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Abstract. In this paper, the He–Elzaki transform method (HEM) is proposed. The method is formulated by combining
He’s variation iteration method and the modified Laplace transform, known as the Elzaki integral transform. This method
is designed to solve the time-fractional telegraph equation that arises in electromagnetics. The Caputo sense is used to
describe fractional derivatives. One of the advantages of this method is that the computation of the Lagrange multiplier
is not necessarily required through the convolution theorem or integration in recurrence relations. Additionally, to reduce
nonlinear computational terms, He’s polynomial is determined using the homotopy perturbation method. The proposed
method is applied to several examples of nonlinear fractional telegraph equations. The results obtained from these exam-
ples demonstrate that the proposed method is an efficient technique that facilitates the process of solving time-fractional
differential equations.
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1. Introduction

Differential equations of fractional orders can be used to simulate phenomena in various scientific disci-
plines, thereby enhancing our understanding of natural phenomena across a wide range of fields, including
engineering, electronics, biology, business, computer science, and physics. Throughout history, notable sci-
entists such as Bernoulli, Liouville, Euler, L’Hopital, and Wallis have made substantial contributions to
the development of fractional calculus, furthering our understanding of these equations. However, due
to the inherent challenges in finding exact and analytical solutions for fractional differential equations,
numerical methods are employed to study and analyze these solutions.

Since its invention by Heaviside in 1880, telegraph equations have been used to solve a wide variety
of issues in numerous scientific areas. In addition to their applications in the study of wave propagation
in cable transmission, wave phenomena, and electric signals, the proposed equation is also applied in the
fields of telephone lines, wireless signals, and radio frequency [1].

The distance and time of electric transmissions with current and voltage are described by the telegraph
equation [1]. Through the use of several numerical and analytical techniques, including the Adomian
decomposition method, telegraph equations of fractional orders were solved (ADM) in [2], He’s homotopy
perturbation method (HPM) [3], Laplace transforms combined with HPM [4], and the reduced differential
transform technique [5]. Chebyshev tau method is used to solve the hyperbolic telegraph equation [6].
The variation iteration method is used to find the solution to the proposed problem and obtained the
same result as obtained by (ADM) with fewer computations [7], explicit finite difference method [8], and
the modified Adomian decomposition method (MADM) [9]. A novel enhanced variation iteration Laplace
transform approach is applied to time-fractional differential equations [10].
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The homotopy perturbation method (HPM) is another important semi-analytical technique for solving
differential equations [11–13]. It is an efficient technique for studying various types of nonlinear functional
equations. Volterra–Fredholm nonlinear systems were solved by HPM [14], also hyperbolic PDEs [15], and
Zakharov–Kuznetsov [16], and a system of nonlinear differential equations [17] are solved by HPM.

The solutions to both integer- and fractional-order linear and nonlinear differential equations have been
extensively described over the past decade. Methods such as Laplace Adomian decomposition method,
Laplace homotopy perturbation method, and more recently, the Elzaki homotopy transformation pertur-
bation method have been employed to solve various problems, including a family of differential equations
[18], spatial diffusion of biological population [19], nonlinear oscillators [20], and system of linear and
nonlinear PDEs of fractional orders [21]. The solution of the fractional telegraph equation is examined in
this study using the Elzaki transform together with a novel variation iteration method and homotopy per-
turbation method. The fractional reduced differential transform technique is utilized to solve differential
equations with fractional and integer orders in [22–26]. The Adomian decomposition Sumudu transform
approach is employed to solve differential equations with fractional and integer orders in [27–29].

Elzaki integral transform is a modification of the Laplace and Sumudu transforms which was invented
by Tarig [30], and Elzaki transformation is an efficient and powerful technique that has found the exact
solutions to several differential equations which cannot be solved by Sumudu transform [31]. Elzaki
integral equation is a powerful and efficient technique that has been used to solve many differential
equations of integer and fractional orders; see [32–39].

The objective of this paper is to expand the applications of HEM and illustrate the efficiency of the
proposed method. Therefore, we consider the fractional telegraph equation

Nanoelectromechanical systems have a significant impact on detection and actuation. However, the
design of nanoelectromechanical processes is adversely affected by nonlinearity. Noise, response instabil-
ity, and bifurcation phenomena are characteristics of the complicated behaviors of nonlinear vibration
systems. Consequently, it is crucial to manage nonlinear vibrations in nanoelectromechanical systems to
produce stable vibrations.

∂βu

∂xβ
+ K

∂αw

∂tα
+ Jw = 0 (1)

∂βw

∂xβ
+ M

∂αr

∂tα
+ Lu = 0. (2)

By differentiating Eq. (1) with respect to time t and Eq. (2) with respect to position x, and subsequently
solving the resulting system, we obtain the following equations:

Differentiate Eq. (1) concerning t and (2) concerning x, then solving the system, the following equation
is obtained as

∂2βw

∂x2β
+ R

[
−K

∂αw

∂tα
− Jw

]
+ L

[
−K

∂2αw

∂t2α
− J

∂αw

∂tα

]
= 0

Assume that ε = L
M ε = J

K δ2 = 1
MK substituting these values in the above equation, we obtain

∂2αw

∂t2α
+ (ε + ε)

∂αw

∂tα
+ εεw = δ2

∂2βw

∂x2β
(3)

Equation (3) is a telegraph equation which arises in electromagnetic waves.

2. Preliminaries

In this section, we introduce some definitions and properties of fractional calculus and the Elzaki trans-
form, which are used in this article.
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Definition 2.1. [40] A real-valued function g (y) , y > 0 is belong to the space Cσ, σ ∈ R if there exists
at least a real number d > σ, such that g (y) =ydg1(y) where g1(y) ∈ C(0,∞) and it is said to be in the
space Cn

σ if gn∈Rσ, n ∈ N

Definition 2.2. [41] The function f (u) is called Riemann–Liouville fractional integral of order α > 0 if it
defines as:

Jαf (w) =
1

Γ (α)

w∫
0

(w − t)α−1
f (t) dt, t > 0

In particular, J0f (w) = f (w)
For θ ≥ 0 andϑ ≥ −1, some properties of the operator Jα

1. JαJθf (w) = Jα+θf (w)
2. JαJθf (w) = JθJαf (w)
3. Jαyϑ = Γ (ϑ+1)

Γ (α+ϑ+1)y
α+ϑ.

Definition 2.3. [41] The function f ∈Cn
−1, n ∈ N, is called Caputo fractional derivative if it defines as

Dαf (w) =
1

Γ (n − α)

w∫
0

(w − t)n−α−1
fn (t) dt, n − 1 < α ≤ n

Definition 2.1. [42] The Elzaki transform of the function f(u) is defined as:

E [f (w)] = T (v) = v

∞∫
0

f (w) e
−u
v dw u > 0.

The Laplace transform of the Caputo fractional derivative has the form

L [Dα
x g (x,w)] = sαG (s) −

n−1∑
i=0

sα−1−ig(i) (x, 0) n − 1 < α ≤ n (4)

where G (s) represents the Laplace transform of g (x)
The Elzaki form of the Caputo operators is as follows [33]:

E [Dα
x g (x,w)] =

G (s)
sα

−
n−1∑
i=0

s2−α+ig(i) (x, 0) n − 1 < α ≤ n (5)

3. He–Elzaki method (HEM)

To obtain the constrained recurrence relation needed to define the Lagrange multiplier, the Elzaki trans-
form for fractional differential equations is employed in this letter. The integral computation and the
convolution terms are avoided using this method. Elzaki transform’s constraints on nonlinear compo-
nents require the usage of the HPM to reduce calculations. The novel and altered strategy are built up
as follows:

The Lagrange multiplier is identified by multiplying the Elzaki transform of the proposed differential
equation by the Lagrange multiplier, which is performed using a variational approach. The suggested
problem’s nonlinear terms are calculated using the Adomain polynomial, and the series solution is then
discovered using the well-known homotopy perturbation approach.

To clarify the implementation of our modified method, consider the following nonlinear equation.

Rw − Nw − m = 0. (6)
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Applying the Elzaki transform, we have

E[Rw − Nw − m] = 0.

Now, we take the Lagrange multiplierμ(v)

μ (v) {E [Rw − Nw − m]} = 0

Here, we can have the following recurrence relation:

Wj+1 (v) = Wj (v) + μ (v) {E [Rw − Nw − m]} (7)

The recurrence relation reflects the modified Elzaki variant, and we use the following relation to incor-
porate the Lagrange multiplier μ (v) while applying the optimal condition

ρWj+1 (v)
ρWj (v)

= 0.

Now, taking the inverse of Elzaki transform of Eq. (7) to achieve the solution of Eq. (3)

wj+1 (v) = wj (v) + E−1 [μ (v) {E [Rwj ] − E[Aj + m]}] . j = 0, 1, 2, 3, . . .

where Aj represents the Adomian polynomial as follows:

Aj =
1
j!

dj

dτ j

⎛
⎝N

⎛
⎝ ∞∑

j=0

ujτ
j

⎞
⎠

⎞
⎠ . (8)

Finally, to investigate the series approximate solution the homotopy perturbation method is considered
by equating the powers of the embedded parameter p

4. Homotopy perturbation method (HPM)

In this section, we study the concept of HPM for the solution to our problem. Consider the following
differential equation

Rw − Nw = m (9)

where m represents a source term, R and N represent linear and nonlinear operators, respectively, and
w represents the solution function.

According to Homtopy theoryH (u, p), H (u, p) : R × [0, 1] → R that satisfies the equation

H (u, p) = (1 − p) [R (u) − R (u0)] + p [R (u) − N (u) − m] = 0

Using simple calculations, we obtain

R (u) − pN (u) = m (10)

where the embedding parameter p ∈ [0, 1], and u0 represents the initial approximation of the solution of
Eq. (3); further, w is the homotopy function with R (w0) = m.

Thus, w can be written as:

u = lim
p→1

(u0 + pu1 + p2u2 + . . .) (11)

Using (10) and (11), we have

u0 + pu1 + p2u2 + p3u3 . . . = m + pN (u)

Equating the powers of p can be written as follows:

p0 : u0 = m,

p1 : u1 = N (u0) ,
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p2 : u2 = u1N
′
(u0),

p3 : u3 = N
′
(u0) +

u2
1N

′′
(u0)

2
,

...

Finally, as p approach to 1 the approximate solution of (3) is

w = u0 + u1 + u2 + u3 . . . . (12)

5. Applications

The effectiveness and precision of the novel method for solving the telegraph equation are verified using
numerical patterns. We use several examples to explain our modification approach to the suggested
problem for this aim.

Example 5.1. Consider the following nonlinear telegraph equation of fractional order 0 < α ≤ 1

∂2α

∂t2α
z(x, t) = −z2(x, t) − ∂α

∂tα
z(x, t) + zxx(x, t) + f(x, t), tx ≥ 0, (13)

with the initial conditions z (x, 0) = x − x2, zt (x, 0) = 0. The exact solution of the Eq. (13) when α = 1
is

z (x, t) = (x − x2)(t3 + 1).

Assume that f (t, x) =
(
x − x2

) (
6t3−2α

Γ (4−2α) + 6t3−α

Γ (4−α) +
(
t3 + 1

) (
x − x2

))
+ 2(t3 + 1).

Taking the Elzaki transform of Eq. (13)

E

[
∂2αz(x, t)

∂t2α
+

∂αz (x, t)
∂tα

− ∂2z (x, t)
∂x2

+ z2 (x, t) + f(x, t)
]

= 0.

Now, we multiply both sides of above equation by μ(v)

μ(v)E
[
∂2αz(x, t)

∂t2α
+

∂αz (x, t)
∂tα

− ∂2z (x, t)
∂x2

+ z2 (x, t) + f(x, t)
]

= 0.

The recurrence relation has the following form

Zj+1 (x, v) = Zj (x, v) + μ (v)E

[
∂2αzi(x, t)

∂t2α
+

∂αzi(x, t)
∂tα

− ∂2zi(x, t)
∂x2

+ z2i (x, t)
]

. (14)

Taking the variation of the above equation and using Elzaki property (5), we obtain

ρZj+1 (x, v) = ρZj (x, v) + μ (v) ρ

{
Zj (x, v)

v2α
− v2−2αẐj (x, 0) − v3−2α ∂αẐj (x, 0)

∂t

−E

[
∂αẑj (x, t)

∂tα
− ∂2ẑj (x, t)

∂x2
+ ẑ2j (x, t)

]}
. (15)

ρZj+1 (x, v) = ρZj (x, v) +
1

v2α
μ (v) ρZj (x, v)

The variables ẑj = ẑj (x, 0) = Ẑj(x, 0) are restricted variables, since ρẑj (x, 0) = ρẐj (x, 0) = 0 and ρZj+1(x,v)

ρZj(x,v)

= 0
Therefore, the Lagrange multiplierμ (v) = −v2α
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Substituting the Lagrange multiplier in Eq. (14), we obtain

Zj+1 (x, v) = Zj (x, v) − v2αE

[
∂2αẑj (x, t)

∂t2α
+

∂αẑj (x, t)
∂tα

− ∂2ẑj (x, t)
∂x2

+ ẑ2j (x, t)
]

Applying Elzaki inverse, we get

zj+1 (x, v) = zj (x, v) − E−1

[
v2αE

[
∂2αzj(x, t)

∂t2α
+

∂αzj(x, t)
∂tα

− ∂2zj(x, t)
∂x2

+ z2j (x, t)
]]

Since ∂αzj

∂tα = 0, j = 0, 1, 2, 3 . . . to get He’s polynomial, we apply HPM

z0 + pz1 + p2z2 + p3z3 . . . = zj (x, t) − pE−1

[
v2αE

[
∂αzj(x, t)

∂tα
− ∂2zj(x, t)

∂x2
− Aj

]]
(16)

where Aj are the Adomian polynomials of (z0, z1, z2, z3 . . .); we use (8) to calculate the Adomian poly-
nomials:

A0 = z20 , A1 = 2z0z1,

A2 = 2z0z2 + z21, A3 = 2z0z3 + 2z1z2.

Equating the highest powers of p, and substituting the Adomian polynomials in (16), leads to

p0 : z0 = z0 (x, t) + tz0t (x, t) + E−1
[
v2αE [f(x, t)]

]

p1 : z1 = −E−1

[
v2αE

[
∂2z0
∂x2

− ∂αz0
∂tα

− z20

]]

p2 : z2 = −E−1

[
v2αE

[
∂2z1
∂x2

− ∂αz1
∂tα

− 2z0z1

]]

p3 : z3 = −E−1

[
v2αE

[
∂2z0
∂x2

− ∂αz0
∂tα

− 2z0z2 − z21

]]

Here, the HEM solution for Eq. (13) is

z = z0 + z1 + z2 + z3 + . . . .

In Fig. 1, graph (a) and graph (b) represent the exact solution and HEM solution of Eq. (12) atα = 1,
respectively. It is clear that the exact and HEM solutions are in a good agreement. In Fig. 2, graph (a)
and graph(b) represent the HEM solution of Eq. (13) at α = 0.95 andα = 0.90, respectively.

Example 5.2. Consider the following nonlinear telegraph equation with fractional order 0 < α ≤ 1

∂2α

∂t2α
z(x, t) = −z2(x, t) − ∂α

∂tα
z(x, t) +

∂2z

∂x2
(x, t) + f(x, t) ≤ t, 0 < x < π (17)

with the initial conditions z (x, 0) = sin (x) , zt (x, 0) = 0. The exact solution of the Eq. (17) when α = 1
is

z (x, t) = sin (x) (t3 − 1).

Assume that f (t, x) = sin?(x)
(

6t3−2α

Γ (4−2α) + 6t3−α

Γ (4−α) +
(
t6 − 2t3 + 1

)
sin?(x) + t3 − 1

)
.

Taking the Elzaki transform of Eq. (17)

E

[
∂2αz(x, t)

∂t2α
+

∂αz (x, t)
∂tα

− ∂2z (x, t)
∂x2

+ z2 (x, t) + f(x, t)
]

= 0.

Now, we multiply both sides of above equation by μ(v)

μ(v)E
[
∂2αz(x, t)

∂t2α
+

∂αz (x, t)
∂tα

− ∂2z (x, t)
∂x2

+ z2 (x, t) + f(x, t)
]

= 0.
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Fig. 1. Exact solution and the approximate solution of z(x, t) of Eq. (13) at α = 1

Fig. 2. approximate solutions of z(x, t) of equation (13) at α = 0.95 and 0.9.

The recurrence relation has the following form

Zj+1 (x, v) = Zj (x, v) + μ (v)E

[
∂2αzi(x, t)

∂t2α
+

∂αzi(x, t)
∂tα

− ∂2zi(x, t)
∂x2

+ z2i (x, t)
]

. (18)
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Taking the variation of the above equation and using Elzaki property (5), we obtain

ρZj+1 (x, v) = ρZj (x, v) + μ (v) ρ

{
Zj (x, v)

v2α
− v2−2αẐj (x, 0) − v3−2α ∂αẐj (x, 0)

∂t

−E

[
∂αẑj (x, t)

∂tα
− ∂2ẑj (x, t)

∂x2
+ ẑ2j (x, t)

]}
. (19)

ρZj+1 (x, v) = ρZj (x, v) +
1

v2α
μ (v) ρZj (x, v)

The variables ẑj = ẑj (x, 0) = Ẑj(x, 0) are restricted variables, since ρẑj (x, 0) = ρẐj (x, 0) = 0 and
ρZj+1(x,v)

ρZj(x,v) = 0

Therefore, the Lagrange multiplierμ (v) = −v2α

Substituting the Lagrange multiplier in Eq. (18), we obtain

Zj+1 (x, v) = Zj (x, v) − v2αE

[
∂2αẑj (x, t)

∂t2α
+

∂αẑj (x, t)
∂tα

− ∂2ẑj (x, t)
∂x2

+ ẑ2j (x, t)
]

Applying Elzaki inverse, we get

zj+1 (x, v) = zj (x, v) − E−1

[
v2αE

[
∂2αzj(x, t)

∂t2α
+

∂αzj(x, t)
∂tα

− ∂2zj(x, t)
∂x2

+ z2j (x, t)
]]

Since ∂αzj

∂tα = 0 j = 0, 1, 2, 3 . . . to get He’s polynomial, we apply HPM

z0 + pz1 + p2z2 + p3z3 . . . = zj (x, t) − pE−1

[
v2αE

[
∂αzj(x, t)

∂tα
− ∂2zj(x, t)

∂x2
− Aj

]]
(20)

where Aj and Bjare the Adomian polynomials of (z0, z1, z2, z3 . . .); we use (8) to calculate the Adomian
polynomials:

A0 = z20 , A1 = 2z0z1,

A2 = 2z0z2 + z21, A3 = 2z0z3 + 2z1z2.

Equating the highest powers of p, and substituting the Adomian polynomials in (16) leads

p0 : z0 = z0 (x, t) + tz0t (x, t) + E−1
[
v2αE [f(x, t)]

]

p1 : z1 = −E−1

[
v2αE

[
∂2z0
∂x2

− ∂αz0
∂tα

− z20

]]

p2 : z2 = −E−1

[
v2αE

[
∂2z1
∂x2

− ∂αz1
∂tα

− 2z0z1

]]

p3 : z3 = −E−1

[
v2αE

[
∂2z0
∂x2

− ∂αz0
∂tα

− 2z0z2 − z21

]]

Here, the HEM solution for Eq. (17) is

z = z0 + z1 + z2 + z3 + . . . .

In Fig. 3, graph (a) and graph (b) represent the exact solution and HEM solution of Eq. (13) atα = 1,
respectively. It is clear that the exact and HEM solutions are in a good agreement. In Fig. 2, graph (a)
and graph(b) represent the HEM solution of Eq. (13) at α = 0.9 andα = 0.8, respectively.
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Fig. 3. Exact solution and the approximate solution z(x, t) of Eq. (17) at α = 1

Fig. 4. Approximate solutions of z(x, t) of Eq. (17) at α = 0.9 and 0.8
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6. Conclusion

To study the solution of time-fractional telegraph equations, a novel computational technique called Elzaki
integral transform is merged with He’s variation iteration method in this paper. The fractional derivatives
are defined in the Caputo sense. The suggested method was applied to a new model with one dimension,
and the exact and approximate solutions were found. The beauty of the innovative procedure is that
one needs to depend on neither the integration nor the convolution theorem in recurrence relation to
define the Lagrange multiplier. Convolution and integral computation terms are avoided by using this
method. The HPM and Adomian polynomial is used to reduce calculations due to the Elzaki transform’s
restrictions on nonlinear components. Finally, we found that the He–Elzaki transform method (HEM),
which has been successfully implemented in solving the time-fractional telegraph model, is an efficient
method for solving differential equations of integer and fractional orders.

NOMENCLATURE

N Neutral number
μ (.) Lagrange multiplier
Aj Adomian polynomials
E [.] Elzaki transform
α Fractional-order derivative
p Embedding parameter
t Time parameter
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