2π

∫

R2

|u(x) − u(y)|2
|x − y|2 dxdy + ‖u‖2

2

⎞
⎠

1/2

.
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Moreover, it holds

∫

R

(eαu2 − 1) dx ≤ C(α)‖u‖2
2, for all 0 < α ≤ π, (1.8)

for details see [15, Theorem 1] and [18, Proposition 1.1].
Therefore, in order to deal with this class of problem in a variational approach in H1/2(R), the

maximal growth on the nonlinearity f(x, u) is given by eπu2
when |u| → +∞ (see also the pioneering

works [19,20]).
Recently, the borderline case was approached by Miyagaki and Pucci [21]; more specifically, in this

paper, they deal with the existence of solutions for a class of nonlinear elliptic equations, involving a
nonlocal Kirchhoff term and possibly Trudinger–Moser critical growth nonlinearities in an unbounded
domain. In this context, in order to overcome the lack of compactness of the associated energy functional,
it is usually assumed a hypothesis under the nonlinearity which helps to estimate the minimax level.

In general, when we consider a nonlinearity f(t) with critical exponential growth, there exist two
kinds of assumptions for this purpose. The first one is due to D. M Cao (see [22]) and is widely used
in literature. See, for instance, [5,13] and reference in therein. Precisely, it is supposed that there are
constants p > 2 and Cp > 0 such that

f(t) ≥ Cpt
p−1, for all t in domain of f,

where Cp is chosen suitably. For this case, it is crucial to show that the embedding constant of solutions
space into appropriated Lebesgue space is attained and a suitable version of Lions’ Lemma plays a main
role to prove it. As far as we know, almost all papers that are concerned with Kirchhoff equations and
nonlinearity with exponential critical growth have assumed this type of hypothesis. In the second case,
it is considered a heavy dependence on the asymptotic behavior of h(t) = f(t)t/eα0t2 at infinity, as in
the pioneer works [23,24]. This asymptotic behavior can appear in different ways. For example, in [24]
the authors considered an equation involving the Laplacian operator with f satisfying (among other
conditions) that limt→∞ h(t) = C(r), where r is the radius of the largest open ball in the domain. In [25],
it was assumed that limt→∞ h(t) = ∞ for a equation with the 1/2-Laplacian operator. In papers that use
this approach, the Moser functions are used to estimate the minimax level of functional associated to a
problem with an exponential nonlinearity. For other works with this kind of conditions, see [26,27].

Our purpose is to generalize the results in [5], for this, we study (1.5) when the fractional Laplacian
operator is replaced by a more general integrodifferential operator −LK where K : R \ {0} → R+ is a
measurable kernel which satisfies “structural properties” and the Kirchhoff function is more general. We
also improve some results in [14,21], in different perspectives. In these papers, the potential V is assumed
nonnegative; in [14], the Kichhorff function is equal to 1, and in [21], it is considered a weight to control
nonlinearity behavior at infinity to recover the compactness of energy functional associated to problem.
Here in this paper, we will assume the two types of hypotheses and neglect the weight in the nonlinearity,
which requires different techniques to estimate the minimax level. This fact and assumptions more general
hypotheses under the potential V , the Kichhorff function m and the integrodifferential kernel K improve
some results in [5,13,14,21], more specifically, we obtain new versions of the results in these papers.

As expected, our main difficulties are related to unbounded domains and nonlinearities with critical
growth. These difficulties become harder due to the presence of the general Kirchhoff term, once to control
it, we need to make some suitable calculations in order to recover the lack of compactness.

For easy reference, we record problems, assumptions, and the main results.
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1.1. A periodic problem

Here we present the periodic problem for a positive bounded potential and a nonlinearity with critical
exponential growth. For this matter, initially, we will study the following problem{

[−m(‖u‖2)]LKu + V0(x)u = f0(x, u) in R,
u ∈ X0 and u ≥ 0,

(1.9)

where −LKu is given in (1.2) and we assume that K : R \ {0} → R+ is a measurable function with the
properties
(K1) γK ∈ L1(R), where γ(x) = min{1, |x|2};
(K2) there exists λ > 0 such that K(x) ≥ λ|x|−2, for all x ∈ R \ {0};
(K3) K(x) = K(−x), ∀x ∈ R \ {0}.

These hypotheses allow us to obtain a wide range of nonlocal integrodifferential operators of the
fractional, that order is different from s = 1/2. For example, K given by

K(x) =
{

C1|x|−r with 1 < r ≤ 2 if |x| ≥ 1;
C2|x|−q with 2 ≤ q < 3 if |x| ≤ 1,

satisfies (K1)–(K3). Moreover, we can chose r and q in the intervals (1, 2] and [2, 3), respectively, and if
C1 �= C2, K is not continuous in R \ {0}. For more details, see [14].

Moreover, we assume m : R+ → R+ is a continuous and nondecreasing function that satisfies

(m1) there exists σ ∈ [1,+∞) such that tm(t) ≤ σM(t)∀t ∈ R+ where M(t) =
∫ t

0
m(τ) dτ ;

(m2) for all τ > 0 there exists η(τ) = η > 0 such that m(t) ≥ η ∀t ≥ τ ;
(m3) t �→ σM(t) − m(t)t is nondecreasing in R+.

A typical example for m is given by m(t) = m0 + btσ−1 with m0, b ≥ 0, m0 + b > 0 and 1 ≤ σ < +∞.
Note that (m1) implies, in particular, that

M(t) ≥ M(1)tσ for all t ∈ [0, 1], (1.10)

and

M(t) ≤ M(t0)
tσ0

tσ for all t ≥ t0 for all t0 > 0. (1.11)

Moreover, (m2) yields that M(t) > 0 for all t > 0 as in the Kirchhoff model.
We suppose that the function V0 : R → R is a continuous 1−periodic function satisfying:

(V0,1) there exists a positive constant υ0 such that V0(x) ≥ −υ0 for all x ∈ R;
(V0,2) The infimum

ξ0 := inf
u∈X0

‖u‖2=1

⎛
⎝
∫

R2

[u(x) − u(y)]2K(x, y) dxdy +
∫

R

V0(x)u2(x) dx

⎞
⎠

is positive.
Moreover, we consider f0 : R × R → R is a continuous 1−periodic function in x, which has critical
exponential growth in s, that is,

lim
|s|→+∞

f0(x, s)e−αs2
=

{
0, for all α > π,

+∞, for all α < π,

uniformly in x ∈ R.
We call the attention that this notion of criticality is driven by (1.7) and it has been used in several

papers involving exponential growth, see for instance [13,28]. Since we are interested in the existence of
nonnegative solutions, we set f0(x, s) = 0 for all (x, s) ∈ R × (−∞, 0].
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We also assume that the nonlinearity f0(x, u) satisfies the conditions

(f0,1) 0 ≤ limt→0
f0(x, t)
t2σ−1

< M(1) uniformly in x ∈ R;

(f0,2) there exists a constant θ > 2σ such that

0 < θF0(x, s) := θ

s∫

0

f0(x, t) dt ≤ sf0(x, s) for all (x, s) ∈ R × (0,+∞);

(f0,3) for each fixed x ∈ R, the function f0(x, s)/s2σ−1 is increasing with respect to s ∈ R;
(f0,4) there are constants p > 2σ and Cp > 0 (to be shown precisely later) such that

f0(x, s) ≥ Cps
p−1, for all (x, s) ∈ R × [0,+∞).

Here, we define

X0 :=
{

u ∈ L2(R); (u(x) − u(y))K(x, y)
1
2 ∈ L2(R2)

}

which is endowed with norm

‖u‖X0 =

⎛
⎝[u]21/2,K +

∫

R

V0(x)u(x)2 dx

⎞
⎠

1/2

where

[u]21/2,K =
∫

R2

(u(x) − u(y))2K(x, y) dxdy.

We would like to point out that space X0 has suitable properties which give to problem (1.9) a varia-
tional framework. More specifically, in light of results proved in [14], even with more general hypotheses
under the potential, X0 is uniformly convex Banach space and therefore is a reflexive space. Moreover,
C∞

0 (R) is dense in X0.
Throughout this paper, we say that u ∈ X0 is a weak solution for (1.9) if the following equality holds:

m(‖u‖2
X0

)〈u, v〉0 =
∫

R

f0(x, u)v dx,

for all v ∈ X0 with

〈u, v〉0 :=
∫

R2

(u(x) − u(y))(v(x) − v(y))K(x, y) dxdy +
∫

R

V0(x)uv dx.

The main results of this subsection are presented in the following. The first result of the paper involves
a classical assumption under the nonlinearity (see assumption (f0,4) above) which was first introduced
by Cao [22].

Theorem 1.1. Assume that (m1)–(m3), (K1)–(K3), (V0,1),(V0,2) and (f0,1)–(f0,4) hold. Then (1.9) has a
nonnegative and nontrivial solution.

The second theorem of the paper also deals with the critical growth nonlinearity but involves a little
weaker assumption addressed by Adimurthi and Miyagaki [24,29] instead of Cao assumption (f0,4). We
assume that

(f̃0,4) limt→∞
f0(x, t)t
exp(πt2)

= +∞, uniformly in x.

In order to establish an existence result of a solution to problem (1.9), without the hypothesis (f0,4),
in addition to the hypothesis (f̃0,4) we need the following hypothesis additional under kernel
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(K4) There are x0, r, λ0 ∈ R such that if x ∈ (x0 − r, x0 + r) then K(x) ≤ 1
λ0

|x|−2.

The second result says that

Theorem 1.2. Assume that (m1)–(m3), (K1)-(K1), (V0,1),(V0,2), (f0,1)–(f0,3) and (f̃0,4) hold. Then (1.9)
has a nonnegative and nontrivial solution.

It is important to stress that it is possible to obtain different solutions for (1.9) which depend on the
kind of hypothesis assumed to estimate the minimax level of functional associated to this problem. For
details, see Remark 5.4.

1.2. A nonperiodic problem

The second problem that we will study in this paper is the following,{
[−m(‖u‖2)]LKu + V (x)u = f(x, u) in R,
u ∈ X1 and u ≥ 0.

(1.12)

Note that the terms V (x) and f(x, u) are not necessarily periodic anymore. Here we deal with the class
of asymptotically periodic functions that were introduced by Lins and Silva [30]. Precisely, we introduce
the set

F := {g ∈ C(R) ∩ L∞(R) : |{x ∈ R : |g(x)| ≥ ε}| < ∞, for all ε > 0},

where |A| denotes the Lebesgue measure of a set A. In order to deal with the difficulties imposed by
the lack of periodicity, we require assumptions that compare the periodic terms with the asymptotically
periodic terms. On the potential V (x), we assume that:

(v1) V0 − V ∈ F and V0(x) ≥ V (x) ≥ −v0, for all x ∈ R;
(v2) The infimum

ξ1 := inf
u∈X1

‖u‖2=1

⎛
⎝
∫

R2

|u(x) − u(y)|2K(x, y) dxdy +
∫

R

V (x)u2 dx

⎞
⎠

is positive.

We assume that the nonlinearity f : R × R → R is a continuous function that have critical exponential
growth, f(x, s) = 0 for all (x, s) ∈ R × (−∞, 0] and satisfies the following conditions

(f1) f(x, s) ≥ f0(x, s) for all (x, s) ∈ R × [0,+∞), and for all ε > 0, there exists ν > 0 such that for
s ≥ 0 and |x| ≥ ν,

|f(x, s) − f0(x, s)| ≤ εeα0s2
;

(f2) 0 ≤ limt→0
f(x, t)
t2σ−1

< M(1) uniformly in x ∈ R;

(f3) there exists a constant θ̃ ≥ θ > 2σ such that

0 < θ̃F (x, s) := θ̃

s∫

0

f(x, t) dt ≤ sf(x, s), for all (x, s) ∈ R × (0,+∞);

(f4) for each fixed x ∈ R, the function f(x, s)/s2σ−1 is increasing with respect to s ∈ R;
(f5) at least one of the nonnegative continuous functions V0(x) − V (x) and f(x, s) − f0(x, s) is positive

on a set of positive measure.



225 Page 8 of 24 E. Barboza, Y. Araújo and G. Carvalho ZAMP

In order to define the weak solution to problem (1.12), as in problem (1.9), we consider

X1 :=
{

u ∈ L2(R); (u(x) − u(y))K(x, y)
1
2 ∈ L2(R2)

}

which is a Hilbert space endowed with the inner product

〈u, v〉1 :=
∫

R2

(u(x) − u(y))(v(x) − v(y))K(x, y) dxdy +
∫

R

V (x)uv dx

and the correspondent induced norm ‖u‖2
X1

= 〈u, u〉.
We would like to point out that space X1 also has suitable properties which give to problem (1.12) a

variational framework.
Throughout this paper, we say that u ∈ X1 is a weak solution for (1.12) if the following equality

holds:

m(‖u‖2
X1

)〈u, v〉1 =
∫

R

f(x, u)v dx,

for all v ∈ X1.
Considering the functions V0, f0 and m,K as in Theorems 1.1 and 1.2, the main result of this subsection

is the following.

Theorem 1.3. Assume that (v1),(v2) and (f1)–(f5) hold. Then (1.12) has a nonnegative and nontrivial
solution.

Remark 1.4. As mentioned earlier, the results of this paper were motivated by the works [5,13,14,21].
Particularly, our Theorems 1.1–1.3 are generalization of Theorems 1.1 and 1.2 of [5], in the sense of the
operator, the Kirchhoff term and the nonlinearity. Consequently, we improve the results in [13]. Moreover,
Theorems 1.1–1.2 are versions of Theorem 1.1 in [14] for a integrofferential Kirchhoff equation and we
consider a nonlinearity with critical growth and two kinds of assumptions. We also improve some results
in [21], because we assume more general hypotheses in order overcome the loss of compactness.

The outline of this paper is as follows: Sect. 2 contains some preliminary results necessary to obtain
suitable properties for the solutions spaces. In Sects. 3–5, we approach results related to the periodic
problem. More specifically, in Sect. 3, we work with its variational formulation. In Sect. 4, we estimate
the minimax level of associated functional, and in Sect. 5 deal with the proof of the main results. Lastly,
in Sect. 6, we are concerned with the results related to the nonperiodic problem for the proof of the main
theorem.

2. Some preliminary results

We recall the definition of the fractional Sobolev space

H1/2(R) =

⎧⎨
⎩u ∈ L2(R) :

∫

R2

|u(x) − u(y)|2
|x − y|2 dxdy < ∞

⎫⎬
⎭ ,

which is endowed with the natural norm

‖u‖1/2 =

⎛
⎝[u]21/2 +

∫

R

u2 dx

⎞
⎠

1/2

.
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Lemma 2.1. Assume the conditions (V0,1)–(V0,2) or (v1)–(v2) and (K1)–(K3). The space Xi is embedded
in H1/2(R) and there exists C(λ, ξi) > 0 such that

‖u‖1/2 ≤
√

C(λ, ξi)‖u‖Xi
, ∀ u ∈ Xi with i = 0, 1.

Proof. By (K2), given u ∈ Xi we have

1
2π

∫

R2

|u(x) − u(y)|2
|x − y|2 dxdy ≤ 1

λ

∫

R2

(u(x) − u(y))2K(x, y) dxdy. (2.1)

Let u ∈ Xi with u �= 0, then by (V0,2) or (v2) we have

ξi ≤
∥∥∥∥ u

‖u‖2

∥∥∥∥
2

Xi

=
‖u‖2

Xi

‖u‖2
2

.

So

‖u‖2
2 ≤ 1

ξi
‖u‖2

Xi
, for all u ∈ Xi. (2.2)

From the estimates (2.1) and (2.2) we obtain

‖u‖2
1/2 ≤ C(λ, ξi)‖u‖2

Xi
, for all u ∈ Xi,

where C(λ, ξi) =
1
ξi

+
1
λ

. �

Corollary 2.2. Let q ∈ [2,+∞), then the embedding Xi ↪→ Lq(R) is continuous with i = 0, 1. Moreover,
if q ∈ [1, 2] the embedding Xi ↪→ Lq

loc(R) is compact with i = 0, 1.

As a consequence of Corollary 2.2, the norms ‖ · ‖X0 and ‖ · ‖X1 are equivalent.
Since we have the above results hold, following the same ideas as in [14, Lemma 2.4], we can obtain

that C∞
0 (R) is dense in Xi for i = 0, 1.

Now we show a suitable version of Trudinger–Moser inequality for Xi with i = 0, 1.

Lemma 2.3. Assume (K1)–(K3) and (V0,1)–(V0,2) or (v1)–(v2), then there exists ω such that if 0 < α ≤ ω,
then one has a constant C = C(ω) > 0, such that

sup
u∈Xi

‖u‖Xi
≤1

∫

R

(eαu2 − 1) dx ≤ C(ω) for i = 0, 1. (2.3)

Moreover, for any α > 0 and u ∈ Xi, for i = 0, 1, we have∫

R

(eαu2 − 1) dx < ∞.

Proof. First of all, fix u ∈ Xi with ‖u‖Xi
≤ 1. Now, consider C(λ, ξi), given in Lemma 2.1, and define

v =
u√

C(λ, ξi)
,

consequently, v is in Xi and H1/2(R). So, using Lemma 2.1

‖v‖1/2 =
‖u‖1/2√
C(λ, ξi)

≤ ‖u‖Xi
≤ 1. (2.4)

Applying (2.4) in (1.8) ∫

R

(eαv2 − 1) dx ≤ C(α)‖v‖2
2, for all 0 < α ≤ π.



225 Page 10 of 24 E. Barboza, Y. Araújo and G. Carvalho ZAMP

Set 0 < α ≤ ωi =
π

C(λ, ξi)
and α̃ = αC(λ, ξi), and notice that 0 < α̃ ≤ π. By Corollary 2.2 and (2.4)

∫

R

(eαu2 − 1) dx =
∫

R

(eα̃v2 − 1) dx ≤ C(α̃)‖v‖2
2 ≤ C(α, λ)‖v‖2

Xi
≤ C(α, λ).

So we obtain

sup
u∈Xi

‖u‖Xi
≤1

∫

R

(eαu2 − 1) dx ≤ C(ωi).

Choosing ω = min{ω0, ω1}, we obtain (2.3).
Now let us take α > 0, u ∈ Xi and ε > 0. There exists φ ∈ C∞

0 (R) such that ‖u − φ‖Xi
< ε. Observe

that

eα|u|2 − 1 ≤ e2α|u−φ|2e2α|φ|2 − 1 ≤ 1
2

(
e4α|u−φ|2 − 1

)
+
(

1
2
e4α|φ|2 − 1

)
.

Then, ∫

R

(eα|u|2 − 1)dx ≤ 1
2

∫

R

(e4α‖u−φ‖2
Xi − 1)dx +

1
2

∫

R

(e4α|φ|2 − 1)dx. (2.5)

Choosing ε > 0 such that 4αε2 < ω, we have 4α‖u − φ‖2
Xi

< ω. By (2.5) and (2.3), we conclude that∫

R

(eα|u|2 − 1)dx ≤ C

2
+

1
2

∫

Supp(φ)

(e4α|φ|2 − 1)dx < ∞.

�

Lemma 2.4. If α > 0, q > 2, v ∈ Xi and ‖v‖Xi
≤ D with αD2 < ω, then there exists C = C(α,D, q) > 0,

such that ∫

R

(eαv2 − 1)|v|qdx ≤ C‖v‖q
Xi

for i = 0, 1.

Proof. Consider r > 1 sufficiently close to 1 such that αrD2 < ω and r′q ≥ 2, where r′ = r/(r − 1). Using
Hölder’s inequality, we have

∫

R

(eαv2 − 1)|v|qdx ≤
⎛
⎝
∫

R

(eαv2 − 1)rdx

⎞
⎠

1/r

‖v‖q
r′q. (2.6)

Notice that given β > r there exists C = C(β) > 0 such that for all s ∈ R,

(eαs2 − 1)r ≤ C(eαβs2 − 1). (2.7)

Hence, from (2.6) and (2.7) we get

∫

R

(eαv2 − 1)|v|qdx ≤ C

⎛
⎝
∫

R

(eαβv2 − 1)dx

⎞
⎠

1/r

‖v‖q
r′q

≤ C

⎛
⎝
∫

R

[
e
αβD2

(
v

‖v‖Xi

)2

− 1

]
dx

⎞
⎠

1/r

‖v‖q
r′q.
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By choosing β > r close to r, in such way that αβD2 < ω, it follows from (2.3) and the continuous
embedding Xi ↪→ Lr′q(R) that ∫

R

(eαv2 − 1)|v|q dx ≤ C‖v‖q
Xi

,

which proves the lemma. �

3. A functional setting for the periodic problem

In order to use a variational framework considering the space X0, we assume suitable conditions such
that weak solutions of (1.9) become critical points of the Euler functional I0 : X0 → R defined by

I0(u) =
1
2
M(‖u‖2

X0
) −

∫

R

F0(x, u) dx (3.1)

where F0(x, t) =
∫ t

0
f0(x, τ) dτ . Notice that by the condition (f0,1) and the fact that f0(x, s) has critical

exponential growth, for each α > π, q > 2 and ε > 0 there exists Cε > 0 such that

f0(x, t) ≤ (M(1) − ε)t2σ−1 + Cε(eαt2 − 1)|t|q−1, for all (x, t) ∈ R
2, (3.2)

which implies that

F0(x, t) ≤ (M(1) − ε)
2

|t|2σ + Cε(eαt2 − 1)|t|q, for all (x, t) ∈ R
2. (3.3)

By using the above estimate jointly with the continuous embedding X0 ↪→ Lq(R), we can conclude that I0

is well defined. Moreover, using standard arguments we can check that I0 ∈ C1(X0,R) with the derivative
given by

I ′
0(u)v = m(‖u‖2

X0
)〈u, v〉0 −

∫

R

f0(x, u)v dx, ∀v ∈ X0.

Thus, critical points of I0 are weak solutions of problem (1.9) and conversely.

3.1. The geometric condition

Next using the hypotheses (f0,1) and (f0,2), we prove some facts about the geometric structure of I0

required by the minimax procedure.

Lemma 3.1. There exist μ > 0 and � > 0 such that I0(u) ≥ μ, provided that ‖u‖X0 = �.

Proof. We can use (3.3) to get∫

R

F0(x, u) dx ≤ (M(1) − ε)
2

∫

R

|u|2σ dx + Cε

∫

R

(eαu2 − 1)|u|q dx.

By continuous embedding X0 ↪→ Lq(R) for all q ∈ [2,+∞) and Hölder inequality, for ‖u‖X0 ≤ ρ0 < 1 we
obtain

∫

R

F0(x, u) dx ≤ (M(1) − ε)
2

‖u‖2σ
X0

+ Cε‖u‖q
X0

⎡
⎣
∫

R

(e2αρ2
0u2/‖u‖2

X0 − 1) dx

⎤
⎦

1/2

. (3.4)
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From (1.10) and (3.4), we have

I0(u) ≥ M(1)
2

‖u‖2σ
X0

− (M(1) − ε)
2

‖u‖2σ
X0

− Cε‖u‖q
X0

⎡
⎣
∫

R

(e2αρ2
0u2/‖u‖2

X0 − 1) dx

⎤
⎦

1/2

.

If ρ0 < min{1,
√

ω/2α}, we obtain

I0(u) ≥ ε

2
‖u‖2σ

X0
− C2‖u‖q

X0
.

Choosing q > 2σ and ε > 0 small enough, we may choose 0 < � < ρ0 such that
ε

2
�2σ − C2�

q = μ > 0. (3.5)

�
Lemma 3.2. There exists e ∈ X0 with ‖e‖X0 > � such that I0(e) < 0.

Proof. Let u ∈ C∞
0 (R)\{0} with support Ω. By (f0,2) there exist C1, C2 > 0 such that

F0(x, u) ≥ C1|u|θ − C2 for all x ∈ Ω.

Consequently, by (1.11), for t > 0 such that ‖tu‖2
X0

≥ 1, we have the following estimate

I0(tu) ≤ t2M(1)
2

‖u‖2σ
X0

− C1t
θ

∫

Ω

|u|θ dx + C2

∫

Ω

dx.

Since θ > 2σ, we obtain I0(tu) → −∞ as t → ∞. Setting e = tu with t large enough, the proof is finished.
�

3.2. Palais–Smale sequence

By using the mountain-pass theorem without the (PS) condition (see [31]), there exists a sequence (uk)
in X0 satisfying

I0(uk) → c0 and I ′
0(uk) → 0, (3.6)

where

c0 = inf
g∈Γ

max
t∈[0,1]

I0(g(t))

and Γ = {g ∈ C([0, 1],X0) : g(0) = 0 and g(1) = e}.

Lemma 3.3. Suppose that (f0,1) and (f0,2) hold. Then, the sequence (uk) is bounded in X0.

Proof. Using well-known arguments, it is not difficult to check that (uk) is a bounded sequence in X0.
Indeed, by (m1) and (f0,2) we have

I0(uk) − 1
θ
I ′
0(uk)uk ≥

(
1
2

− σ

θ

)
M(‖uk‖2

X0
).

Now we have to consider two cases. Either infk∈N ‖uk‖X0 = d > 0 or infk∈N ‖uk‖X0 = 0. If infk∈N ‖uk‖X0 =
d > 0, we may assume that d does not depend on Palais–Smale sequence considered, from (m1) and (m2),
with τ = d2, there exists η0 > 0 such that

M(‖uk‖2
X0

) ≥ η0‖uk‖2
X0

for all k ∈ N.

So we have

I0(uk) − 1
θ
I ′
0(uk)uk ≥ η0

(
1
2

− σ

θ

)
‖uk‖2

X0
for all k ∈ N. (3.7)
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By (3.6) and (3.7), there exists k0 ∈ N such that for all k ≥ k0, it holds(
1
2

− σ

θ

)
η0‖uk‖2

X0
≤ C + ‖uk‖X0 .

Since θ > 2σ, this implies that ‖uk‖X0 ≤ C1. If infk∈N ‖uk‖X0 = 0, when 0 is an accumulation point
for real sequence (‖uk‖X0), we may conclude that u0 = 0, so 0 = I0(u0) = c > 0, which is impossible.
Consequently, 0 is an isolated point of sequence (‖uk‖X0), then there exists a subsequence, denoted also
by (‖uk‖X0), such that infk∈N ‖uk‖X0 = d > 0 and we may proceed as before. Thus, in both cases, we
have that this sequence is bounded. �

4. Minimax level for the periodic problem

As already mentioned, we highlight that the main difficulty in our work is the lack of compactness typical
for elliptic problems in unbounded domains with nonlinearities with critical growth. To recover this, we
will make use of assumptions (f0,4) or (f̃0,4) together with (K1) to control the minimax level in a suitable
range where we are able to recover some compactness. For this purpose, in the first case, we need a
version of Lions’s lemma. In the second case, let us consider the Moser’s functions sequence supported in
a ball with an appropriated radius, which depends on (K1). Besides this, we lead with a general Kirchhoff
function M(t), which become this difficulty harder. To overcome this obstacle, we need to make some
estimates depending on this term.

For this, observe that, by definition, M(0) = 0, and since m is a continuous function, it follows that
M is continuous. Thus, by theses facts, together with Lemma 3.1, there exists 0 < �′ < min{1, ρ} such
that

I0(t) ≤ μ

2
for all 0 ≤ t < ρ′. (4.1)

By (m1),

M(t) ≤ Cσtσ for all t ≥ ρ′, where Cσ =
M(ρ′)
(ρ′)σ

. (4.2)

Now, observe that as a consequence of Lemmas 3.1 and 3.2, the minimax level

c0 = inf
g∈Γ

max
t∈[0,1]

I0(g(t))

is positive.
Moreover, we may compare the minimax levels relying on (f0,4) or (f̃0,4) and (K1) and show that they

are real numbers different. So we may obtain distinct solutions for Problem (1.9).

4.1. Minimax estimative of Theorem 1.1

In order to provide an estimate to the minimax level of the functional associated to (1.9), in [14], the
authors proved a version of a Lions’s result (see Lions [32]) for critical growth in R, more specifically in
[14, Lemma 3.1], for a bounded sequence in a suitable space they guarantee that if

lim
n→∞ sup

y∈R

∫

BR(y)

|un(x)|2 dx = 0, (4.3)

for some R > 0, then un → 0 strongly in Lq(R) for 2 < q < ∞. This result is also available for bounded
sequence in X0.
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Now we consider the embedding constant, given by

Sp := inf
u∈X0

‖u‖p=1

⎛
⎝
∫

R2

|u(x) − u(y)|2K(x, y) dxdy +
∫

R

V0(x)u2(x) dx

⎞
⎠

1/2

,

which is achieved by a nonnegative function up in X0. For more details see [14, Lemma 3.2]. From this,
we may estimate the level.

Proposition 4.1. Suppose that (f0,4) holds. Then

μ ≤ c0 <
η0(θ − 2σ)w

2θπ
.

Proof. Let up ∈ X0 such that ‖up‖2
X0

= Sp and ‖up‖p = 1. Then

c0 ≤ max
t≥0

I0(tup) = max
t≥0

⎧⎨
⎩

1
2
M(t2‖up‖2

X0
) −

∫

R

F0(x, tup)dx

⎫⎬
⎭ .

When

t <

√
ρ′

Sp
= ρp, (4.4)

we have ‖tup‖2
X0

< ρ′. So, using the estimate (4.1), we get

I0(tup) ≤ μ

2
.

By (4.2) and (f0,4), we obtain

c0 ≤ max
t≥ρp

⎧⎨
⎩

1
2
M(t2‖up‖2

X0
) −

∫

R

F0(x, tup)dx

⎫⎬
⎭

≤ max
t≥ρp

{
1
2
Cσt2σS2σ

p − Cp

p
tp
}

.

Observe that t0 =
(

σCσS2σ
p

Cp

) 1
p−2σ

, where the maximum is achieved, satisfies the estimate (4.4) if Cp <

σCσSp
p

(ρ′)
p−2σ

2

, what occurs as ρ′ < C
1
σ
σ

(
pwη0(θ − 2σ)
(p − 2σ)θπ

) 1
σ

. Consequently,

c0 ≤ 1
2
CσS2σ

p

[
σCσS2σ

p

Cp

] 2σ
p−2σ

− Cp

p

[
σCσS2σ

p

Cp

] p
p−2σ

=
C

p
p−2σ
σ S

2pσ
p−2σ
p σ

2σ
p−2σ (p − 2σ)

2pC
2σ

p−2σ
p

.

Then, taking

Cp ≥ C
p
2σ
σ Sp

pσ

[
(p − 2σ)θ

pη0(θ − 2σ)w

] p−2σ
2σ

,

we have

c0 <
η0(θ − 2σ)w

2θπ
.

�
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4.2. Minimax estimative of Theorem 1.2

In this section, in order to estimate the minimax level replacing (f0,4) by (f̃0,4), we need the additional
hypothesis (K1) under the kernel.

In order to control the minimax level when we assume a hypothesis kind of (f̃0,4), it is usual to consider
the following sequence of nonnegative functions given by

vn(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ln n)1/2, 0 ≤ |y| < 1
n ,

ln 1
|y|

(ln n)1/2 , 1
n ≤ |y| ≤ 1,

0, |y| ≥ 1,

well-known as Moser’s sequence.
By changing of variable, we obtain the following sequence of functions supported in (x0 − r0, x0 + r0)

given by

un(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ln n)1/2, 0 ≤ |x − x0| < r0
n ,

ln
r0

|x−x0|
(ln n)1/2 , r0

n ≤ |x − x0| ≤ r0,

0, |x − x0| ≥ r0,

with r0 = min
{

r,
λ0

2π
,
λ0η0(θ − 2σ)ω

2θCσπ2

}
. Notice that the restriction of un to (x0 − r0, x0 + r0) belongs to

H1/2((x0 − r0, x0 + r0)) (see [33]). The following lemma deals with the asymptotic estimate on Moser’s
sequence.

Lemma 4.2. Suppose that (K1) holds, then there exist convergente sequences C̃n and δn such that

‖un‖2
X0

≤ 2πC̃n + δn.

Proof. Note that ‖(−Δ)1/4un‖2
2 = r0‖(−Δ)1/4vn‖2

2, so by Takahashi [18], we have

‖(−Δ)1/4un‖2
2 ≤ πr0

(
1 +

1
C ln(n)

)
.

From (K1),

1
2π

[un]1/2,K ≤ 1
λ0

‖(−Δ)1/4un‖2
2 ≤ πr0

λ0

(
1 +

1
C ln(n)

)
:= C̃n. (4.5)

Thus, for n large enough, we have

‖un‖2
X0

≤ 2πC̃n + 2V r0

⎡
⎢⎣

1
n∫

− 1
n

ln(n) dx +
1

ln(n)

− 1
n∫

−1

(ln |x|)2 dx

⎤
⎥⎦

+ 2V r0

⎡
⎢⎣ 1

ln(n)

1∫
1
n

(ln |x|)2 dx

⎤
⎥⎦ ,

where V := maxx∈R V0(x), which implies that ‖un‖2
X0

≤2πC̃n + δn, with

δn := 4V r0

(
n − 1 − ln(n)

n ln(n)

)
.
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Notice that

δn → 0 and C̃n → πr0

λ0
as n → +∞. (4.6)

�

Now we considered ωn = un√
2πC̃n+δn

, so by Lemma 4.2 ‖ωn‖X0 ≤ 1, which will help us to estimate the

minimax level.

Proposition 4.3. Suppose that (K1) and (f̃0,4) are satisfied, then

μ ≤ c0 <
πr0

λ0
Cσ,

where Cσ is given in (4.2).

Proof. By applying Lemma 3.1, we have that c0 ≥ μ. In order to get an upper estimate, it is enough to
prove that there exists a function ω ∈ X0, ‖ω‖X0 ≤ 1, such that

max
t∈[0,1]

I0(tω) <
πr0

λ0
Cσ.

Let us argue by contradiction and suppose that for all n ∈ N there exists tn > 0 such that

I0(tnωn) = max
t∈[0,+∞)

I0(tωn) ≥ πr0

λ0
Cσ. (4.7)

Note still, that tn ≥ �′ for all n ∈ N, with ρ′ is given in (4.1), because, otherwise, there exists n0 ∈ N

such that tn0 < �′ ≤ 1, then

‖tn0ωn0‖2
X0

= t2n0
‖ωn0‖2

X0
≤ t2n0

< tn0 < �′.

Consequently, by (4.1), I0(tn0ωn0) <
μ

2
. On another hand, as c0 ≥ μ, we have I0(tn0ωn0) ≥ μ, which is a

contradiction. Since tn ≥ �′ for all n ∈ N, from (4.7), we have

max
t∈[0,+∞)

I0(tωn) = max
t∈[�′,+∞)

I0(tωn).

So, by (4.2), for n sufficiently large we obtain

Cσ

2
‖tnωn‖2σ

X0
−
∫

R

F0(x, tnωn) dx ≥ πr0

λ0
Cσ.

As r0 ≤ λ0

2π
, we obtain

t2n ≥
(

2πr0

λ0

)1/σ

≥ 2πr0

λ0
. (4.8)

Since tn satisfies

d

dt
I0(tωn)

∣∣∣∣
t=tn

= 0,

by using (m1), it follows that

σCσt2σ
n ≥

∫

R

tnωnf0(x, tnωn). (4.9)
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For n ∈ N large enough, we can use (4.9) in order to obtain

t2σ
n ≥ 1

σCσ

x0+
r0
n∫

x0− r0
n

tn
√

ln n√
2πC̃n + δn

f0

⎛
⎝x,

tn
√

ln n√
2πC̃n + δn

⎞
⎠ dx

≥ 2r0

σCσ
exp

[(
πt2n

2πC̃n + δn

− 1
)

ln(n)
] f0

(
x1,

tn

√
ln n√

2πC̃n+δn

)

exp
(

πt2n ln n

2πC̃n+δn

) ,

(4.10)

where x1 is a minimum point of f0 in [x0 − r0
n , x0 + r0

n ]. This implies that t2n is bounded. Moreover, from
(4.6) and (4.8), we get

t2n → 2πr0

λ0
. (4.11)

Thus, (4.10) together with assumption (f̃0,4) contradict Eq. (4.8). �

Remark 4.4. It is important to point out that as r0 ≤ λ0η0(θ − 2σ)ω
2θπ2Cσ

, we have

πr0

λ0
Cσ ≤ η0(θ − 2σ)w

2θπ
.

So in both cases, in Propositions 4.1 and 4.3, we have

c0 <
η0(θ − 2σ)w

2θπ
. (4.12)

5. Existence of a solution for the periodic problem

In the Sect. 3.2, we guarantee that a Palais Smale sequence is bounded in X0. Since X0 is a Hilbert space,
up to a subsequence, we can assume that there exists u0 ∈ X0 such that⎧⎨

⎩
uk ⇀ u0 weakly in X0,
uk → u0 in Lq

loc(R) for all q ≥ 1,
uk(x) → u0(x) almost everywhere in R.

In order to ensure that the weak limit of the Palais Smale sequence is a solution of (1.9), we need the
following auxiliary results, which hold under all hypotheses already cited.

Lemma 5.1. ∫

R

f0(x, uk)v dx →
∫

R

f0(x, u0)v dx, for all v ∈ C∞
0 (R). (5.1)

Proof. Note that combining (3.6) and (3.7), we reach

c0 ≥ (θ − 2σ)η0

2θ
lim sup ‖uk‖2

X0
.

Thus, by Proposition 4.1 (or Proposition 4.3 ) and (4.12) we obtain

lim sup ‖uk‖2
X0

<
ω

π
.



225 Page 18 of 24 E. Barboza, Y. Araújo and G. Carvalho ZAMP

This implies π‖uk‖2
X0

< ω for k enough large. Hence, we can choose p > 1 sufficiently close to 1 and
δ > 0 small enough such that p(π + δ)‖uk‖2

X0
< ω for k sufficiently large. Consequently, by (2.3) there

exists C > 0 such that ∫

R

(e
p(α0+δ)‖uk‖2

X0

(
uk

‖uk‖X0

)2

− 1) dx ≤ C. (5.2)

Combining (3.2) and Hölder’s inequality for p′ = p/(p − 1) > 2, we get∫

R

f0(x, uk)uk dx ≤ (M(1) − ε)
∫

R

u2σ
k dx + Cε

∫

R

(e(α0+δ)u2
k − 1)|uk|q dx

≤ (M(1) − ε)C

+ Cε‖uk‖q
p′q

⎛
⎝
∫

R

(e
p(α0+δ)‖uk‖2

X0

(
uk

‖uk‖X0

)2

− 1) dx

⎞
⎠

1/p

.

(5.3)

Hence, by (5.2), we have ∫

R

f0(x, uk)uk dx ≤ C.

Consequently, thanks to Lemma 2.1 in [24], we reach

f0(x, uk) → f0(x, u0) in L1
loc(R),

which implies (5.1). �

Lemma 5.2. Assume (f0,3), then for all x ∈ R

f0(x, t)t − 2σF0(t, x) is increasing for t > 0 and decreasing for t < 0.

Proof. Let 0 < t1 < t2 be fixed. By (f0,3), it follows

f0(x, t1)t1 − 2σF0(x, t1) <
f0(x, t2)
t2σ−1
2

t2σ
1 − 2σF0(x, t2) + 2σ

t2∫

t1

f0(x, κ)dκ. (5.4)

Again from (f0,3), we obtain

2σ

t2∫

t1

f0(x, κ)dκ < 2σ
f0(x, t2)
t2σ−1
2

t2∫

t1

κ2σ−1dκ =
f0(x, t2)
t2σ−1
2

(t2σ
2 − t2σ

1 ). (5.5)

Combining (5.4) and (5.5), we get

f0(x, t1)t1 − 2σF0(x, t1) < f0(x, t2)t2 − 2σF0(x, t2).

Analogously, we obtain the result for t < 0. �

Proposition 5.3. Let (uk) Palais Smale sequence for I0. Then there exists u0 ∈ X0 such that m(‖uk‖2) →
m(‖u0‖2). In particular, I ′

0(u0) = 0, this is, u0 is a weak solution of (P0).

Proof. By Lemma 3.3, we have that (uk) is a bounded sequence in X0. Since X0 is a reflexive Hilbert
space, up to a subsequence, we can assume that there exists u0 ∈ X0 such that⎧⎨

⎩
uk ⇀ u0 weakly in X0,
uk → u0 in Lq

loc(R) for all q ≥ 1,
uk(x) → u0(x) almost everywhere in R.
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On other hand, (‖uk‖X0)k is a bounded sequence in R. Thus, up a subsequence, we have that there
exists L ∈ R such that ‖uk‖X0 → L. Moreover, as the norm is weakly lower semicontinuous, we have

‖u0‖2
X0

≤ lim inf ‖uk‖2
X0

.

Since m is nondecreasing, we get

m(‖u0‖2
X0

) ≤ m(lim inf ‖uk‖2
X0

),

consequently,

m(‖u0‖2
X0

) ≤ m(L2).

Since I ′
0(uk) → 0 we obtain that

m(‖uk‖2
X0

)〈uk, v〉 −
∫

R

f0(x, uk)vdx → 0 ∀v ∈ C∞
0 (R).

Consequently, by Lemma 5.1,

m(L2)〈u0, v〉 −
∫

R

f0(x, u0)v = 0 ∀v ∈ C∞
0 (R).

By density arguments, in particular, for v = u0 we have

m(L2)‖u0‖2
X0

−
∫

R

f0(x, u0)u0 = 0.

Note that

I ′
0(u0)u0 = (m(‖u0‖2

X0
) − m(L2))‖u0‖2

X0
. (5.6)

We claim that m(‖u0‖2
X0

) = m(L2). In order to show this, we suppose, by contradiction, that m(‖u0‖2
X0

) <

m(L2). Thus, it follows from (5.6) that I ′
0(u0)u0 < 0. However, by using (f0,1) and critical exponential

growth, proceeding as in the demonstration of the Lemma 3.1, we have that

I ′
0(t0u0)t0u0 > 0

for t sufficiently small. Therefore, I ′
0(u0)u0 < 0 e I ′

0(tu0)tu0 > 0. Then there exists t0 ∈ (0, 1) such that

I ′
0(t0u0)t0u0 = 0 and max

t∈[0,1]
I0(tu0) = I0(t0u0).

By Lemma 5.2, (m3) and Fatou’s lemma, we conclude

c0 ≤ I0(t0u0) − 1
2σ

I ′
0(t0u0)t0u0

=
1
2
M(t20‖u0‖2

X0
) −

∫

R

F (x, t0u0)dx

− 1
2σ

⎡
⎣m(t20‖u0‖2

X0
)t20‖u0‖2

X0
+
∫

R

f0(x, t0u0)t0u0dx

⎤
⎦

=
1
2σ

[
σM(t20‖u0‖2

X0
) − m(t20‖u0‖2

X0
)t20‖u0‖2

X0

]

+
1
2σ

∫

R

[f(x, t0u0)t0u0 − 2σF (x, t0u0)] dx
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<
1
2σ

[
σM(‖u0‖2

X0
) − m(‖u0‖2

X0
)‖u0‖2

X0

]
+

1
2σ

∫

R

[f(x, u0)u0 − 2σF (x, u0)] dx

≤ 1
2σ

[
σM(lim inf ‖uk‖2

X0
) − m(lim inf ‖uk‖2

X0
) lim inf ‖u0‖2

X0

]

+
1
2σ

∫

R

[f(x, u0)u0 − 2σF (x, u0)] dx

= lim inf
[
I0(uk) − 1

2σ
I ′
0(uk)u0

]
= c0.

But this is a contradiction. Therefore m(‖u0‖2
X0

) = m(L2). So we conclude that u0 is a weak solution of
(1.9).

�

Remark 5.4. By (3.5), we can take 0 < �̃ < ρ′ such that I0(u) ≥ μ̃ when ‖u‖X0 = ρ̃ for some μ̃ <

min
{

πr0

λ0
C̃σ, μ

}
, where ρ′ and μ are given in (4.1). Moreover, as M(0) = 0 and I0 is continuous, we

have

I0(t) ≤ μ̃

2
for all 0 ≤ t < ρ̃.

By (m1),

M(t) ≤ C̃σtσ for all t ≥ ρ̃, where C̃σ =
M(ρ̃)
(ρ̃)σ

.

So we may define

c̃0 = inf
g∈Γ

max
t∈[0,1]

I0(g(t)),

where Γ = {g ∈ C([0, 1],X0) : g(0) = 0 and g(1) = e} and we conclude, as in Proposition 4.3, that

μ̃ ≤ c̃0 <
πr0

λ0
C̃σ,

Since here μ̃ < μ ≤ c0, we can take
μ̃λ0

πC̃σ

< r0 <
c0λ0

πC̃σ

, and, consequently, we get

c̃0 < c0.

Thus, we observe that solutions which will obtained in Theorems 1.1 and 1.2 can be different.

5.1. Proof of Theorems 1.1 and 1.2

Using Proposition 5.3 we have that u0 is a weak solution of (1.9), thus if u0 is nontrivial the theorem is
proved. If u0 = 0, we have the following claim: There exist (yk) ⊂ R and R, a > 0 such that

lim inf sup
yk∈R

∫

BR(yk)

|uk|2 dx > a. (5.7)

Indeed, assume that (5.7) does not hold, then for all sequence (yk) ⊂ R and R > 0, we have

lim inf sup
yk∈R

∫

BR(yk)

|uk|2 dx = 0. (5.8)
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Using (5.8) and the version of Lions’ lemma for X0, we obtain that uk → 0 in Lt(R) for 2 < t < ∞. Thus,
by applying (5.2) and (5.3) we reach ∫

R

f0(x, uk)uk dx → 0.

Combining this estimate together with (3.6), we get that ‖uk‖X0 → 0. Furthermore, in view of assumption
(f0,2) we conclude that ∫

R

F0(x, uk) dx → 0. (5.9)

Combining the convergence ‖uk‖X0 → 0, (5.9) and (3.6), we get that c0 = 0, but this is impossible. Thus,
(5.7) holds.

We may assume, without loss of generality, that (yk) ⊂ Z. Letting wk(x) = uk(x − yk), since V0(·),
f0(·, s) and F0(·, s) are 1-periodic functions, by a careful calculation we obtain

‖uk‖X0 = ‖wk‖X0 , m(‖uk‖X0) = m(‖wk‖X0),

I0(uk) = I0(wk) → c0 and I ′
0(wk) → 0.

Consequently, by similar arguments made in the previous sections, we obtain that (wk) is bounded in
X0 and there exists w0 ∈ X0 such that wk ⇀ w0 weakly in X0 and w0 is a weak solution of the problem
(1.9). Moreover, by (5.7), taking a subsequence and R sufficiently large, we get

a1/2 ≤ ‖wk‖L2(BR(0)) ≤ ‖wk − w0‖L2(BR(0)) + ‖w0‖L2(BR(0)). (5.10)

Thus, by using Corollary 2.2 we conclude that w0 is nontrivial.
To finalize, notice that if u is a weak solution of (1.9), since f0(x, s) = 0 for all s ≤ 0 and I ′

0(u)v = 0
for all v ∈ X0, choosing the test function v = −u−, by using the following inequality |u−(x) − u−(y)|2 ≤
(u(x) − u(y))(u−(y) − u−(x)) and the fact that m is nondecreasing we get that ‖u−‖X0 ≤ 0. Thus, u is
a nonnegative function. This completes the proof of Theorems 1.1 and 1.2.

6. Existence of a solution for the nonperiodic problem

In the section, we are concerned to find a nonnegative and nontrivial solution for (1.12). For this, we
consider the functional I : X1 → R given by

I(u) =
1
2
M(‖u‖2

X1
) −

∫

R

F (x, u) dx.

From (f1) - (f2), Lemmas 2.3 and 2.4, similarly to Sect. 3, we can see that I is well defined and by using
standard arguments I ∈ C1(X1,R) with

I ′(u)v = m(‖u‖2
X1

)〈u, v〉1 −
∫

R

f(x, u)v dx.

for all v ∈ X1. Thus, a critical point of I is a weak solution of (1.12) and reciprocally. Moreover, I has
the geometry of the mountain-pass theorem, by analogous steps to Propositions 3.1 and 3.2, we obtain

Proposition 6.1. If (f2)-(f3) and (v1) hold, then
(i) there exist σ1, ρ1 > 0 such that I (u) ≥ σ1 if ‖u‖X1 = ρ1;
(ii) there exists e1 ∈ E, with ‖e1‖X1 > ρ1, such that I(e1) < 0.



225 Page 22 of 24 E. Barboza, Y. Araújo and G. Carvalho ZAMP

As a consequence of Proposition 6.1, the minimax level

c1 := inf
γ∈Γ

max
t∈[0,1]

I(γ(t))

is positive, where Γ = {γ ∈ C([0, 1],X1) : γ(0) = 0 and γ(1) = e1}.
Moreover, by applying the mountain-pass theorem without the (PS) condition (see [31]), there exists

a sequence (vk) ⊂ X1 such that

I(vk) → c1 and I ′(vk) → 0.

Thus, similarly to Lemma 3.3, we obtain that (vk) is a bounded sequence in X1. Moreover, by using the
arguments made in Proposition 5.3, we get the following result:

Proposition 6.2. If (f0,4) (or (f̃0,4) and (K1)), (f1)-(f3) and (v1) hold, then vk ⇀ v0 weakly in X1 and
v0 is a critical point of functional I.

Now, in order to prove that there exists a nontrivial critical point of I we need some auxiliary results,
among then a lemma of convergence. More specifically, assuming for the sake of contradiction that v0 is
trivial, following the same steps of Lemma 4.3 in [13], we obtain the following result.

Lemma 6.3. If (v1), -(f0,2) and (f1)-(f3) hold, then
(i)

∫
R

[f0(x, vk) − f(x, vk)]vk dx → 0;

(ii)
∫
R

[F0(x, vk) − F (x, vk)] dx → 0

(iii)
∫
R

[V0(x) − V (x)]v2
k dx → 0.

6.1. Proof of Theorem 1.3

Assuming for the sake of contradiction that v0 is trivial, since m is a continuous function, as a consequence
of Lemma 6.3, it follows that

|I0(vk) − I(vk)| → 0 and ‖I ′
0(vk) − I ′(vk)‖∗ → 0. (6.1)

Hence,

I0(vk) → c1 and I ′
0(vk) → 0.

In addition, we obtained a version of Lions’s result for a sequence in X1 as in (4.3). From this, we conclude
that there exist (yk) ⊂ Z and R, a > 0 such that

lim inf sup
yk∈R

∫

BR(yk)

|vk|2 dx > a.

Now consider wk(x) = v(x − yk), since V0(x), f0(x, s) and F0(x, s) are 1−periodic functions in x, we get

‖vk‖X0 = ‖wk‖X0 , m(‖vk‖X0) = m(‖wk‖X0),

I0(vk) = I0(wk) → c1 and I ′
0(wk) → 0.

Then, there exists w0 ∈ X0 such that wk ⇀ w0 weakly in X0 and I ′
0(w0) = 0. Moreover, using (6.1) and

Fatou’s lemma, we have

I0(w0) = I0(w0) − 1
2
I ′
0(w0)w0
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=
1
2

∫

R

[f0(x,w0)w0 − 2F0(x,w0)] dx

≤ lim inf
1
2

∫

R

[f0(x,wk)wk − 2F0(x,wk)] dx

= lim[I0(wk) − 1
2
I ′
0(wk)wk] = c1.

Arguing as in (5.10) we conclude that w0 is nontrivial. Now, by (f0,3), we have that max{I0(tw0) : t ≥ 0}
is unique and then

c0 ≤ max
t≥0

I0(tw0) = I0(w0) ≤ c1. (6.2)

On the other hand, considering u0 the solution obtained in Theorem 1.1 (or Theorem1.2), as m is
nondecreasing, so from (v1), (f1), (f5), (f4) and (f0,3), we have

c1 ≤ max
t≥0

I(tu0) = I(t1u0) < I0(t1u0) ≤ max
t≥0

I0(tu0) = I0(u0) = c0,

that is, c1 < c0, which is a contradiction with (6.2). Therefore, v0 is nontrivial.
To finalize, notice that similarly to proof of Theorems 1.1 and 1.2 if we have a weak solution of (1.12),
then it is a nonnegative function. This completes the proof of Theorem 1.3.
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[32] Lions, P.L.: Symétrie et compacité dans les espaces de Sobolev. J. Funct. Anal. 49, 315–334 (1982)
[33] Pei, R.: Fractional p-Laplacian equations with subcritical and critical exponential growth without the Ambrosetti–

Rabinowitz condition. Mediterr. J. Math. 15, 5 (2018)
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