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Abstract. The three wave resonant interaction model (3WRI) is a non-dispersive system with quadratic coupling between the
components that finds application in many areas, including nonlinear optics, fluids and plasma physics. Using its integrability,
and in particular its Lax Pair representation, we carry out the linear stability analysis of the plane wave solutions interacting
under resonant conditions when they are perturbed via localised perturbations. A topological classification of the so-called
stability spectra is provided with respect to the physical parameters appearing both in the system itself and in its plane
wave solution. Alongside the stability spectra, we compute the corresponding gain function, from which we deduce that this
system is linearly unstable for any generic choice of the physical parameters. In addition to stability spectra of the same
kind observed in the system of two coupled nonlinear Schrödinger equations, whose non-vanishing gain functions detect the
occurrence of the modulational instability, the stability spectra of the 3WRI system possess new topological components,
whose associated gain functions are different from those characterising the modulational instability. By drawing on a recent
link between modulational instability and the occurrence of rogue waves, we speculate that linear instability of baseband-
type can be a necessary condition for the onset of rogue wave types in the 3WRI system, thus providing a tool to predict
the subsequent nonlinear evolution of the perturbation.
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1. Introduction

The three wave resonant interaction (3WRI) system is a well known universal model which describes the
non-dispersive propagation of waves in weakly nonlinear media [1,2]. Despite its dispersionless nature, it
possesses solitons (see, e.g., [3–6] and references therein), which occur as result of the balance between
nonlinearity and the energy flow due to the mismatch of the velocities of the three interacting waves (see,
e.g., [1,7,8]), and it is not due to the balance between nonlinearity and dispersion as it happens for the
‘traditional’ solitons [9]. Such solitons are ubiquitous in many nonlinear systems of physical interest (e.g.
in nonlinear optics [10]) and they have been observed experimentally in stimulated Raman scattering
[11], in Brillouin finger ring laser [12] and in quadratic optical media [13]. Among its soliton solutions,
rational and semi-rational solutions [14–17] have enjoyed renewed interest as they can be used to model
rogue wave-type phenomena [18,19], recently observed in oceans [20], in optics [21], in the atmosphere
[22], in Bose-Einstein condensates [23], and in capillary-waves [24]. They were also observed in laboratory
experiments with superfluid helium [25] and generated in water tanks [26].
In dispersive systems, modulational instability (MI) has been proposed as a possible cause of the onset of
rogue waves [27,28]; however, not all kinds of MIs have been considered, but only the so-called baseband
MI [27,28], that is, a fundamental feature of nonlinear dispersive systems for which a periodic perturbation
on an unstable plane wave or continuous wave background (CW) grows when the perturbation frequency
is around zero (zero not included) (see, for instance, [29]). In [14,17], novel families of rational and
semi-rational solutions on non-vanishing background of the integrable 3WRI system, which is instead
non-dispersive, have been obtained via Darboux Dressing transformations (see, e.g., [30,31]), and they
have contributed to our understanding of extreme phenomena in multi-component resonant processes.
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In this work, we carry out the linear stability analysis of plane wave solutions of the 3WRI model (1),
motivated by the fact that this resonant process is observed in different physical contexts such as in
plasma wave interactions [32,33], in nonlinear dielectric media [34], in planetary wave interactions [35], in
shear flows [36] and internal waves [37]. The non-dispersive nature of the 3WRI system makes the linear
stability analysis of its solutions more intriguing. Indeed, we expect the mechanism leading to the linear
instability in the 3WRI system to differ from the one associated with MI in dispersive nonlinear systems,
the latter being due to the interplay between dispersion and a weak nonlinearity [38]. In particular, in
dispersive multi-component systems, the coupling among the components can suppress or enhance the MI
of the single component [39–41] and the dispersion plays a key-role in the occurrence of MI. For instance,
it has been shown that two coupled sine-Gordon equations in the non-dispersive regime are stable with
respect to MI [39]. The 3WRI system admits also dispersive shock waves [42], similar to those admitted
by well known dispersive systems such as the nonlinear Schrödinger (NLS) and the Korteweg-de Vries
(KdV) equation.
Despite the relevance of the 3WRI system, the linear stability analysis of its plane wave solutions has not
received much attention in the literature, to the best of our knowledge. This is possibly due to algebraic
difficulties in dealing with a multi-component system and solutions with nonzero boundary conditions.
In the paper, we follow [43] and adopt the approach presented in [44,45] exploiting the integrability
of the system, in particular its Lax Pair formulation, to study the linear stability of its plane waves
solution and classify the so-called stability spectra and associated gain functions. We provide a complete
topological classification in the physical parameters space. Moreover, we observe that all topologies of the
stability spectra of a system of two coupled nonlinear Schrödinger equations (CNLS) detailed in [44,46],
as well as those of a long wave-short wave interaction system (YON) detailed in [45], are also present
for the 3WRI system. Indeed, there exist open curves (branches) associated with an MI-baseband-type
instability and closed curves (loops) associated with an MI-passband-type instability. However, there
exist new topological features (twisted loops) in the stability spectra of the 3WRI model which do not
exist for the CNLS system. They are associated with an isolated real point of the stability spectrum and,
at this point, the solutions are always linearly unstable; on the contrary, the CNLS system is linearly
stable for any real values of the spectral parameter outside the gaps [44,46]. Moreover, the gain function
associated with these twisted loops is neither baseband-type nor passband-type, being nonzero in the
whole neighbourhood of the zero wave number. Like in the CNLS case, also for the 3WRI system, we
show that for a generic choice of physical parameters, the plane waves solutions are linearly unstable.
In Sect. 2, we recall the Lax pair formulation of the 3WRI model and its plane wave solution. Here, we
briefly describe also the relation between the linearised equation and the squared eigenfunctions, following
[44], and we introduce the concept of stability spectrum associated with the plane wave solution. In Sect. 3,
we identify regions in the parameters space associated with different topologies of the stability spectrum
and we construct the corresponding gain functions. We deduce that the plane wave solution of the 3WRI
system is linearly unstable for any generic choice of the physical parameters. In the Conclusions, we
summarise our results, and in particular we highlight the link between instabilities of baseband-type
and the occurrence of rogue waves phenomena, proving a spectral characterisation of rogue waves type
solutions, already known in the literature.

2. Stability spectra associated with the plane wave solutions

The propagation in 1 + 1 dimensions of three resonating waves is modelled by the following system of
three coupled partial differential equations (PDEs):
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⎧
⎪⎨

⎪⎩

u1t + c1u1x = s1c2 u∗
2u

∗
3,

u2t + c2u2x = s2c1 u∗
1u

∗
3,

u3t = s3(c1 − c2)u∗
1u

∗
2,

(1)

where the asterisk denotes the complex conjugate, uj = uj(x, t) are complex valued functions of space x
and time t, sj are signs such that s2

j = 1 for j = 1, 2, and c1 �= c2 are the nonzero velocities associated
to u1 and u2, respectively. Indeed, without loss of generality, we have set the velocity associated with u3

to zero, that is equivalent to choosing a reference frame co-moving with the solution u3. The ordering
of the velocities is otherwise generic at this stage. Hereinafter, subscripted variables stand for partial
differentiation with respect to x or t. It is worth highlighting that (1) might look different from the one
usually given in the literature (see e.g. [3] and [42]), however it contains all the possible three waves
resonant interaction systems, irrespectively of the choice of signs and ordering of the velocities. This
allows us to study a single Lax Pair (see (7)), instead of dealing with at least three different Lax Pairs
(e.g. [3], [42]) depending on the choice of the ordering of the velocities, this being advantageous from the
point of view of the classification of the stability properties of the plane waves solutions.
System (1) models the interaction of three resonating waves and, as such, it has been the subject of
extensive investigation (see, for instance, [3]). It can be derived via multiscale analysis of a large class of
nonlinear wave equations with weak dispersion and nonlinearity (see, for instance, [4]) and therefore it
represents a universal model able to capture the lowest order corrections, due to nonlinear effects, to linear
propagation. We have already pointed out that, contrary to other integrable nonlinear wave equations
such as the nonlinear Schrödinger equation, the Korteweg-de Vries equation or the sine-Gordon equation,
this system has no (linear) dispersion. The second peculiar characteristic is that no self-interaction occurs,
namely, the forcing of each wave (i.e. the non-homogeneous term in the propagation Eq. (1)) is just the
product of the (complex conjugated) amplitudes of the other two waves.
The plane wave solutions of (1) can be written as

uj = aje
i(ηjt−νjx), j = 1, 2, 3, (2)

with aj constant amplitudes, ηj frequencies and νj wave numbers. Frequencies and wave numbers are
related one another via the resonant conditions

η1 + η2 + η3 = 0, ν1 + ν2 + ν3 = 0. (3)

Thus, the solution u3 reads

u3 = a3e
−i((η1+η2)t−(ν1+ν2)x), a3 = is3a1a2

c1 − c2

η1 + η2
, a1, a2 ∈ R, (4)

and the nonlinear dispersion relations are

ν1 =
η1

c1
+ s1s3a

2
2

c2(c1 − c2)
c1(η1 + η2)

, ν2 =
η2

c2
+ s2s3a

2
1

c1(c1 − c2)
c2(η1 + η2)

. (5)

System (1) is integrable, as it admits a Lax Pair (e.g., see, [3]) namely, it can be written as the com-
patibility condition of two linear differential equations for an unknown auxiliary matrix-valued function
ψ:

ψx = Xψ, ψt = Tψ, (6)

where X and T are matrix-valued functions depending on u(x, t) and on a complex variable κ, called
spectral parameter, as follows:

X = −iκC + U, T = iκD + V. (7)
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Here

C =

⎛

⎝
0 0 0
0 c2 0
0 0 c1

⎞

⎠ , D =

⎛

⎝
0 0 0
0 c1c2 0
0 0 c1c2

⎞

⎠ (8)

U =

⎛

⎝
0 s1u1 −s1s2s3u

∗
2

s1s2s3u
∗
1 0 s3u3

s2u2 s1s2s3u
∗
3 0

⎞

⎠ , V =

⎛

⎝
0 −s1c1u1 s1s2s3c2u

∗
2

−s1s2s3c1u
∗
1 0 0

−s2c2u2 0 0

⎞

⎠ . (9)

Note that, U and V are related as follows:

V = [B, [U,D]], (10)

where the notation [M1,M2] stands for the commutator M1M2 − M2M1 and

B =

⎛

⎝
0 0 0
0 1

c2
0

0 0 1
c1

⎞

⎠ . (11)

In this setup, for all κ ∈ C, Eq. (1) is retrieved by imposing the compatibility condition ψxt = ψtx for
system (6):

Xt − Tx + [X,T ] = 0. (12)

A perturbation of uj(x, t) in the form uj + δuj corresponds to a perturbation of X and T in the form
X + δX and T + δT where, δX = δX(x, t) and δT = δT (x, t) are solutions of the linearised equation

(δX)t − (δT )x + [δX, T ] + [X, δT ] = 0. (13)

Equation (13) is the evolution equation for the perturbation δU of the matrix U , that is

δUt − [B, [δUx,D]] + iκ[δU,D] − iκ[C, [B, [δU,D]]] + [δU, [B, [U,D]]] + [U, [B, [δU,D]]] = 0. (14)

If δU is a localised perturbation, then, as proven in [44], a solution of the linearised Eq. (14) reads

F = i [C,Ψ] , (15)

with

Ψ = ψMψ−1, (16)

where M = M(κ) is an arbitrary, nonzero constant matrix. The matrix Ψ, which is essentially a squared
eigenfuction in the spirit of [47], for any given arbitrary M , satisfies the linear ordinary differential
equations (ODEs):

Ψx = [X, Ψ], Ψt = [T, Ψ], (17)

which are compatible with one another because of (12).
The solution F plays the same role as the exponential solution of linear equations with constant coef-
ficients; namely, by varying κ, it provides the set of “Fourier-like” modes of the linear PDE (13). As a
consequence, any sum and/or integral of F over the spectral parameter κ is a solution δU of the linearised
Eq. (13). As in [44], here we assume that the perturbation δU has the integral representation

δU(x, t) =
∫

dκ F (x, t, κ). (18)

In order to explicitly compute F , we need first to compute the solution of the Lax Eq. (6). At this stage,
it is convenient to set

q = η1 = η2 , q �= 0; (19)
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this can be done without loss of generality1. In this setup, the fundamental matrix solution of the Lax
pair reads

ψ = Rei(x W−t Z), (20)

where the matrix R(x, t) is given by

R = e− i
2 (ν1−ν2)xIe−i(qt−ν1x)Σ+ei(qt−ν2x)Σ− , (21)

with I the 3 × 3 identity matrix and

Σ+ =

⎛

⎝
0 0 0
0 1 0
0 0 0

⎞

⎠ , Σ− =

⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ , [Σ+,Σ−] = 0, (22)

and where W = W (κ) and Z = Z(κ) are two x, t-independent matrices

W = 2c1c2q

⎛

⎝
0 −is1a1 is1s2s3a2

−is1s2s3a1 −κc2 − ν1 −is3a3

−is2a2 −is1s2s3a
∗
3 −κc1 + ν2

⎞

⎠ , (23)

and

Z =

⎛

⎝
0 −is1c1a1 is1s2s3c2a2

−is1s2s3c1a1 −κc1c2 − q 0
−is2c2a2 0 −κc1c2 + q

⎞

⎠ , (24)

with the property [W,Z] = 0, so that W (κ) and Z(κ) can be diagonalised by the same matrix G(κ),
namely

W (κ) = G(κ)WD(κ)G−1(κ) , WD = diag{w1, w2, w3} , (25)

Z(κ) = G(κ)ZD(κ)G−1(κ) , ZD = diag{z1, z2, z3} . (26)

In terms of W , Z, R and M , the solution F of the linearised (14) reads

F (x, t, κ) = R(x, t)
[
Σ, ei(xW (κ)−tZ(κ))M(κ)e−i(xW (κ)−tZ(κ))

]
R−1(x, t) (27)

for each value of κ. Then, as shown in [46], in order to make (27) explicit, we write M(κ) as a linear
combination of the nine matrices

V (jm)(κ) = G(κ)B(jm)G−1(κ), (28)

with

B
(jm)
kn = δjkδmn, (29)

where δjk is the Kronecker delta (δjk = 1 if j = k and δjk = 0 otherwise), in the form:

M(κ) =
3∑

j,m=1

μjm(κ)V (jm)(κ), (30)

where μjm are (arbitrary) scalar functions. Plugging this decomposition into (27), we obtain the following
representation of F

F (x, t, κ) = R(x, t)
3∑

j,m=1

μjm(κ)ei[(x(wj−wm)−t(zj−zm)]F (jm)(κ)R−1(x, t), (31)

1Anticipating the concept of stability spectrum which will be formally introduced at the end of this section, one can
prove that the sum η1 + η2 corresponds to the scale factor which magnifies or shrinks the spectrum, whereas the difference
η1 − η2 corresponds to the length of rigid translation of the spectrum along the real axis.
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where wj = wj(κ) and zj = zj(κ), j = 1, 2, 3, are the eigenvalues of W and Z, respectively, and they
are assumed to be simple, for a generic value of κ, and where F (jm)(κ) are the x, t-independent matrices
defined as

F (jm)(κ) =
[
Σ, V (jm)(κ)

]
. (32)

Requiring the solution to be localised in the variable x implies (see [44]) the necessary condition that the
functions μjm(κ) be vanishing for j = m, μjj = 0, j = 1, 2, 3.
Hereafter, it is convenient to introduce the following re-scaled wave amplitudes αj and the re-scaled
spectral parameter λ

α1 =
a2
1

q2
, α2 =

a2
2

q2
, λ = c1 c2

κ

q
, (33)

along with a re-scaling of w- and z-roots, respectively, as w �→ q2 w and z �→ q z, and setting q = 1 with
effect of removing the dependence on q from the roots of the characteristic polynomials of W and Z.
Note that we are assuming here both c1 and c2 different from zero; the cases where at least one of the
velocities is zero is a degenerate case (see [48] for details). Moreover, let p1, p2 and p3 be real parameters
defined as

p1 =
c2
1s1α1 + c2

2s2α2

s1s2s3
, p2 =

c2
1s1α1 − c2

2s2α2

s1s2s3
, p3 =

c1 − c2

c1 + c2
, (34)

where sj , c1 and c2 are as in (1), entailing p3 �= 0,±1. In the following, we will assume c1 + c2 �= 0,
and postpone the study of the counter-propagating case p3 → ∞ to future investigation. In the new
parameters, the characteristic polynomial PW (w;λ) of W reads

PW (w;λ) =

w3 + (2λ − p3p2 − 2p3) w2 +
[
λ2(1 − p2

3) + λ p3(p1p
2
3 − p2) + p2

3(1 + 2p2) − 3p1p3 + p2 − 1
]
w+

+ λ(p2 − p1p3 − p2p
2
3 + p1p

3
3) − p1 + p2(1 − p2)p3 + p1(1 + 2p2)p2

3 − (p2
1 + p2)p3

3, (35)

whereas the characteristic polynomial PZ(z;λ) of Z reads

PZ(z;λ) = z3 + 2λz2 + (λ2 + p2 − 1)z + p2λ − p1. (36)

The differences in (31),

kj = wj+1 − wj+2, ωj = zj+1 − zj+2, j = 1, 2, 3 mod(3), (37)

play the roles of “eigen-wave numbers” and “eigen-frequencies”, respectively. We observe that the matrices
W and Z are related to one another as follows:

W = p3Z
2 + (1 + p3λ)Z + p2p3. (38)

This induces a relation between the eigenvalues wj and zj so that

kj = ωj [−p3zj + (1 − λp3)] , j = 1, 2, 3. (39)

Given p1, p2 and p3, we are interested in finding values of the complex spectral parameter λ such that
the locally perturbed plane waves uj are bounded in space, and see if they are linearly stable or unstable
in time. In other words, we look for those values of λ corresponding to real eigen-wave numbers kj ; to
such eigen-wave numbers there correspond in general complex eigen-frequencies ωj : if the imaginary part
of ωj is nonzero, linear instability develops in time.
The stability spectrum S for the plane wave solutions of the 3WRI system (1) is defined as the locus of
the λ-plane identified with C such that, for fixed values of the physical parameters p1, p2 and p3, there
exist at least two eigenvalues w� and wm for the matrix W , for some 
 and m, for which (w� − wm) ∈ R

(namely, for which one of the kj is real).
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The key-concept in understanding the linear stability is the difference of the eigenvalues wj , which is
related to the difference of the eigenvalues zj via (39). Indeed, it is possible to show [48] that

Proposition 1. The plane wave solution of the 3WRI system is stable against the perturbation δU inte-
grated over strictly real values of λ (see 18), with the exception of a finite number of intervals on the real
line, called gaps, and possibly of isolated, real points within such gaps.

Following [44], we construct the cubic polynomial PW (ξ;λ) ≡ PW (ξ;λ; p1, p2, p3) in the variable ξ, whose
ξ-roots are the squares of all the possible differences of the roots of the characteristic polynomial PW (w;λ)
(35), namely

PW (ξ;λ) ≡ PW (ξ;λ; p1, p2, p3) =
3∏

j,h=1
j<h

[
ξ − (wj − wh)2

]
. (40)

A ξ-root (resp. a λ-root) of PW (ξ;λ) is a polynomial root of the equation PW (ξ;λ) = 0, solved with
respect to ξ (resp. λ). For the sake of simplicity, we will refer to PW (ξ;λ) as the polynomial of the squares
of the differences; it is a 2-variate polynomial in ξ and λ, which can be explicitly obtained in terms of
the coefficients of PW (w;λ) (see [44,48]), and takes the expression:

PW (ξ;λ) = ξ3 + ξ2
[
2λp3(3p1p3 + p2 + 8) − 18p1p3 − 2(p2 − 1)2p2

3 + 6(p2 − 1) − 2λ2
(
3p2

3 + 1
)]

+

+ ξ
{−λp3(3p1p3 + p2 + 8) + 9p1p3 + p2

[
(p2 − 2)p2

3 − 3
]
+ λ2

(
3p2

3 + 1
)

+ p2
3 + 3

}2
+

+
{−4λ4 + 27p2

1 + 4λ3p1 − 18λp1(p2 + 2) + λ2 [8 − (p2 − 20)p2] + 4(p2 − 1)3
} ×

× {
p3

[
λ + p2

3(p1 − λ) − p2p3 + p3

] − 1
}2

. (41)

Therefore, for any fixed parameters p1, p2 and p3, the spectrum S is the locus of the λ-roots of PW (ξ;λ)
for all ξ ∈ R, ξ ≥ 0, that is

S = {λ ∈ C | PW (ξ;λ) = 0, ξ ≥ 0} . (42)

The stability spectrum S of the solution U coincides with the subset of the complex λ-plane over which
the integration (18) runs. This subset guarantees the boundedness of the solution F , and hence that of
the perturbation δU . We are now in the position to redefine the perturbation in (18) as

δU(x, t) =
∫

S

dλ F (x, t, λ). (43)

As in standard linear stability analysis, the given solution U is linearly stable if the initial perturbation
δU(x, t0) remains small as time grows, say for t > t0.
In the following section, we classify the stability spectra S in the parameter space.

3. Classification of stability spectra S

As we will illustrate in this section, the topological features of the spectrum S can be classified as follows.
Real values of the spectral parameter λ not belonging to S constitute a gap (G). A gap, containing an
isolated point belonging to S, is called a split gap (SG). Non-real values of the spectral parameter λ,
belonging to S, correspond to branches (B) and loops (L), which are open and closed curves, respectively.
Figure-eight shaped loops, self-intersecting on the real axis, will be referred to as twisted loops (TL).
In order to classify the topological features of S, we need to investigate the algebraic properties of the
polynomial of the squares of the differences PW (ξ;λ), defined in (40), which is a sixth degree polynomial
in λ and a third degree polynomial in ξ. For fixed p1, p2 and p3, we analyse the spectrum S following
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the approach introduced in [44,46] for the CNLS equations, and further investigated in [48] for the case
of the 3WRI system.
As explained in [44,46], the different components of the stability spectrum S result from the dynamics of
the λ-roots of PW (ξ;λ) as ξ varies from 0 to ∞; in particular, the components are generated by collisions
on the real axis of pairs of λ-roots, whenever after such collisions the colliding roots either leave or go
into the real axis. In other words, collisions corresponding to real roots passing each other on the real
axis are disregarded, as they do not originate additional components of the curve S.
To analyse these collisions, we consider the discriminant of PW (ξ;λ) with respect to λ, that is

Q(ξ; p1, p2, p3) = Δλ PW (ξ;λ) = ξ Q2
1(ξ)Q2(ξ), (44)

where Q1(ξ) ≡ Q1(ξ; p1, p2, p3) and Q2(ξ) ≡ Q2(ξ; p1, p2, p3) are two real polynomials in the variable ξ,
whose degrees are four and six, respectively, and Q1,2(0) �= 0. The explicit forms of Q1(ξ) and Q2(ξ) are
too long for the present paper and can be found in [48]. We will refer to Q1 and Q2 as the even and odd
parts of the discriminant Q(ξ), respectively. We are interested in changes of sign of Q(ξ; p1, p2, p3).
If ξ > 0, the factor ξQ2

1(ξ) is strictly positive and so, to the purpose of the study of the sign of the
discriminant Q(ξ), the only relevant part is Q2(ξ). As ξ varies towards ∞, Q2(ξ) will change sign each
time ξ goes through a root of Q2(ξ): therefore, to each choice of p1, p2 and p3, there corresponds a sequence
of intervals of ξ, where Q2(ξ) is either positive or negative. In particular, the following proposition holds
[44,48]:

Proposition 2. Let ξ̄ be the largest positive root of Q2(ξ). Then, for ξ > ξ̄, all the λ-roots of PW (ξ;λ)
are real; therefore, the stability spectra always contains part of the real axis and never features a gap
containing the point at infinity.

As p1, p2 and p3 vary, transitions from a sequence of intervals in ξ to another correspond to one of the
intervals shrinking to a point, namely to a collision of a pair of roots of Q2(ξ). We therefore consider the
discriminant of Q2(ξ) with respect to ξ, ΔξQ2(ξ), which factorises as

ΔξQ2(ξ) =
5∏

j=1

Ej(p1, p2, p3)ej , (45)

where Ej are polynomial factors and ej are their multiplicities. Then, the real-analytic varieties Ej

implicitly defined as

Ej =
{
(p1, p2, p3) ∈ R

3 : Ej(p1, p2, p3) = 0
}

, j = 1, 2, 3, 4, 5, (46)

are curves in the parameter space, defining the boundaries of regions corresponding to different topological
structures of the spectra S. These are

E1 = p1 − p2, (47a)
E2 = p1 + p2, (47b)
E3 = 27p2

1 − (p2 − 1)(p2 + 8)2, (47c)
E4 = p3

[
p3
3

(
p2
1 − 4p2 + 4

) − 2p1(p2 − 2)p2
3 − 4p1 + (p2(p2 + 4) − 8)p3

]
+ 4, (47d)

and the explicitly expression of E5 can be obtained from (45) knowing Ej , j = 1, ..., 4 (see [48]). All the
multiplicities ej are equal to 1, with the only exception of e3 = 3.
For ξ = 0, Q(0) = 0 and therefore it requires a different approach; we will study this case in the next
subsection.
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3.1. Gaps, branches and loops

As shown in [44,46], end points of gaps on the real line and of branches in the complex λ-plane corre-
spond to setting ξ = 0 in PW (ξ;λ), or equivalently, to multiple w-roots of the characteristic polynomial
PW (w;λ).
When ξ = 0, it turns out that

PW (0;λ) = PZ(0;λ)R2(λ), (48)

where PZ(ζ;λ) is the polynomial of the squares of the differences of the z-roots of PZ(z;λ),

PZ(0;λ) = −4λ4 + 4p1λ
3 − [(p2 − 20)p2 − 8] λ2 − 18p1(p2 + 2)λ + 27p2

1 + 4(p2 − 1)3, (49)

and where

R(λ) = p3

[
(1 − p2

3)λ + p1p
2
3 − p2p3 + p3

] − 1. (50)

Gaps and branches appear or disappear at the multiple-zeros of the polynomial PZ(0;λ), thus at the
zeros of the discriminant ΔλPZ(0;λ), namely when

ΔλPZ(0;λ) = −256(p1 − p2)(p1 + p2)
[
27p2

1 − (p2 − 1)(p2 + 8)2
]3

= −256E1E2E
3
3 . (51)

Indeed, as we will see later in this section, R(λ) does not play a role in the classification of gaps and
branches, but it provides conditions for the existence of split-gaps. The curves Ej associated with the
three polynomial factors Ej in (51), with j = 1, 2, 3, bound the regions in the (p1, p2)-plane characterised
by different numbers of gaps and branches. Following this observation, we will classify the spectra fixing
the parameter p3 and varying p1, p2 (this is trivial as long as one is interested only in E1, E2 and E3,
which do not depend on p3, but it informs our approach in view of the full classification, when E4 and
E5 too are taken into account). In particular, we observe that the curves E1, E2 and E3 are the same that
appear in the classification of gaps and branches of the CNLS system [44,46]. Consequently, as in [44,46],
the following proposition holds:

Proposition 3. The 3WRI plane wave solutions stability spectrum S has the gaps and branches structure
described in Table below, where the symbol # stands for ‘number of’ and where E3 is as in (47c).

Regions on the (p1, p2)-plane #G #B λ-roots of PZ(0; λ)

0 < p2 < E3 and −p2 < p1 < p2 2 0 4 distinct and real
E3 < p2 < p1 and E3 < p1 2 0 4 distinct and real
E3 < p2 < −p1 and E3 < −p1 2 0 4 distinct and real
p2 > E3 and −p2 < p1 < p2 1 1 2 distinct and real, 2 complex conjugate
p1 < p2 < −p1 and p1 < 0 1 1 2 distinct and real, 2 complex conjugate
−p1 < p2 < p1 and p1 > 0 1 1 2 distinct and real, 2 complex conjugate
p2 < 0 and p2 < p1 < −p2 0 2 2 pairs of complex conjugate

The structure of the gaps depends only on p1 and p2, see (47a), (47b) and (47c). Nevertheless, because
of the relation (48), PW (0;λ) can be zero also when R(λ) = 0, namely when

λ =
p2
3(p1p3 − p2 + 1) − 1

p3 (p2
3 − 1)

. (52)

This corresponds to a double-root of PW (0;λ). Since, R(λ) is a first degree polynomial and it has real
coefficients, the equality R(λ) = 0 may be verified just in one point of the real spectrum S. Moreover,
for values of p1 and p2 varying in an interval without changing the number of gaps, this point can move
inside a gap or can coincide with the endpoint of a gap, depending on p3. In other words, we expect that
the regions in the (p1, p2)-plane in which the zero of R(λ) is inside a gap move by varying p3. A tedious
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but easy calculation reveals that when R(λ) = 0, PZ(0;λ) can be either positive or zero (see 49), (50);
we have only two possible scenarios:

1. R(λ) = 0 with PZ(0;λ) > 0: the double-zero (52) falls within a gap, namely, the spectrum features
a split-gap;

2. R(λ) = 0 with PZ(0;λ) = 0: the double-zero(52) is a triple-zero of the polynomial PW (0;λ) and it
coincides with the endpoint of a gap.

Thus, the condition for existence of a split-gap can be obtained by studying when the resultant with
respect to λ of PZ(0;λ) and R(λ) is zero, namely Resλ(PZ(0;λ),R(λ)) = 0. The expression of this
resultant contains two polynomial factors: a squared polynomial, which does not change sign and does
not correspond to any transition, while the other coincides with −E4 (see (47d)). Consequently, we have

Proposition 4. Fixing the parameter p3, the curve E4 (47d), identifies in the (p1, p2)-plane the transition
curve for the existence of split gap. In particular, fixing the values of p3, the values of the parameters p1

and p2 for which the polynomial E4 is negative correspond to regions where there is a split gap.

Proof. Recall the expressions of PZ(0;λ) and R(λ) in (49) and (50), respectively, and let τj and θ be
their roots, so that the resultant with respect to λ can be written as

Resλ(PZ(0;λ),R(λ)) = −4 p4
3(1 − p2

3)
4

4∏

k=1

(τk − θ). (53)

Let us suppose, say, τj are all real and distinct, such that we have two gaps; without loss of generality
we assume τ1 < τ2 < τ3 < τ4. If θ coincides with the end point of a gap, so that θ = τj for some j,
then the resultant (53) vanishes. If, instead, θ falls within a gap, that is τ1 < θ < τ2 < τ3 < τ4 or
τ1 < τ2 < τ3 < θ < τ4, namely if we have a split-gap, then the resultant (53) is positive. Since the
resultant can be factorised as a squared polynomial times −E4, this implies E4 < 0. Finally, if θ falls
between two gaps, that is τ1 < τ2 < θ < τ3 < τ4, then the resultant in (53) is negative, and E4 > 0.
The same argument can be straightforwardly extended to the case of two distinct real roots and of two
complex conjugate roots. �
By taking into account the regions associated with split-gaps, one has the following Proposition.

Proposition 5. Fixing the parameter p3, split-gaps exist in the regions defined as follows:
1. If −1 < p3 < 1, σ1 < p1 < σ2 and p2 > 1 − 1

p2
3
;

2. If p3 < −1 or p3 > 1, σ1 < p1 < σ2 and p2 > 1 − 1
p2
3

> 0;

where σ1 = 2
p3
3

+ p2−2
p3

− 2|p2
3−1|

√
1+(p2−1)p2

3
|p3|3 , σ2 = 2

p3
3

+ p2−2
p3

+ 2|p2
3−1|

√
1+(p2−1)p2

3
|p3|3 .

To classify gaps as p3 changes, we take advantage of the symmetries in the (p1, p2)-plane. Indeed, since
ΔλPZ(0;λ) in (51) is invariant under transformations p1 → −p1 and p2 → p2, the curves E1, E2 and
E3 are symmetric with respect to the p2-axis. The curve E4 depends also on p3, and it has symmetries
p1 → −p1, p2 → p2 and p3 → −p3. In particular, by changing p3 into −p3, the curve E4 is reflected
with respect to the p2-axis. Therefore, following Proposition 5, in order to understand the regions in
the (p1, p2)-plane associated with different numbers of gaps, branches and split gaps, it is sufficient to
consider the two cases, |p3| > 1 and 0 < |p3| < 1 (see Fig. 1).
So far we have considered the case ξ = 0 in which at least two w-roots of the characteristic polynomial
P (w;λ) coincide. Considering the λ-roots of the polynomial PZ(0;λ), this case can be summarised as
follows: 4 distinct real roots, or 2 distinct real roots and 1 double real root (2G 0B or 1G 1SG 0B); 2
distinct real roots and 2 complex conjugate roots, or 1 double root and 2 complex conjugate roots (1G
1B or 0G 1SG 1B); 2 pairs of complex conjugate roots (0G 2B), see Proposition 3.
Let us consider the polynomial PW (ξ;λ) for ξ > 0. As we have observed at the beginning of Sect. 3, this
case can be studied by analysing Q2(ξ), requiring also the inclusion of the curve E5 in the (p1, p2), for
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Fig. 1. Regions in the (p1, p2)-plane (p1 on the horizontal axis, p2 on the vertical axis) associated with different numbers
of gaps (G), branches (B) and split gaps (SG), for p3 = −0.6 (left) and p3 = 2 (right). The gap-branch topology of the
small, unlabelled region bounded by E2, E3 and E4, in the plot on the right, is 2G 0B

a fixed p3, when defining the bounding regions of different topology. In particular, the only additional
features of the spectrum S that form for ξ > 0 are closed continues curves that start and end on the real
axis. They come in two different kinds: loops and twisted loops. Loops are generated by a pair of real
λ-roots, which collide for some value of ξ > 0 and scatter into the complex plane as a pair of complex
conjugate roots, as ξ increases, to collide again on the real axis for another, larger, value of ξ. Twisted
loops are figure-eight shaped loops, self-intersecting on the real axis. The self intersection point of the
twisted loop corresponds to the double λ-root (52) and thus corresponds to the isolated point within a
split-gap (subfigure on the left of Fig. 4, Fig. 5 and subfigure on the left of Fig. 6).
Adopting the same approach as in [46], the following relations linking the number of branches, loops and
twisted loops can be derived:

#TL + 2#L + #B = #ξ+, #G + 2#SG = #ξ−, 4 − 2#L − 2#TL = #ξcc, (54)

where ξ+, ξ− and ξcc stand for the positive, negative and complex conjugate ξ-roots of the polynomial
Q2(ξ), and where the symbol # stands for ‘number of’. Moreover, since Q2(ξ) is a sixth degree polynomial,
the relation #ξ+ + #ξ− + #ξcc = 6 must be verified. This implies that, because of (54) and keeping in
mind that #TL = #SG, we have also

#SG + #G + #B = 2. (55)

Proposition 6. The different typologies of stability spectra of the 3WRI system (1) are given in the Table
below.

Finally, besides the symmetries of the curves on the (p1, p2)-plane, we observe that the polynomial Q2(ξ)
is invariant under the simultaneous transformations p1 → −p1 and p3 → −p3. This invariance, together
with the symmetry of the curve E4, which is reflected with respect to the p2-axis when p3 goes −p3, entails
that the regions of different topologies listed in Proposition 6 are simply reflected about the p2-axis on



203 Page 12 of 18 M. Romano, S. Lombardo and M. Sommacal ZAMP

Topological structures #ξ+, #ξ−, #ξcc

1G 1B 2L 5, 1, 0
1G 1B 1L 3, 1, 2
1G 1B 0L 1, 1, 4
0G 2B 2L 6, 0, 0
0G 2B 1L 4, 0, 2
0G 2B 0L 2, 0, 4
2G 0B 2L 4, 2, 0
2G 0B 1L 2, 2, 2
1G 1SG 0B 1L 1TL 3, 3, 0
0G 1SG 1B 1L 1TL 4, 2, 0
0G 1SG 1B 0L 1TL 2, 2, 2

Fig. 2. The figure on the left displays regions of different topology in the (p1, p2)-plane (p1 on the horizontal axis, p2 on
the vertical axis) for p3 = −0.6, when −4 < p1 < 4 and −4 < p2 < 4. The topology of the unlabelled region bounded
by E3 and the convex component of E5 bounding the 1G 1B 0L region is also 1G 1B 0L. If a region without a label is
reached by crossing a component of the curve E4 starting from a neighbouring region with a label, then the topology of
the region without label coincides with the topology of the region with a label that one started from, but with the number
of gaps increased by one and one twisted-loops replaced by a loop. The figure on the right displays regions of different
topology in the (p1, p2)-plane (p1 on the horizontal axis, p2 on the vertical axis) for p3 = −0.6, when −100 < p1 < 100
and −100 < p2 < 100. The topology of the very narrow region on the left, bounded by E3 and E5, is 0G 1B 1TL. In both
figures, the labels do not include the counting of the split gaps, as this always coincides with the number of twisted loops

the (p1, p2)-plane if we exchange p3 with −p3. For this reason, in view of the classification of the loops,
in Figs. 2 and 3 below, we choose one value of p3, namely p3 = −0.6.

3.2. Gain function

The solution U is linearly stable if the initial perturbation δU(x, t0) remains small as time grows, say
for t > t0. The expression of the perturbation δU is given via the matrix F in (43), where F is a linear
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Fig. 3. Regions of different topology in the (p1, p2)-plane (p1 on the horizontal axis, p2 on the vertical axis) for p3 = −0.6,
when −7 < p1 < −5 and −7 < p2 < −5. This plot is a magnification of the 0 G 2B 2 L region displayed in the previous
figure, which would otherwise be too small to be properly visualised and labelled

combination of the “Fourier-like modes ei(xkj−tωj). Let w1 and w2 denote the two eigenvalues of W such
that their difference k3 = w1 − w2 is real. For λ ∈ S, let k3 be the real eigen-wave-number and ω3 is
the corresponding eigen-frequency. Since ω3(k3) is in general complex, its imaginary part represents the
growth rate of the perturbation, which we will denote as Γ(k3). Then, if ω3(k3) is strictly real, that is
Γ(k3) = 0 for all k3 real, the system is linearly stable. On the contrary, if ω3(k3) is non-real, that is
Γ(k3) �= 0 for some k3, then the solution F , and so the perturbation δU , grows in time, leading to the
linear instability of the system. We define the gain function |Γ(k3)| as the absolute value of the growth
rate, and we say that when the gain function is positive for some values of k, then the system is linearly
unstable for those wave numbers.
The gain function can be computed by constructing an implicit relation, linking the eigen-frequencies ω
to the eigen-wave-number k. This can be obtained as follows: we start by constructing the ideal generated
by

{PW (k2;λ), PZ(ω2;λ), C(ω;σ), SZ(σ;λ)
}

where PW (k2;λ) ≡ PW (ξ;λ), PZ(ω2;λ) ≡ PZ(ζ;λ) are the polynomials of the square of the differences of
the eigenvalues of W and Z, respectively, CZ(ω;σ) = p3 ω σ+(1 + p3) ω+p2 p3−k is the Cayley-Hamilton
relation obtained from (38), and SZ(σ;λ) = σ3 + 4λσ2 +

(
5λ2 + p2 − 1

)
σ + p1 + λ

(−2 + p2 + 2λ2
)

is
the polynomial whose roots are the sums of the pairs of eigenvalues zj of Z, so that the three σ-roots are
σ1 = z2 + z3, σ2 = z3 + z1 and σ3 = z1 + z2.

We then apply the Buchberger’s algorithm to compute the Gröbner basis for the ideal (see, e.g., [49]),
so to obtain a polynomial in the new basis featuring only k and ω2. This polynomial reads as follows:

H(ω, k) =

= k4
(
ω2 − 4

) − 4k3ω
(
p1p3 + ω2 − 4

) − k2ω2
[
p2
3

(
p2
2 + 4p2 + 2ω2 − 8

) − 12p1p3 − 6
(
ω2 − 4

)]
+

+ 2kω3
{
p1p3

[
(2 − p2)p2

3 − 6
]
+ p2

3

(
p2
2 + 4p2 + 2ω2 − 8

) − 2ω2 + 8
}

+

+ ω4
{
p4
3

(
4p2 − p2

1 − 4
)

+ 2p1(p2 − 2)p3
3 + 4p1p3 − [p2(p2 + 4) − 8] p2

3 − 4
}

+
(
p2
3 − 1

)2
ω6. (56)
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Fig. 4. Stability spectrum (left) with 1 G 1SG 0B 1 L 1TL, obtained for p1 = −90, p2 = 60, p3 = −0.6 and its associated
gain function (right). As it is always observed numerically in the case of stability spectra with twisted-loops and split-
gaps, the gain function features a nonzero component in the neighbourhood of the zero wave-number. The passband-type
instability is associated with the presence of a loop in the stability spectrum

Fig. 5. Zoom-in of the twisted-loop and split-gap in the stability spectrum with 1G 1SG 0B 1L 1TL, obtained for p1 = −90,
p2 = 60, p3 = −0.6, as displayed in Fig. 4

For a fixed eigen-wave-number k3, the three ω-roots of

H(ω, k3) = 0

are the three possible values of the eigen-frequency ω3. The multi-valuedness of ω3(k3) results from the
polynomial of the square of the differences PW (ξ;λ) being of degree six, and thus entailing six values
of λ for a given k3. By writing the equations for the real and imaginary part of ω in H(ω, k) = 0, and
of λ in P(k2, λ), one obtains a system of four real equations for four real unknowns. By analysing this
latter system, it is then possible to show that, if p1, p2 and p3 are such that Ej �= 0, j = 1, 2, 3, then the
imaginary part of ωj is zero, for j = 1, 2, 3 and for all k > 0, only if the imaginary part of λ is zero for
all k (see [48] for details). This leads to the following Proposition:

Proposition 7. For a generic choice of p1, p2 and p3 (i.e. such that Ej �= 0), the plane wave solution of
the 3WRI system (1) is linearly unstable.
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Fig. 6. Stability spectrum (left) with 0 G 1SG 1B 0L 1TL obtained for p1 = −4, p2 = 2, p3 = −0.6 and its associated gain
function (right). As it is always observed numerically in the case of stability spectra with twisted-loops and split-gaps, the
gain function features a nonzero component in the neighbourhood of the zero wave-number. The baseband-type instability
is associated with the presence of a branch in the stability spectrum

Fig. 7. Stability spectrum (left) with 2B 0G 0L obtained for p1 = 0, p2 = −8/3, p3 = 3/5 and its associated gain function
(right). The baseband-type instability featured by the gain function corresponds to the existence of two branches in the
spectrum

4. Conclusions

We provide a classification of the stability spectra for the 3WRI system in the parameters space, and for
each spectrum, we give the associated gain function. We find that for a generic choice of the parameters
p1, p2 and p3, the plane wave solution of the 3WRI system is linearly unstable (see Proposition 7). The
parameters pj are related to the physical parameters (amplitudes aj , velocities cj and signs sj , j = 1, 2, 3)
via the formulae (34) (Figs. 4, 5, 6).
In analogy to the CNLS system where baseband MI is believed to be a sufficient and necessary con-
dition for the onset of rogue wave-type localised peaks [27,28,50], we speculate that linear instability
of baseband type can be a necessary condition for the same phenomenology in the 3WRI system, that
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is, the linear stability analysis of the system provides information about its subsequent nonlinear evo-
lution. For instance, the plane wave solution used as a seed in the Darboux transformation generating
the bright-dark-bright rogue wave triplet in the middle column of Figure 15 in [51], corresponds to a
stability spectrum of 2B 0G 0L type (see Fig. 7), p1 = 0.0, p2 = −8/3 and p3 = 3/5, i.e., c1 = 4, c2 = 1,
a1 = 1/2

√
3, a2 = 2/

√
3 and s1 = s3 = −s2. Along this line, we have carried out preliminary numer-

ical tests by numerically integrating, via the method of lines, the initial value problem from perturbed
plane waves with different kinds of perturbations at time t = 0. We observe that, when the plane waves
solution is associated with a spectrum that does not feature branches or twisted loops, namely when the
gain function has only passband components, a random perturbation develops as a wave train. On the
contrary, if the corresponding spectrum features at least one branch and no twisted loops, namely if the
gain function has a baseband component, then a random perturbation develops as a series of space-time
localised coherent structures. Finally, if the corresponding spectrum features a twisted loop, we observe
that the gain function has neither a baseband nor a passband component, being nonzero in the neigh-
bourhood of the zero wave number. In this case, we consistently observe blow up at finite time in our
numerical explorations. All this phenomenology, in particular the connection between twisted loops in
the spectrum, blow-ups and explosive instability will be matter of future investigations.
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