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1. Introduction

In this paper, we consider the following simplified version of Ericksen–Leslie system modeling the
hydrodynamic flow of stationary compressible nematic liquid crystals in R

3( [8,12])
⎧
⎪⎨

⎪⎩

div(ρu) = 0,
div(ρu ⊗ u) − μΔu − (λ + μ)∇divu + ∇P (ρ) = −Δd · ∇d,

u · ∇d = Δd + |∇d|2d,

(1.1)

where ρ, u and d denote the density, the velocity field and the macroscopic average of the nematic liquid
crystal orientation field, respectively. The shear viscosity coefficient μ and the bulk viscosity coefficient λ
satisfy the physical conditions: μ > 0, 2μ + 3λ > 0. The P (ρ) is the pressure, which satisfies the so-called
γ-law:

P (ρ) = aργ with a > 0, γ > 1, (1.2)

where a is a physical constant and γ is the adiabatic exponent.
When ∇d = 0, the system (1.1) simplifies to the stationary Navier–Stokes equations, and significant

progress has been made in studying the Liouville-type problems associated with these equations.
For the stationary incompressible Navier–Stokes equations:

{
u · ∇u − Δu + ∇P = 0,

divu = 0.
(1.3)

A well-known result on the Liouville theorem is presented in G.Galdi’s book [9]. Galdi established that

if u ∈ L
9
2 (R3), then it holds that u = 0. Later, Chae showed an interesting result in [3], stating that

the condition Δu ∈ L
6
5 (R3) is sufficient for u = 0 in R

3. Furthermore, G.Seregin [18] provided an
improved condition u ∈ L6(R3) ∩ BMO−1. Recently, Chae-Wolf [4] building upon a refined Caccioppoli-
type inequality, achieved a logarithmic enhancement of the Liouville result, under the assumption that:

N(u) :=
∫

R3

|u| 92 {ln(2 + 1/|u|)}−1dx < ∞.
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There exist numerous significant results concerning Liouville-type results in the study of incompressible
fluids, we can refer to [5,11,18,21] and the references therein.

For stationary compressible Navier–Stokes equations:
⎧
⎪⎨

⎪⎩

div(ρu) = 0,
div(ρu ⊗ u) − μΔu − (λ + μ)∇divu + ∇P (ρ) = 0,
P (ρ) = aργ , a > 0, γ > 1.

(1.4)

Chae [2] was the first to establish Liouville-type results for stationary solutions in the context of the
compressible Navier–Stokes equations in R

d, d ≥ 2. He demonstrated that if the smooth solution (ρ, u)
satisfies:

⎧
⎪⎨

⎪⎩

‖ρ‖L∞(Rd) + ‖∇u‖L2(Rd) + ‖u‖
L

d
d−1 (Rd)

< ∞, when d ≤ 6,

‖ρ‖L∞(Rd) + ‖∇u‖L2(Rd) + ‖u‖
L

d
d−1 (Rd)

+ ‖u‖
L

3d
d−1 (Rd)

< ∞, when d ≤ 7,

then the system (1.4) only have a trivial solution that u = 0, ρ = constant. Later, Li and Yu in their
work [14] got the same conclusion under the condition

‖ρ‖L∞(Rd) + ‖u‖
L

d
d−1 (Rd)

+ ‖u‖
L

3d
d−1 (Rd)

< ∞, d ≥ 2.

Owing to L
9
2 (R3) ↪→ L

9
2 ,∞(R3), Zhong in [22] used the Lorentz space properties to improve the result of

Li and Yu [14], here he assumed that

‖ρ‖L∞(R3) + ‖∇u‖L2(R3) + ‖u‖
L

9
2 ,∞

(R3)

< ∞.

However, to further weaken the condition u ∈ L
9
2 (R3), Li and Niu [15] proved a Liouville-type theorem

by deriving an a priori estimate that

μ

∫

|x|≤R

|∇u|2dx +
(λ + μ)

2

∫

|x|≤R

|divu|2dx

≤ C(R
1
2− 3

p ‖u‖Lp,q(R≤|x|≤2R) + R
1− 6

p ‖u‖2
Lp,q(R≤|x|≤2R) + R

2− 9
p ‖u‖3

Lp,q(R≤|x|≤2R)).

under the hypotheses

‖ρ‖L∞(R3) + ‖∇u‖L2(R3) + ‖u‖Lp,q(R3) < ∞,

where 3 < p < 9
2 , 3 ≤ q ≤ ∞ or p = q = 3. In the case of p ≥ 9

2 , additional conditions are required:

lim inf
R→∞

R
2
3− 3

p ‖u‖Lp,q(R≤|x|≤2R) < ∞, lim inf
R→∞

R
2− 9

p ‖u‖3
Lp,q(R≤|x|≤2R) < δ

∫

R3

|∇u|2dx,

where δ is a sufficiently small positive constant. These conditions are derived from the ideas presented in
the works [11] and [19].

Now, we study the Liouville-type theorems for compressible nematic liquid crystal equations in R
3,

which have limited existing results and can be regarded as the Navier–Stokes system with the external
force −Δd·∇d. When u = 0, (1.1)3 represents the heat flow of the harmonic map, we present the following
results:

Theorem 1.1. Let (ρ, u, d) be a smooth solution to (1.1)–(1.2) with ρ ∈ L∞(R3) and (u,∇d) ∈ L
9
2 ,q(R3)

(0 < q < ∞). Then, u = 0, ρ = constant, and d satisfies the harmonic map equation of

Δd + |∇d|2d = 0. (1.5)
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Theorem 1.2. Let d: R3 → S
2 be a solution of (1.5), and ∇d ∈ Lp(2 ≤ p ≤ 3), then d is a constant map.

Remark 1.3. [11] Based on Lebesgue’s dominated convergence theorem, we know when h ∈ L
9
2 ,q , then

limR→∞ ‖h‖
L

9
2 ,q

(R≤|x|≤2R)

= 0(0 < q < ∞), but we do not know whether

lim
R→∞

‖h‖
L

9
2 ,∞

(R≤|x|≤2R)

= 0.

Such as h ∈ C∞(R3) and behaves like

|h(x)| = O(|x|−2/3), as|x| → ∞.

Combining the definition of weak norm, we get that h(x) ∈ L
9
2 ,∞ , but

‖h(x)‖
L

9
2 ,∞

(R≤|x|≤2R)

= sup
α>0

α|{|h(x)| > α, x ∈ [R, 2R]}|2/9

≥ O(1)|h(2R)| · ((2R)3)2/9

= O(1).

Remark 1.4. When studying the harmonic mapping from an open subset of R3 into a sphere S
2, various

results have been obtained under certain geometric conditions. For instance, Choi [6] demonstrated that
if the image of the harmonic map d lies in a hemisphere, then d is a constant map. Additionally, Jin [17]
proved that when ∇d decays rapidly with respect to spatial variations, the Liouville theorem for d can be
derived. Taking inspiration from their work, we speculate that if d decays rapidly at infinity, a Liouville
theorem for d may also be established. Therefore, by combining the techniques proposed in [7,16,20] for
minimizing the energy functional of harmonic mappings, we can obtain the Liouville theorem for d under
the condition ∇d ∈ Lp(2 ≤ p ≤ 3).

Remark 1.5. When d is a constant vector, Theorem 1.1 can be viewed as an extension of the works
presented in [15] and [22].

The rest of this paper is organized as follows: In Sect. 2, we prepare some elementary facts, which are
important for the proof. Finally, we will give the proofs of Theorem 1.1 and Theorem 1.2.

2. Preliminaries

We will recall some definitions and lemmas that will be used later.

Definition 2.1. Given 1 ≤ p < ∞, 1 ≤ q < ∞, the Lorentz space Lp,q(R3) consists of all measurable
functions f for which the quantity

‖f‖Lp,q(R3) :=

⎧
⎪⎨

⎪⎩

(
∞∫

0

tq−1|{x ∈ R
3 : |f(x)| > t}|

q
p dt)

1
q , q < +∞,

supt>0t|{x ∈ R
3 : |f(x)| > t}|

1
p , q = +∞,

is finite.

Lemma 2.1. [10,13] Let 1 < p < ∞ and 1 ≤ s ≤ ∞ with 1
p′ + 1

p = 1 and 1
s′ + 1

s = 1. Then, pointwise
multiplication is a bounded bilinear operator:
(i) from Lp,s(R3) × L∞(R3) to Lp,s(R3);
(ii) from Lp,s(R3) × Lp′,s′

(R3) to L1(R3);
(iii) from Lp1,s1(R3) × Lp2,s2(R3) to Lp,s(R3) for 1 < p1, p2 < ∞ with 1

p = 1
p1

+ 1
p2

and 1 ≤ s1, s2 ≤ ∞
with s = min{s1, s2}.
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Lemma 2.2. [11] Let 1 ≤ r < ∞, 1 ≤ s ≤ ∞ and f ∈ Lr,s(R3). For a parameter R > 0, we put

fR(x) = f( x
R ). Then, it holds that ‖fR‖Lr,s = R

3
r ‖f‖Lr,s .

Lemma 2.3. [14] Let P ∈ L∞(R3), p1 ∈ Lr1(R3), p2 ∈ Lr2(R3) with 1 ≤ r1, r2 < ∞. Assuming that
P −p1 −p2 is weakly harmonic, that is Δ(P −p1 −p2) = 0 in the sense of distribution, there is a constant
c such that P − p1 − p2 = c, for a.e. x ∈ R

3.
If more P (x) ≥ 0 a.e., then we get c ≥ 0 too.

Lemma 2.4. [1] Let Ω be a bounded domain in R
n, 1 < p < ∞, 1 < q ≤ ∞ and f ∈ Lp,q(Ω). Then,

‖∇2(−Δ)−1f‖Lp,q(Ω) ≤ C‖f‖Lp,q(Ω),

where the constant C > 0 is independent of Ω.

3. The proof of Theorem 1.1

Let φ ∈ C∞
c (R3) be a radial cutoff function such that

φ(|x|)
{

= 1, |x| < 1,
= 0, |x| ≥ 2.

For each R > 0, let

φR(|x|) � φ(
|x|
R

). (3.1)

Moreover, there exists a constant C independent on R and k = 0, 1, 2, 3 on R
3 such that

|∇kφR| ≤ C

Rk
. (3.2)

Firstly, taking the inner product of (1.1)2 with uφ2
R and integrating by parts over R

3, we get

μ

∫

R3

|∇u|2φ2
Rdx + (λ + μ)

∫

R3

|divu|2φ2
Rdx

=μ

∫

R3

|u|2(φRΔφR + |∇φ2
R|)dx − 2(λ + μ)

∫

R3

divu(u · ∇φR · φR)dx

−
∫

R3

∇P · uφ2
Rdx −

∫

R3

ρ(u · ∇u)φ2
Rdx −

∫

R3

Δd · ∇d · uφ2
Rdx.

(3.3)

Similarly, taking the inner product of (1.1)3 with (Δd + |∇d|2d)φ2
R, we have

∫

R3

|Δd + |∇d|2d|2φ2
Rdx =

∫

R3

(u · ∇d)(Δd + |∇d|2d)φ2
Rdx. (3.4)
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Combining (3.3) and (3.4) yields

μ

∫

R3

|∇u|2φ2
Rdx + (λ + μ)

∫

R3

|divu|2φ2
Rdx +

∫

R3

|Δd + |∇d|2d|2φ2
Rdx

= μ

∫

R3

|u|2(φRΔφR + |∇φ2
R|)dx − 2(λ + μ)

∫

R3

divu(u · ∇φR · φR)dx

−
∫

R3

∇P · uφ2
Rdx −

∫

R3

ρ(u · ∇u)uφ2
Rdx −

∫

R3

Δd · ∇d · uφ2
Rdx

+
∫

R3

(u · ∇d)(Δd + |∇d|2d)φ2
Rdx

�
6∑

i=1

Ji(t).

(3.5)

Secondly, we will estimate Ji one by one. It follows from Lemma 2.1, Lemma 2.2 and (3.2) that

J1 ≤C(μ)
∫

R≤|x|≤2R

|u|2(|φRΔφR| + |∇φ2
R|)dx

≤ CR−2‖|u|2‖
L

9
4 ,

q
2 (R≤|x|≤2R)

‖1‖
L

9
5 ,

q
q−2 (R≤|x|≤2R)

≤ CR−2+
5
3 ‖u‖2

L
9
2 ,q

(R≤|x|≤2R)

≤ CR−1
3 ‖u‖2

L
9
2 ,q

(R≤|x|≤2R)

→ 0 as R → ∞.

(3.6)

The estimate of J2 is similar to that of J1 and we get

J2 = − 2(λ + μ)
∫

R3

divu(u · ∇φR · φR)dx

≤ C(λ + μ)R−1

∫

R≤|x|≤2R

|φRdivu||u|dx

≤ C(λ + μ)R−1‖u‖
L

9
2 ,q

(R≤|x|≤2R)

‖φRdivu‖L2,q(R≤|x|≤2R)‖1‖
L

18
5 ,

q
q−2 (R≤|x|≤2R)

≤ (λ + μ)
4

‖φRdivu‖2
L2,q(R≤|x|≤2R) + CR−1

3 ‖u‖2

L
9
2 ,q

(R≤|x|≤2R)

→ (λ + μ)
4

‖φRdivu‖2
L2,q(R≤|x|≤2R) as R → ∞.

(3.7)

As for J3, we incorporate some ideas from [14]. Taking divergence on both sides of (1.1)2, we get

Δ(P − p1 − p2) = 0,

where

p1 � (−Δ)−1∂i∂j(ρuiuj), p2 � (λ + 2μ)divu − ∂id · ∂jd. (3.8)

According to Lemma 2.3, there exists a nonnegative constant c such that

aργ = P = c + p1 + p2, a.e x ∈ R
3.
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Setting

P1 � ργ−1 − (
c

a
)

γ−1
γ = (

c + p1 + p2

a
)

γ−1
γ − (

c

a
)

γ−1
γ . (3.9)

By combining (1.2) and (3.9), we can deduce that

∇P = ∇(aργ) =
aγ

γ − 1
ρ∇(ργ−1) =

aγ

γ − 1
ρ∇P1,

and

|P1ρ| ≤ C(a, ‖ρ‖L∞)(|p1| + |p2|). (3.10)

Therefore, by applying integration by parts and combining (1.1)1 and (3.10), we can conclude that

J3 = −
∫

R3

∇P · uφ2
Rdx

= −
∫

R3

aγ

γ − 1
ρ∇P1 · uφ2

Rdx

= 2
aγ

γ − 1

∫

R3

P1ρu · φR∇φRdx

≤ C(a, γ)R−1

∫

R3

|P1ρ||u||φR|dx

≤ C(a, γ, ‖ρ‖L∞)R−1

∫

R3

(|p1||u| + |p2||u|)|φR|dx

�I1 + I2.

(3.11)

By ρ ∈ L∞, Lemma 2.1, Lemma 2.2 and Lemma 2.4, we get that

I1 ≤ C(a, γ, ‖ρ‖L∞)R−1‖p1‖
L

9
4 ,

q
2 (R≤|x|≤2R)

‖u‖
L

9
2 ,q

(R≤|x|≤2R)

‖1‖
L

3,
q

q−3 (R≤|x|≤2R)

≤ C‖(−Δ)−1∂i∂jρuiuj‖
L

9
4 ,

q
2 (R≤|x|≤2R)

‖u‖
L

9
2 ,q

(R≤|x|≤2R)

≤ C‖u‖3

L
9
2 ,q

(R≤|x|≤2R)

→ 0 as R → ∞.

(3.12)

and

I2 ≤C(a, γ, ‖ρ‖L∞)R−1

∫

R3

(λ + 2μ)|divu||u||φR| + |∂id · ∂jd||u||φR|dx

≤C(a, γ, μ, ‖ρ‖L∞)R−1

∫

(R≤|x|≤2R)

(|φRdivu||u| + |∇d|2|u|)dx

≤CR−1‖φRdivu‖L2,q(R≤|x|≤2R)‖u‖
L

9
2 ,q

(R≤|x|≤2R)

‖1‖
L

18
5 ,

q
q−2 (R≤|x|≤2R)

+ CR−1‖∇d‖2

L
9
2 ,q

(R≤|x|≤2R)

‖u‖
L

9
2 ,q

(R≤|x|≤2R)

‖1‖
L3,

q
q−3 (R≤|x|≤2R)

≤CR−1
6 ‖φRdivu‖L2,q(R≤|x|≤2R)‖u‖

L
9
2 ,q

(R≤|x|≤2R)

+ C‖∇d‖2

L
9
2 ,q

(R≤|x|≤2R)

‖u‖
L

9
2 ,q

(R≤|x|≤2R)
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≤ (λ + μ)
4

‖φRdivu‖2
L2,q(R≤|x|≤2R) + CR−1

3 ‖u‖2

L
9
2 ,q

(R≤|x|≤2R)

+ C‖∇d‖2

L
9
2 ,q

(R≤|x|≤2R)

‖u‖
L

9
2 ,q

(R≤|x|≤2R)

→ (λ + μ)
4

‖φRdivu‖2
L2,q(R≤|x|≤2R) as R → ∞. (3.13)

As for J4, integrating by parts and utilizing (1.1)1, Lemma 2.1 and Lemma 2.3, we get the following
results that

J4 = −
∫

R3

ρu · ∇u · uφ2
Rdx

= − 1
2

∫

R3

ρu · ∇|u|2 · φ2
Rdx

=
1
2

∫

R3

div(ρu)|u|2 · φ2
R + ρ|u|3 · ∇(φ2

R)dx

=
∫

R3

ρ|u|3 · φR∇φRdx

≤CR−1‖|u|3‖
L

3
2 ,

q
3 (R≤|x|≤2R)

‖1‖
L

3,
q

q−3 (R≤|x|≤2R)

≤C‖u‖3

L
9
2 ,q

(R≤|x|≤2R)

→ 0 as R → ∞.

(3.14)

For the estimation of J5 + J6, direct computation yields

J5 + J6 = −
∫

R3

Δd · ∇d · uφ2
Rdx +

∫

R3

(u · ∇d)(Δd + |∇d|2d)φ2
Rdx

=
∫

R3

u · ∇d · d|∇d|2dφ2
Rdx

=
1
2

∫

R3

u · ∇|d|2|∇d|2dφ2
Rdx

= 0,

(3.15)

where we have used |d| = 1. Inserting (3.6), (3.7), (3.11), (3.12), (3.13), (3.14) and (3.15) into (3.5), we
deduce that

μ

∫

R3

|∇u|2dx + (λ + μ)
∫

R3

|divu|2dx +
∫

R3

|Δd + |∇d|2d|2dx = 0.

Since μ > 0, 2μ + 3λ > 0 and taking ‖u‖L6 ≤ ‖∇u‖L2 into consideration, yields

u = 0, Δd + |∇d|2d = 0.

Now, based on (1.1)2 and |d| = 1, the pressure P satisfies

∇P = −Δd∇d = |∇d|2d∇d

=
1
2
|∇d|2∇|d|2

= 0.



216 Page 8 of 10 J. Zhang, S. Wang and F. Wu ZAMP

Thus, we have showed that ρ = constant and finished the proof of Theorem 1.1.

4. The proof of Theorem 1.2

By [7], we know that a function d ∈ H1(R3;S2) is a weakly harmonic mapping of R3 into S
2 provided:

− Δd = |∇d|2d in R
3, (4.1)

now the solution d of this Euler–Lagrange equation satisfies the minima of the energy function

E(d) =
∫

|∇d|2dy. (4.2)

This system (4.1) is to hold in the weak sense, that is,
∫

R3

∇d : ∇wdx =
∫

R3

|∇d|2d · wdx, (4.3)

for each test function w ∈ H1(R3)∩L∞(R3) having compact support, which shows that d is stationary with
respect to variations of the target S2. So the stationary mapping d satisfies the monotonicity inequalities

1
r

∫

B(x,r)

|∇d|2dy ≤ 1
R

∫

B(x,R)

|∇d|2dy, (4.4)

for all concentric balls B(x, r) ⊂ B(x,R) ⊂ R
3, which was apparently first proved by Price [16]. By (4.4),

thus we have

(
1
r

− 1
R

)
∫

B(x,r)

|∇d|2dy ≤ 1
R

∫

BR\Br

|∇d|2dy. (4.5)

Now we observe that by ∇d ∈ Lp and Hölder inequality

1
R

∫

BR\Br

|∇d|2dy ≤ 1
R

⎛

⎜
⎝(

∫

BR\Br

|∇d|pdy)
2
p · (R3 − r3)

2
q

⎞

⎟
⎠ ≤ CR

6
q −1(

∫

BR\Br

|∇d|pdy)
2
p , (4.6)

where p, q are positive values satisfying 2
p + 2

q = 1 and 6
q − 1 ≤ 0. Now, we can establish the following

result:

6 ≤ q, 2 ≤ p ≤ 3.

When R → ∞, together with (4.5) and (4.6), which leads to

1
r

∫

B(x,r)

|∇d|2dy ≤ C(
∫

R3\Br

|∇d|pdy)
2
p .

Because of the monotonicity of u, implies that

1
r

∫

B(x,r)

|∇d|2dy ≤ lim
r→∞

1
r

∫

B(x,r)

|∇d|2dy ≤ lim
r→∞ C(

∫

R3\Br

|∇d|pdy)
2
p = 0.

So ∇d ≡ 0 and d is a constant map. This completes the proof of Theorem 1.2.
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