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Abstract. In this paper we study the cut singularity governed by a compressible Stokes system. The cut is a non-Lipshitz
boundary. The divergence of the leading corner singularity vector, which has the singular exponent 1/2, has different trace
values on either side of cut. In the consequence the pressure solution of the continuity equation must have a jump across
the streamline emanating from the cut tip. We establish a piecewise regularity of the solution by the corner singularity and
the contact singular function.
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1. Introduction

In this paper we study the cut singularity governed by a compressible Stokes system. The cut is a
non-Lipshitz boundary. The divergence of the leading corner singularity vector, which has the singular
exponent 1/2, has different trace values on either side of cut. In the consequence the pressure solution of
the continuity equation must have a jump across the streamline emanating from the cut tip. We establish
a piecewise regularity of the solution by the corner singularity and the contact singular function.

We shall study the issues by a well-posed boundary value problem for the linearized compressible
Stokes system

−μΔu − ν∇div u + ∇p = f in Ω,

U · ∇p + div u = g in Ω,

u = 0 on Γ,

p = 0 on Γin,

(1.1)

where u is the velocity vector, p is the pressure function; μ and ν are the viscous numbers with μ > 0;
U = (U, V )t is a fixed vector field with U > 0; f and g are given functions; the set Γ is the boundary
of the domain Ω, and the set Γin = {(x, y) ∈ Γ : U · n < 0} is the inflow boundary where n is the unit
normal vector to the boundary Γ.

Throughout this paper, for simplicity, we set the vector U = (1, 0)t and the Lamé operator L =
Δ + ν1∇div where ν1 = μ−1ν.

System (1.1) is a simplified and nonlinear version which is derived from the nonlinear compressible
Navier–Stokes equations (see [10]). The first vector equation is the momentum one which is elliptic in
the velocity variables and the second one is the continuity equation which is hyperbolic in the density
variable. Mathematically it is of mixed type which is neither elliptic nor hyperbolic.
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Fig. 1. Flow through a cut

The cut flow is depicted in the following figure
At the cut tip, say (0, 0), the leading singular exponent by the Lamé system is 1/2, which has two
corresponding eigenvector functions Θi(θ), i = 1, 2 (see (2.2) below). An interesting fact is that the
function div (r1/2Θ1(θ)) has different traces on either side of the cut boundary, that is, for x < 0,

div (r1/2Θ1(θ))
∣
∣
(x,0+)

= −4|x|−1/2,

div (r1/2Θ1(θ))
∣
∣
(x,0−)

= 4|x|−1/2,
(1.2)

while div (r1/2Θ2(θ)) has the same trace value 0 on the cut boundary. By transport property of the
continuity equation, the pressure solution must have a nonzero jump value across the interface curve
emanating from the cut tip, which results in that the pressure gradient given in the momentum equation
is not well defined across the interface curve. The issue will be handled by constructing a mapping operator
lifting the pressure jump value on the interface curve. Finally the smoother part of the velocity vector is
shown to have the H2,q regularity.

So far, in the references [6]– [9] Kweon and Kellogg had studied corner singularity and regularity for
the stationary compressible Stokes or Navier–Stokes equations on polygonal domains not having the cut
boundary. In [13] the corner singularities derived by the Laplace problem with a slip-Navier boundary
condition (see [12,14]) along the cut boundary were implemented to the solutions of the compressible
viscous Navier–Stokes equations. In [10] Kweon studied a jump discontinuity solution for the compressible
viscous flows grazing a nonconvex corner.

Recently, in [11] Kweon and Lee studied a compressible viscosity fluid flow directed by a fixed vector
field pointing a nonconvex corner of a bounded polygon. The fixed vector field was assumed to have a
jump discontinuity after the nonconvex vertex so that the transport equation can be solvable along the
streamline. Meanwhile, in the cut domain, the vector field (for instance, U = (1, 0)t) pointing toward the
cut tip need not being jump discontinuous just after the cut tip. This advantage is used in the analysis
of this paper.

In [3] Han, Kweon and Park show the interior jump discontinuity for a stationary compressible Stokes
system with an inflow jump datum, and in [4], Han and Kweon study the nonlinear problem for general
boundary data. Diverse applications on corner domains can be found in the references [15–18].

We consider the cut domain Ω defined by
Ω = (−1, 1) × (−1, 1) \ Γc,

Γc = {(x, 0) : −1 ≤ x ≤ 0}.
(1.3)

With the vector field U = (1, 0) we define the inflow and outflow boundaries by

Γin = {(−1, y) : −1 < y < 1},

Γout = {(1, y) : −1 < y < 1}.

We define the set

Υ = {(x, 0) : 0 < x < 1},

which is the interface curve splitting the domain Ω into two subregions
Ω1 = {(x, y) ∈ Ω : y > 0},

Ω2 = {(x, y) ∈ Ω : y < 0}.
(1.4)
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Fig. 2. The cut domain Ω

We set ΩΥ = Ω \ Υ = Ω1 ∪ Ω2.
We denote the symbol [f ] by the jump of a function f across the curve Υ, that is, for any x ∈ (0, 1),

[f(x, 0)] = lim
y↓0

f(x, y) − lim
y↑0

f(x, y). (1.5)

We here state the main result of this paper.

Theorem 1.1. If f ∈ H−1 and g ∈ L2, then there exists a unique solution pair u ∈ H1
0 and p ∈ L2 of

problem (1.1), with the estimation μ‖u‖1 + ‖p‖0 + ‖p‖0,Γout ≤ C(‖f‖−1 + ‖g‖0) for a constant C.
On the other hand, assume that f ∈ Lq and g ∈ H1,q for q ∈ [2, 4). Let Φ be defined in (2.3) and ψ

the contact singularity defined in (2.5), respectively. Let d(x) = −(μ + ν)−1[p(x, 0)] for x ≥ 0 and K the
lifting mapping defined in (2.4). Suppose the viscous number μ is sufficiently large. Then we have:
(i) There exist a constant vector C = (C1, C2)t ∈ R

2 and a velocity vector uR ∈ H2,q(Ω) such that the
velocity solution u can be written by

u = K + d(1)ψ + CΦ + uR, (1.6)

where K := (0,K)t is the vector function defined by

K =

{

Kd in Ω1,

0 in Ω2.
(1.7)

(ii) With the operator B defined by (Bh)(x, y) =

x∫

−1

h(s, y)ds, the pressure solution p can be written by

p = pK + pC + pS + pR, (1.8)

where
pK = −BKy,

pC = −Bdiv(d(1)ψ),
pS = −C1BdivΦ1 − C2BdivΦ2,

pR = B(g − divuR).

(iii) Each component given in decompositions (1.6) and (1.8) is estimated as follows. There exists a
constant C = C(Ω, q) such that

‖K‖2,q,Ω1 + |d(1)| + |C| + ‖uR‖2,q ≤ Cμ−1(‖f‖0,q + ‖g‖1,q),
2∑

j=1

(‖pK‖1,q,Ωj
+ ‖pS‖1,q,Ωj

+ ‖pR‖1,q,Ωj
)

+ ‖pC‖1,q ≤ C(μ−1‖f‖0,q + ‖g‖1,q).

(1.9)
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It is noted that the interval 2 ≤ q < 4 is that the restriction q < 4 is for bounding the pressure
gradient of the corner singularity functions (see Lemma 3.2) and the one q ≥ 2 is for employing the
corner singularity expansion (see Theorem 4.1).

We next state the Rankine-Hugoniot jump conditions for the solutions u, p of problem (1.1) using the
decompositions in (1.6) and (1.8).

Theorem 1.2. Suppose all conditions given in Theorem 1.1 hold. Then the solutions u, p have one-sided
limits with respect to the curve Υ and satisfy the jump conditions on the interface curve Υ

[u] = 0, (1.10a)

[divu] = μ−1
1 [p] , [uy − vx] = 0, (1.10b)

[p(x, 0)] = [p(0, 0)]e−x/μ1 for x > 0, (1.10c)

where μ1 = μ + ν. Also, by (1.6) and (1.8), we have the jump properties

[Ky] = [divu] , [Kx] = 0 = [K],

[div(dψ)] = [div(CΦ)] = [divuR] = 0,

[pK ] �= 0, [pS ] �= 0, [pR] �= 0, [pC ] = 0.

(1.11)

Proof. The proof is similar to the ones given in the references [4,10,13] �

In this paper we consider the following spaces and norms. We denote by Lq(D), q > 1, the space of all
measurable functions defined on a bounded domain D ⊂ R

2 for which ‖v‖0,q,D :=
( ∫

D

|v(x)|qdx)1/q
< ∞.

For s ≥ 0 we denote by the set Hs,q(D) the usual fractional Sobolev space with norm ‖ · ‖s,q,D (see
[1,2]). For s = 0 we write Lq(D) = H0,q(D). We write H1,q

0 (D) = {u ∈ H1,q(D) : u|∂D = 0}. We denote
by H−s,q(D) the dual space of Hs,q′

0 (D) with norm

‖f‖−s,q,D = sup
0 �=v∈Hs,q′

0 (D)

〈f, v〉
‖v‖s,q′,D

,

where 〈, 〉 denotes the duality pairing and q′ is the conjugate exponent of q. If q = 2 we write Hs(D) =
Hs,q(D) with norm ‖ · ‖s,D = ‖ · ‖s,q,D. When D = Ω we omit the domain in the space and its
corresponding norm, for instance, Hs,q = Hs,q(Ω) and ‖ · ‖s,q = ‖ · ‖s,q,Ω, and so on. We will also use
bold face, such as Hs,q(D) = Hs,q(D) × Hs,q(D), to indicate vectorial function spaces.

Throughout this paper, C denotes a generic constant that may take different value in different place.

2. The preliminaries

The corner singularities at the cut tip. We use the corner singularity functions for the Lamé system with
zero boundary condition. For the derivation we refer to [5, Chapter 3]. Let r and θ be the polar coordinates
placed at the vertex (0, 0). The Lamé system Lu = 0 in the infinite sector S = {(r cos θ, r sin θ) : r >
0, θ ∈ (−π, π)} with zero boundary condition has the solution of the form rλΘ(θ) where λ is the solution
of the algebraic equation

sin2(2λπ) = 0. (2.1)

The singular exponents are λi = i/2 for i = 1, 2, 3, · · · , which are all multiple roots with multiplicity two
(see [5, Chapter 3, Section 3.1.3]). Hence we have two orthogonal eigenvector functions corresponding to
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Fig. 3. The lifting mapping K

λi. In particular, for the leading value λ1 = 1/2 we have the eigenvector functions Θ1,Θ2 given by

Θ1(θ) =
(

ν1 sin(θ/2) + ν1 sin(3θ/2)
−(8 + 3ν1) cos(θ/2) − ν1 cos(3θ/2)

)

,

Θ2(θ) =
(−(8 + 5ν1) cos(θ/2) + ν1 cos(3θ/2)

ν1 sin(θ/2) + ν1 sin(3θ/2)

)

.

(2.2)

In order to state the corner singularity function we consider a sufficiently smooth cutoff function χ defined
by χ = 1 for r ≤ r0 and χ = 0 for r ≥ 2r0 with a small r0 
 1. It is considered for localizing the corner
singularity propagation near the vertex. We write the corner singularity functions by a simple vector
form: For a vector C = (C1, C2)t ∈ R

2,

Φj = χ(r)r1/2Θj(θ),
CΦ = C1Φ1 + C2Φ2.

(2.3)

It is recalled that the value λ2 = 1 is the second leading singular value which has two eigenfunctions
(sin θ, 0)t and (0, sin θ)t.

The lifting vector field. For a function f(x) defined on the interval (0, 1) we define the mapping Kf
by

(Kf)(x, y) =

b+(x,y)∫

b−(x,y)

f̃(s)ds, (2.4)

where b±(x, y) = x − y
2 (x ± 1) and f̃ is defined by f̃(x) = f(−x) for x ∈ (−1, 0) and f̃(x) = f(x) for

x ∈ [0, 1).
Formula (2.4) was heuristically constructed so that conditions (4.6) (see Lemma 4.1 below) are satis-

fied. It is also employed in handling the pressure jump value on the interface curve Υ.
The contact singularity. We consider the vector function ψ as

ψ(x, y) = χ∗(r∗)ζ(r∗, θ∗), (2.5)

where (r∗, θ∗) is the polar coordinate at the point (1, 0) and χ∗ is a smooth cutoff function at the point
(1, 0), which can be defined in a similar way as the cutoff χ of singularity function (2.3). The vector
function ζ is defined as

ζ(r∗, θ∗) = (c2π)−1(ν1η3, c1η1 + c2η2)t, (2.6)
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Fig. 4. The contact singularity

where c1 = 2ν1 + 2, c2 = ν1 + 2, and
η1 = r∗ sin(θ∗ − 3π/2) log r∗,

η2 = (θ∗ − 3π/2) r∗ cos(θ∗ − 3π/2),

η3 = (θ∗ − 3π/2) r∗ sin(θ∗ − 3π/2).
(2.7)

In the half region S = {(r∗ cos θ∗, r∗ sin θ∗) ∈ R
2 : r∗ > 0, π/2 < θ∗ < 3π/2} the vector ζ solves the

equations
Lζ = 0 in S,

ζ = (0, r∗)t on θ = π/2,

ζ = �0 on θ = 3π/2.

(2.8)

3. The transport problem on the cut domain

We consider the transport equation on the cut domain Ω, with zero inflow boundary condition on Γin:
U · ∇p = G in Ω,

p = 0 on Γin.
(3.1)

We define the operator B : Lq �→ Lq by BG = p where p is the solution of (3.1). By integrating along the
integral curves, the formula for the operator B is given by

(BG)(x, y) =

x∫

−1

G(s, y)ds. (3.2)

For x > 0 the jump of BG is given by

[BG(x, 0)] =

0∫

−1

G(s, 0+) − G(s, 0−)ds +

x∫

0

[G(s, 0)] ds. (3.3)

With formulas (3.2) and (3.3) one can easily derive the following properties:

Lemma 3.1. (i) If G ∈ Lq, then BG ∈ Lq and ‖BG‖0,q ≤ C‖G‖0,q for a constant C = C(q).
(ii) If G ∈ H1,q and G(x, 0+) �= G(x, 0−) for some x < 0, then BG ∈ H1,q(Ωj) and ‖BG‖1,q,Ωj

≤
C‖G‖1,q,Ωj

for j = 1, 2.
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(iii) If G ∈ H1,q and G(x, 0+) = G(x, 0−) for x < 0, then BG ∈ H1,q and ‖BG‖1,q ≤ C‖G‖1,q.

Proof. The proof can be shown in a similar way as done in the references: [3, Lemma 3.1] and [10, Lemma
2.2]. �

We recall that divΦ1 has different traces on either side of the cut boundary Γc (see (1.2)). So the
jump [BdivΦ1] �= 0. On the other hand, since divΦ2 = 0 on either side of Γc, [BdivΦ2] = 0.

We recall that the singularities Φj defined in (2.3) are in the space Hs,q for s < 1/2 + 2/q. However,
we have the following property:

Lemma 3.2. For q < 4, BdivΦ1 ∈ H1,q(Ωj) for j = 1, 2 and BdivΦ2 ∈ H1,q.

Proof. We first estimate Bdiv (r1/2Θj(θ)), j = 1, 2. By the direct calculation,

div (r1/2Θ1(θ))(x, y) = 2
√

2

{

−r−1
√

r − x, y ≥ 0,

r−1
√

r − x, y < 0,

div (r1/2Θ2(θ))(x, y) = −2
√

2r−1
√

r + x.

Then

Bdiv (r1/2Θ1(θ)) =

{

4
√

2(φ1(x, y) − φ1(−1, y)), y ≥ 0,

−4
√

2(φ1(x, y) − φ1(−1, y)), y < 0,

Bdiv (r1/2Θ2(θ)) = −4
√

2(φ2(x, y) − φ2(−1, y)),

(3.4)

where

φ1(x, y) = (
√

x2 + y2 − x)1/2,

φ2(x, y) = (
√

x2 + y2 + x)1/2.
(3.5)

By (3.5), φ1 =
√

2r1/2 sin(θ/2) in Ω1. Clearly, φ1 ∈ Lq(Ω1). Also,

∇φ1(x, y) =
1√
2
r−1/2(− sin(θ/2), cos(θ/2))t.

Hence |∇φ1| ≤ Cr−1/2, so

‖∇φ1‖q
0,q,Ω1

≤ C

∫

Ω1

r−q/2dx

≤ C

∫

Ω1

r−q/2+1drdθ.

Since q < 4, −q/2 + 1 > −1, so
∫

Ω1

r−q/2+1drdθ < ∞.

Hence ∇φ1 ∈ Lq(Ω1) and φ1 ∈ H1,q(Ω1). Likewise, φ1 ∈ H1,q(Ω2). In a similar way, φ2 ∈ H1,q(Ω). Clearly
φ1(−1, y) ∈ H1,q(Ωk) and φ2(−1, y) ∈ H1,q, because

lim
y→0

∂yφ2(−1, y) = lim
y→0

y

2((1 + y2)3/2 − (1 + y2))1/2
= 0.

Since Φj = χ r1/2Θj we have BdivΦj = B(r1/2Θj · ∇χ) + B(χdiv (r1/2Θj)), which behaves like
B(div (r1/2Θj)) near the origin (0, 0). Thus the required results follow. �
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4. The Lamé system with an unbounded gradient across the curve Υ

In this section we study the regularity for the Lamé system with an unbounded gradient

−Lu = ∇f in Ω,

u = 0 on Γ,
(4.1)

where f is assumed to have a nonzero jump across Υ.
We first state the corner singularity result of the Lamé system, which is derived in Sect. 6. A similar

result can be found in the reference [8, Lemma 2.3].

Theorem 4.1. Let q ≥ 2 be any number. Let u be the solution of the boundary value problem

−Lu = h in Ω,

u = g on Γ.
(4.2)

Let sj = j/2 + 2/q, j = 1, 2, · · · . Then the solution u has the following properties. (i) For s < s1, if
h ∈ Hs−2,q and g ∈ Hs−1/q,q(Γ), then the solution u ∈ Hs,q and satisfies

‖u‖s,q ≤ C(‖h‖s−2,q + ‖g‖s−1/q,q,Γ).

(ii) For s ∈ (s1, s3), there are bounded linear functional Λ = (Λ1,Λ2)t on Hs−2,q ×Hs−1/q,q(Γ) such that
if h ∈ Hs−2,q and g ∈ Hs−1/q,q(Γ), then solution u of (4.2) has the decomposition

u = uR + Λ(h,g)Φ (4.3)

where uR ∈ Hs,q and satisfies the inequality

‖uR‖s,q + |Λ(h,g)| ≤ C(‖h‖s−2,q + ‖g‖s−1/q,q,Γ). (4.4)

In particular, the linear functionals are defined as follows: For q′ = q/(q − 1), there exist functions
vj ∈ H2−s,q′

, j = 1, 2, such that

Λj(h,g) = a−1

⎛

⎝

∫

Ω

h · vjdx −
∫

Γ

g ·
(∂vj

∂n
+ ν1(divvj)n

)

ds

⎞

⎠ , (4.5)

where a = 32(ν1 + 2)(ν1 + 1)π.

We now consider problem (4.1). Since [f ] �= 0 the gradient of f is not well-defined on Υ. For dealing
with this issue we use the lifting mapping K given in (2.4) and the contact singularity function ψ
constructed in (2.5).

We next derive the properties of the mapping K defined in (2.4) and its regularity.

Lemma 4.1. Suppose q > 2. Let f ∈ H1,q(Υ) be given. Let us write f(x) = f(x, 0), for simplicity. Let K
be defined by K = Kf on Ω1 and K = 0 on Ω2. Then K satisfies the interface conditions

K(x, 0) = 0, Ky(x, 0) = −f(x), ∀x ∈ (0, 1). (4.6)

Furthermore, K ∈ H2,q(Ω1) and there is a constant C = C(q) satisfying the estimate

‖K‖2,q,Ω1 ≤ C‖f‖1,q,Υ. (4.7)

Proof. Obviously K(x, 0) = 0. Differentiating K with respect to the variables x and y,

Kx(x, y) = (1 − y/2)(f̃(b+(x, y)) − f̃(b−(x, y))),

Ky(x, y) = −(x/2 + 1/2)f̃(b+(x, y)) + (x/2 − 1/2)f̃(b−(x, y)).
(4.8)
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So Ky(x, 0) = −f(x) for x ∈ (0, 1). To show (4.7), recall that −1 < b+(x, y) < b−(x, y) < 1 for (x, y) ∈ Ω1.
By the Hölder inequality,

∫

Ω1

|K|qdx =

1∫

−1

1∫

0

∣
∣
∣

b+∫

b−

f̃(s)ds
∣
∣
∣

q

dydx

≤
1∫

−1

1∫

0

|y|q−1

b−
∫

b+

|f̃(s)|qdsdydx

≤ C‖f̃‖q
0,q,(−1,1).

(4.9)

By (4.8), one has
∫

Ω1

|∇K|qdx ≤ C

∫

Ω1

|f̃(b+)|q + |f̃(b−)|qdx. (4.10)

Letting t = b+(x, y),

∫

Ω1

|f̃(b+)|qdx =

1∫

0

1∫

−1

|f̃(b+)|qdxdy

≤ C

1∫

0

1−y∫

−1

|f̃(t)|qdtdy

≤ C‖f̃‖q
0,q,(−1,1).

Likewise,
∫

Ω1

|f̃(b−)|qdx ≤ C‖f̃‖q
0,q,(−1,1). Hence, by (4.10),

‖∇K‖0,q,Ω1 ≤ C‖f̃‖0,q,(−1,1). (4.11)

The second-order partial derivatives of K with respect to x and y are

Kxx(x, y) = (1 − y/2)2(f̃ ′(b+) − f̃ ′(b−)),

Kxy(x, y) = (y/2 − 1)((x/2 + 1/2)f̃ ′(b+) − (x/2 − 1/2)f̃ ′(b−))

− 2−1(f̃(b+) − f̃(b−)),

Kyy(x, y) = (x/2 + 1/2)2f̃ ′(b+) − (x/2 − 1/2)2f̃ ′(b−).

As done in deriving inequality (4.11) one has

‖Kxx‖0,q,Ω1 + ‖Kyy‖0,q,Ω1 ≤ C‖f̃ ′‖0,q,(−1,1),

‖Kxy‖0,q,Ω1 ≤ C(‖f̃‖0,q,(−1,1) + ‖f̃ ′‖0,q,(−1,1)).
(4.12)

Thus, by (4.9), (4.11) and (4.12),

‖K‖2,q,Ω1 ≤ C‖f̃‖1,q,(−1,1). (4.13)

One has ‖f̃‖1,q,(−1,1) = 21/q‖f‖1,q,Υ. So (4.7) follows by (4.13). �

By Lemma 4.1, K ∈ H2−1/q,q(∂Ωj) for f ∈ H1,q(Υ) but K /∈ H2−1/q,q(Γ), because Ky(1, y) = −f(1−y)
for y > 0 and Ky(1, y) = 0 for y < 0. To handle this, we use the function ψ defined in (2.5). It has the
regularity ψ ∈ Hs,q(Ω) for s < 1 + 2/q. Indeed, η1 = r∗ sin(θ∗ − 3π/2) log r∗ ∈ Hs,q by [4, Lemma 3.2].
It is clear for the functions η2 and η3.
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Lemma 4.2. Let K be the function defined in Lemma 4.1. Let ψ2 be the second component of ψ = (ψ1, ψ2).
If f ∈ H1,q(Υ), then K1 := K + f(1)ψ2 ∈ H2−1/q,q(Γ) and satisfies

‖K1‖2−1/q,q,Γ ≤ C‖f‖1,q,Υ. (4.14)

Proof. First we recall that ψ2(1, y) = χ(y)y for y ≥ 0 and 0 for y < 0. Set I = {(1, y) : −2r0 < y < 2r0}
for a number r0 
 1. Then K1 = K on Γ\I. Since K ∈ H2−1/q,q(∂Ωj), j = 1, 2, and K(x, 0) = 0, we
have K1 ∈ H2−1/q,q(Γ \ I). To show inequality (4.14), since K1(1, y) = 0 for y < 0 and by (4.7),

‖K1‖1,q,I ≤ ‖K(1, ·)‖1,q,(0,2r0) + C|f(1)|
≤ C‖K‖2,q,Ω1 + C|f(1)|
≤ C‖f‖1,q,Υ.

To estimate ‖K1,y‖1−1/q,q,I . For y > 0, since ψ2,y(1, y) = 1 near y = 0,

lim
y↓0

K1,y(1, y) = −f(1) + f(1) lim
y↓0

ψ2,y(1, y)

= 0.

Also, since K1(1, y) = 0 for y < 0, we have

lim
y↑0

K1,y(1, y) = 0 = lim
y↓0

K1,y(1, y).

So

‖K1,y‖q
1−1/q,q,I = (I) + (II), (4.15)

where

(I) =

2r0∫

0

2r0∫

0

∣
∣
∣
K1,y(1, y1) − K1,y(1, y2)

y1 − y2

∣
∣
∣

q

dy1dy2,

(II) = 2

2r0∫

0

0∫

−2r0

∣
∣
∣
K1,y(1, y2)

y1 − y2

∣
∣
∣

q

dy1dy2.

Since |ψ2,y(1, y)| < ∞, we have

(I) ≤ C(‖Ky(1, y)‖q
1−1/q,q,(0,2r0)

+ |f(1)|q)
≤ C(‖Ky‖q

1,q,Ω1
+ |f(1)|q)

≤ C‖f‖q
1,q,Υ.

To estimate (II). Since |y1 − y2| ≥ |y2| for y1 < 0 and y2 > 0,

(II) ≤ C

2r0∫

0

∣
∣
∣
K1,y(1, y)

y

∣
∣
∣

q

dy.

We recall that K1,y(1, 0) = 0 and

K1,yy(1, y) = f ′(1 − y) + f(1)ψ2,yy(1, y),
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for y > 0. Note that |ψ2,yy(1, y)| < ∞. So, by the Hardy’s inequality,

(II) ≤ C

2r0∫

0

∣
∣
∣
K1,y(1, y) − K1,y(1, 0)

y − 0

∣
∣
∣

q

dy

≤ C

2r0∫

0

|K1,yy(1, y)|qdy

≤ C

⎛

⎝

2r0∫

0

|f ′(1 − y)|qdy + |f(1)|q
⎞

⎠

≤ C‖f‖q
1,q,Υ.

Hence, by (4.15), ‖K1,y‖1−1/q,q,I ≤ C‖f‖1,q,Υ. Finally K1 is smooth at the points (1,±2r0). Thus (4.14)
follows. �

We next sort out the corner and contact singularities from the solution of problem (4.1) and show
their regularities.

Theorem 4.2. If f ∈ H−1, then there exists a unique solution u ∈ H1
0 of (4.1) with ‖u‖1 ≤ C‖f‖−1 for a

constant C. On the other hand, suppose that f ∈ H1,q(Ωj) and [f ] ∈ H1,q(Υ) for q > 2. Let K = (0,K)t

where K = (1 + ν1)−1K([f ]) in Ω1 and K = 0 in Ω2. Then there exist a constant vector C ∈ R
2 and

uR ∈ H2,q such that the solution u of (4.1) can be decomposed into the following form:

u = K + dψ + CΦ + uR, (4.16)

where d = (1 + ν1)−1 [f(1, 0)] and CΦ = C1Φ1 + C2Φ2. Furthermore there is a constant C such that

‖uR‖2,q + ‖K‖2,q,Ω2 + |C| + |d| ≤ C
( 2∑

j=1

‖∇f‖0,q,Ωj
+ ‖[f ]‖1,q,Υ

)

. (4.17)

Proof. We find the weak solution of (4.1) satisfying the equation
∫

Ω

∇u · ∇v + ν1divudivvdx = −
∫

Ω

fdivvdx, ∀v ∈ H1
0. (4.18)

By the integration by parts we have

∫

Ω

fdivvdx =
∫

Υ

[f ]n · vds −
2∑

j=1

∫

Ωj

∇f · vdx, (4.19)

where n = (0,−1)t. It follows from Lemma 4.1 that the vector K satisfies K ∈ H1,q ∩ H2,q(Ω1) and

K
∣
∣
∣
Υ

= 0,
∂K
∂n

= (1 + ν1)−1 [f ]n on Υ.

Also, by direct calculation,

divK = (1 + ν1)−1 [f ] on Υ. (4.20)
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Therefore, for any v ∈ H1
0,

∫

Ω

∇K · ∇v + ν1divKdivvdx

=
∫

Ω1

∇K · ∇v + ν1divKdivvdx

= −
∫

Ω1

LK · vdx +
∫

Υ

(∂K
∂n

+ ν1ndivK
)

· vds

= −
∫

Ω1

LK · vdx +
∫

Υ

[f ]n · vds.

(4.21)

Combining (4.18)–(4.21), we have
∫

Ω

∇(u − K) · ∇v + ν1div (u − K)divvdx

=
2∑

j=1

∫

Ωj

(∇f + LK) · vdx, ∀v ∈ H1
0,

Let F1 = ∇f+LK. Using the symbol ∇⊥ = (−∂y, ∂x)t we write the term Δf by Δf = ∇div f+∇⊥∇⊥ ·f .
So LK = (1 + ν1)∇divK + ∇⊥∇⊥ · K and

F1 = ∇(f + (1 + ν1)divK) + ∇⊥∇⊥ · K.

Since f + (1 + ν1)divK is continuous across Υ by (4.20) and ∇⊥ · K = Kx is continuous across Υ, we
have F1 ∈ Lq.

Now the vector w1 := u − K is the weak solution of the problem

−Lw1 = F1 in Ω,

w1 = −K on Γ.
(4.22)

We recall that K /∈ H2−1/q,q(Γ) since Ky(1, y) is not continuous across the contact point (1, 0) ∈ Γ. For
handling this we set w2 = w1 − dψ with d = (1 + ν1)−1 [f(1, 0)]. We note that w2 satisfies the following
boundary value problem:

−Lw2 = F2 in Ω,

w2 = −K1 on Γ,
(4.23)

where F2 := F1 + dLψ and K1 := K + dψ. Since Lψ ∈ Lq, F2 ∈ Lq. Also, by Lemma 4.2, K1 ∈
H2−1/q,q(Γ). Therefore, by Theorem 4.1, there exist a vector function uR ∈ H2,q and a constant vector
C ∈ R

2 such that the solution w2 of (4.23) becomes

w2 = CΦ + uR. (4.24)

From (4.22)–(4.24) the solution u of (4.1) is (4.16). By (4.4) and (4.7) we have

‖K‖2,q,Ω2 + |d| ≤ C‖[f ]‖1,q,Υ,

‖uR‖2,q + |C| ≤ C(‖F2‖0,q + ‖K1‖2−1/q,q,Γ).
(4.25)
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Since F2 = ∇f + L(K + dψ), we have

‖F2‖0,q ≤ C
( 2∑

j=1

‖∇f‖0,q,Ωj
+ (‖K‖2,q,Ω2 + |d|)

)

≤ C
( 2∑

j=1

‖∇f‖0,q,Ωj
+ ‖[f ]‖1,q,Υ

)

,

(4.26)

and, by (4.14),

‖K1‖2−1/q,q,Γ ≤ C‖[f ]‖1,q,Υ. (4.27)

By (4.25)–(4.27), (4.17) follows. �

5. Proof of Theorem 1.1

We consider the following spaces: For any q ∈ [2, 4),

P = {v ∈ H1,q
0 : v ∈ H2,q(Ωj), j = 1, 2},

X = P + span{ψ,Φ1,Φ2},

Q = {η ∈ Lq : η ∈ H1,q(Ωj), j = 1, 2},

(5.1)

with norms

‖v‖P =
2∑

j=1

‖v‖2,q,Ωj
,

‖v + dψ + C1Φ1 + C2Φ2‖X = ‖v‖P + |d| +
2∑

i=1

|Ci|,

‖η‖Q =
2∑

j=1

‖η‖1,q,Ωj
.

(5.2)

We define the solution operator A : H−1,q �→ H1,q defined by Af = u, where u solves the boundary value
problem

−Lu = f in Ω,

u = 0 on Γ.

With the operators A and B we define the mapping M by

Mv = μ−1A(f − ∇p), (5.3a)

p = B(g − divv), (5.3b)

where f and g are fixed.

Lemma 5.1. Set w = μ−1A(f − ∇p). If f ∈ Lq and p ∈ Q with [p] ∈ H1,q(Υ), then w ∈ X and satisfies
the inequality

‖w‖X ≤ Cμ−1(‖f‖0,q + ‖p‖Q + ‖[p]‖1,q,Υ). (5.4)

Proof. We write w = w1 + w2 with

w1 = μ−1Af ,

w2 = −μ−1A∇p.
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By Theorem 4.1 there exist a vector function w1,R ∈ H2,q and C1 := C1(f) ∈ R
2 such that w1 has the

decomposition

w1 = C1Φ + w1,R, (5.5)

and satisfies the inequality ‖w1,R‖2,q + |C1| ≤ Cμ−1‖f‖0,q. Also, by Theorem 4.2 there exist C2 ∈ R
2

and w2,R ∈ H2,q such that w2 has the decomposition

w2 = K + dψ + C2Φ + w2,R, (5.6)

where K = (0,−μ−1
1 K[p])t, d = −μ−1

1 [p(1, 0)], and satisfies the inequality

‖w2,R‖2,q + |C2| + ‖K‖2,q,Ω1 + |d| ≤ Cμ−1
( 2∑

j=1

‖∇p‖0,q,Ωj
+ ‖[p]‖1,q,Υ

)

.

Hence, by (5.5)–(5.6),

w = K + dψ + (C1 + C2)Φ + (w1,R + w2,R).

Since K + w1,R + w2,R ∈ P we have w ∈ X . So

‖w‖X = ‖K + w1,R + w2,R‖P + |d| + |C1 + C2|

≤ Cμ−1
(

‖f‖0,q +
2∑

j=1

‖∇p‖0,q,Ωj
+ ‖[p]‖1,q,Υ

)

.

Hence the required result has been shown. �

Lemma 5.2. Let g ∈ H1,q be fixed. If v ∈ X , then the solution p by (5.3b) is in the space Q and satisfies
the inequality

‖p‖Q ≤ C(‖g‖1,q + ‖v‖X ). (5.7)

Proof. If v ∈ X then v = w + d∗ψ + C∗Φ for a function w ∈ P , a scalar d∗ and C∗ = (C∗
1 , C∗

2 )t ∈ R
2.

We know that g − divw and Bdivψ are in the space Q. Also, by Lemma 3.2, BdivΦj ∈ Q for j = 1, 2.
Hence g − divv ∈ Q and by Lemma 3.1 we have p ∈ Q. Inequality (5.7) follows by

‖p‖Q ≤ C(‖g‖Q + ‖w‖P + |d∗| + |C∗|)
= C(‖g‖1,q + ‖v‖X ).

�

We shall show the mapping M is Lipshitz continuous and contractive on the space X . If so, there
exists a solution u ∈ X of the fixed point problem u = Mu. Also, u and p = B(g−divu) satisfy problem
(1.1).

Lemma 5.3. Suppose f ∈ Lq and g ∈ H1,q are given. Then the mapping M is well-defined on X . Also
there is a constant C = C(‖f‖0,q, ‖g‖1,q) such that

‖Mv‖X ≤ Cμ−1(‖v‖X + 1), ∀v ∈ X . (5.8)

Proof. Let u = Mv for v ∈ X . Then by Lemma 5.2, p ∈ Q and satisfies

‖p‖Q ≤ C(‖g‖1,q + ‖v‖X ). (5.9)

Since ∂x[p] = [g − divv] = −[divv] and [divv] ∈ Lq(Υ) for q < 4, we have [p] ∈ H1,q(Υ), which satisfies
‖[p]‖1,q,Υ ≤ C(‖g‖Q + ‖v‖X )

≤ C(‖g‖1,q + ‖v‖X ).
(5.10)

By Lemma 5.1, u ∈ X and satisfies

‖u‖X ≤ Cμ−1(‖f‖0,q + ‖p‖Q + ‖[p]‖1,q,Υ). (5.11)
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By (5.9)–(5.11),

‖u‖X ≤ Cμ−1(‖v‖X + ‖f‖0,q + ‖g‖1,q).

Thus (5.8) is shown. �

Lemma 5.4. Suppose f ∈ Lq and g ∈ H1,q are given. Then the mapping M is Lipschitz continuous on the
space X . Also there is a constant C ′ such that

‖Mv − Mv∗‖X ≤ C ′μ−1‖v − v∗‖X , ∀v,∀v∗ ∈ X . (5.12)

Proof. Let v and v∗ be fixed in X . Let p = B(g − divv) and p∗ = B(g − divv∗). Then

Mv − Mv∗ = μ−1A∇(p∗ − p). (5.13)

By Theorem 4.2,

‖A∇(p∗ − p)‖X ≤ C(‖p∗ − p‖Q + ‖[p∗ − p]‖1,q,Υ). (5.14)

Since p∗ − p = −Bdiv (v∗ − v) and by Lemma 5.2,

‖p∗ − p‖Q + ‖[p∗ − p]‖1,q,Υ ≤ C‖v∗ − v‖X . (5.15)

So, by (5.14)–(5.15),

‖A∇(p∗ − p)‖X ≤ C ′(‖v∗ − v‖X )

and using (5.13), (5.12) follows. �

Let α = C ′μ−1 where C ′ is the constant defined from Lemma 5.4. Assuming that μ is sufficiently
large, we have α < 1. Consider the sequence {un} on the space X by un := Mun−1 for n = 1, 2, · · · ,
with the initial value u0 = 0. By (5.12) and for integer n ≥ 1,

‖un+1 − un‖X ≤ α‖un − un−1‖X
≤ αn‖u1‖X .

For any integer m > n > 0,

‖um − un‖X ≤ αn

1 − α
‖u1‖X .

By (5.8), ‖u1‖X ≤ Cμ−1 = C(C ′)−1α. So

‖um − un‖X ≤ C(C ′)−1 αn+1

1 − α
.

Hence {un} is a Cauchy sequence in the space X , so there exists u ∈ X such that limn→∞ un = u. Also,
u = Mu.

Let d(x) = −μ−1
1 [p(x, 0)] for p = B(g − divu). Let K = (0,K)t be defined by K = Kd in Ω1 and

K = 0 in Ω2. Then, by Lemma 5.3, there exist a constant vector C ∈ R
2 and uR ∈ H2,q(Ω) such that

u = K + d(1)ψ + CΦ + uR. Furthermore, by (4.7) and Theorems 4.1–4.2,

‖K‖2,q,Ω2 + |d(1)| ≤ Cμ−1‖[p]‖1,q,Υ,

‖uR‖2,q + |C| ≤ Cμ−1(‖f‖0,q + ‖p‖Q + ‖[p]‖1,q,Υ).
(5.16)

With (1.8) the pressure solution is p = pK + pC + pS + pR and, using Lemmas 3.1–3.2,

‖pK‖1,q,Ω1 ≤ C‖K‖2,q,Ω1 ,

‖pC‖1,q ≤ C|d(1)|,
‖pS‖Q ≤ C|C|,
‖pR‖Q ≤ C(‖g‖Q + ‖uR‖2,q)

(5.17)
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and
‖[p]‖1,q,Υ ≤ ‖[pK ]‖1,q,Υ + ‖[pS ]‖1,q,Υ + ‖[pR]‖1,q,Υ

≤ C(‖K‖2,q,Ω1 + |C| + ‖uR‖2,q + ‖g‖Q).
(5.18)

Combining (5.16)–(5.18) and assuming that the viscous number μ is sufficiently large, we have (1.9).
Hence we have shown Theorem 1.1.
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6. Appendix

Lemma 6.1. If f ∈ H−1 and g ∈ L2 then there are unique weak solutions u ∈ H1
0 and p ∈ L2 of (1.1),

satisfying the inequality

‖u‖1 + ‖p‖0 + ‖p‖0,Γout ≤ C(‖f‖−1 + ‖g‖0), (6.1)

where C is a generic constant depending on Ω.

Proof. The proof easily follows by a weak formulation on the pair space H1
0 × L2. Letting (, ) denoting

the L2 inner product we consider the bilinear forms

a(u,v) = μ(∇u,∇v) + ν(divu,divv),

b(p,v) = −(p,divv),

c(p, η) = (U · ∇p, η).
(6.2)

The weak form of problem (1.1) is to find the solutions u ∈ H1
0 and p ∈ L2 satisfying

a(u,v) + b(p,v) = (f ,v), ∀v ∈ H1
0,

c(p, η) − b(η,u) = (g, η), ∀η ∈ L2.
(6.3)

More detailed proof can be found in [9, Lemma 2.8]. �

We next show Theorem 4.1 by constructing the dual functions used in the stress intensity coefficients.

Lemma 6.2. Let q′ = q/(q − 1) for q ≥ 2. For s > s1 there are nontrivial vector functions vj ∈ H2−s,q′
,

j = 1, 2, such that vj satisfies the boundary value problem

Lvj = 0 in Ω,

vj = 0 on Γ,

and is orthogonal to the image of Hs,q ∩ H1,q
0 by the Lamé operator L in the L2 inner product.

Proof. We define the function vj , j = 1, 2, by vj = Φ∗
j + zj , where Φ∗

j = χr−1/2Θ∗
j (θ) with

Θ∗
1(θ) =

(
ν1 sin θ/2 − ν1 sin 5θ/2

−(8 + 5ν1) cos θ/2 + ν1 cos 5θ/2

)

,

Θ∗
2(θ) =

(−(8 + 3ν1) cos θ/2 − ν1 cos 5θ/2
ν1 sin θ/2 − ν1 sin 5θ/2

)

,
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and zj is the solution of the problem

−Lzj = LΦ∗
j in Ω,

zj = 0 on Γ.
(6.4)

Since L(r−1/2Θ∗
j (θ)) = 0, LΦ∗

j ∈ Lq and the solution zj of (6.4) becomes zj = CΦ + zj,R where C is
a constant vector and zj,R ∈ H2,q. Since Φj ∈ Ht,q for t < s1, zj ∈ Ht,q. Also, since Φ∗

j ∈ H2−s,q′

we have vj ∈ H2−s,q′
. The vector function vj satisfies Lvj = 0 in Ω and vj |Γ = 0. Therefore, for any

w ∈ Hs,q ∩ H1,q
0 for s > s1,

∫

Ω

Lw · vjdx =
∫

Ω

w · Lvjdx +
∫

Γ

∂w
∂n

· vj − w · ∂vj

∂n
ds

+ ν1

∫

Γ

(divw)n · vj − (divvj)n · wds

= 0.

Hence the required result follows. �

To show (4.5), if we write the solution u of (4.2) by u = CΦ + uR where C = (C1, C2) ∈ R
2 and

uR ∈ Hs,q, then uR = g on Γ and
∫

Ω

LuR · vjdx = −
∫

Γ

g ·
(∂vj

∂n
+ ν1(divvj)n

)

ds,

so
∫

Ω

L(CΦ) · vjdx = −
∫

Ω

(h + LuR) · vjdx

= −
∫

Ω

h · vjdx +
∫

Γ

g ·
(∂vj

∂n
+ ν1(divvj)n

)

ds.

Then we have a linear system for C1 and C2:

a11C1 + a12C2 = −
∫

Ω

h · v1dx +
∫

Γ

g ·
(∂v1

∂n
+ ν1(divv1)n

)

ds,

a21C1 + a22C2 = −
∫

Ω

h · v2dx +
∫

Γ

g ·
(∂v2

∂n
+ ν1(divv2)n

)

ds,

(6.5)

where aij =
∫

Ω

LΦj · vidx. On the other hand, since vi = Φ∗
i + zi,

aij =
∫

Ω

LΦj · Φ∗
i + Φj · Lzidx

=
∫

Ω

LΦj · Φ∗
i − Φj · LΦ∗

i dx.

Set Ωδ = Ω ∩ {r > δ} for δ < r0 
 1. By integration by parts,
∫

Ωδ

LΦj · Φ∗
i − Φj · LΦ∗

i dx =
∫

∂Ωδ

E1(r, θ)ds + ν1

∫

∂Ωδ

E2(r, θ)ds,
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where

E1(r, θ) =
∂Φj

∂n
· Φ∗

i − Φj · ∂Φ∗
i

∂n
,

E2(r, θ) = (divΦj)n · Φ∗
i − (divΦ∗

i )n · Φj ,

and n is the outward normal unit vector to the boundary ∂Ωδ. Since χ = 0 for r > 2r0, we have

∫

∂Ωδ

E1(r, θ)ds =

δ∫

2r0

E1(r,−π)dr +

π∫

−π

E1(δ, θ)δdθ +

2r0∫

δ

E1(r, π)dr

= −
π∫

−π

Θj · Θ∗
i dθ.

Likewise,
∫

∂Ωδ

E2(r, θ)ds = −
π∫

−π

E21(θ) + E22(θ) − E23(θ)dθ,

where for e1 = (cos θ, sin θ)t and e2 = (− sin θ, cos θ)t,

E21(θ) = (e1 · Θj)(e1 · Θ∗
i ),

E22(θ) = (e2 · Θ′
j)(e1 · Θ∗

i ),

E23(θ) = (e1 · Θj)(e2 · (Θ∗
i )

′).

Since Ω = limδ→0 Ωδ,

aij = lim
δ→0

∫

Ωδ

LΦj · Φ∗
i − Φj · LΦ∗

i dx

= −
π∫

−π

Θj · Θ∗
i + ν1(E21 + E22 − E23)dθ.

Therefore, a11 = a22 = −32(ν1 + 2)(ν1 + 1)π and a12 = a21 = 0. Hence, by (6.5), (4.5) follows. �
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