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The Cauchy problem for time-fractional linear nonlocal diffusion equations
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Abstract. This manuscript is dedicated to study the Cauchy problem for time-fractional linear nonlocal diffusion problems
in the whole R

N , including the existence and uniqueness of solutions, their asymptotic behaviour as t goes to infinity, and
the analysis of the corresponding rescaled problems by rescaling the convolution kernel J in some appropriate ways. Two
time-fractional models will be considered in our work, one is related to the simplest linear nonlocal diffusion operator of
the form J ∗ u − u, and the other is proposed as a nonlocal analogy of higher-order evolution equations.
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1. Introduction

As is well known, the fractional calculus has been recognized as a powerful tool for describing the memory
effects of power-law kernels [1–3]. Moreover, memory effects can be modelled by using the evolutionary
equations of convolution type [4,5]. Therefore, as an indispensable class of evolutionary equations with
traditional fractional differential operators (the nonlocal type time derivatives), the time-fractional dif-
fusion equations (with regard to the order α of time-fractional derivative satisfying 0 < α < 1) and their
applications have recently become a hot topic in the fields of mathematics and physics [6–16].

In practical applications, there may be some non-local effects that affect the evolution of a system.
In general, for example, we do not have enough information to understand the systems under study and
their characteristics at each point. One possible reason for introducing non-local terms into many models
or systems is that the actual measurements are not done point by point, but through some local average.
Very recently, there are plenty of meaningful works about nonlocal problems and their applications in
physics and population dynamics. Among them, we refer to the papers [17–26] and the references therein.

Compared with the classical initial conditions, the nonlocal conditions can describe some physical
phenomena better. Although many time-fractional evolutionary equations with various nonlocal condi-
tions have been investigated (see, e.g., [27–30]), most of these existing works only involve the bounded
domains in R

N rather than the whole R
N and there are no convolution kernels contained in their main

equations. In view of these discussions, it is natural and challenging to study the time-fractional nonlocal
evolution equations of convolution type in the whole R

N . This can be regarded as the first motivation of
our paper.

Besides, the authors Andreu-Vaillo Fuensanta et al presented many theoretical results concerning the
nonlocal evolution equations with different boundary conditions in their monograph [31]. They mainly
introduced the nonlocal evolution equations of the form

∂u(x, t)
∂t

= (J ∗ u)(x, t) − u(x, t),

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-023-02053-2&domain=pdf
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where J : R
N → R is a nonnegative, continuous, and radial (that is, for any x, y ∈ R

N , it holds
|x| = |y| ⇒ J(x) = J(y)) function satisfying

∫
RN J(x)dx = 1. Recently, the mentioned nonlocal diffusion

problem of convolution type above and its variants have been widely used to model dispersal processes,
here we only refer the readers to the papers [32–35]. As far as we know, however, the study of the nonlocal
diffusion equations with convolution terms in the time-fractional case is still limited. This is the second
motivation of our paper.

Fourier transform is the basic tool of harmonic analysis, and it plays a very important role in analyzing
PDEs. To the best of our knowledge, there are only a few works studying the time-fractional PDEs by
utilizing the techniques of Fourier transform or harmonic analysis, we refer to [36–38]. In this paper, for
the forthcoming time-fractional nonlocal evolution equations governed by the convolution kernels (see
(1.1) and (1.2) below), we attempt to make use of the Fourier transform to investigate the existence and
uniqueness of the solutions and their asymptotic behaviour as t → +∞. In other words, to some extent,
the results given in this paper generalize some results of [31] into the time-fractional case. This is the
third motivation of the current paper.

Based on the above discussions, in the present paper, we study the Cauchy problem for the following
time-fractional linear nonlocal diffusion equation

⎧
⎨

⎩

C∂α
0,tu(x, t) = J ∗ u(x, t) − u(x, t)

=
∫
RN J(x − y)u(y, t)dy − u(x, t), x ∈ R

N , t > 0,
u(x, 0) = u0(x), x ∈ R

N ,
(1.1)

and the higher-order problem of the form
⎧
⎪⎪⎨

⎪⎪⎩

C∂α
0,tu(x, t) = (−1)n−1(J ∗ I − 1)n

(
u(x, t)

)

= (−1)n−1

(
∑n

k=0

(
n
k

)
(−1)n−k(J∗)k(u)

)

(x, t), x ∈ R
N , t > 0,

u(x, 0) = u0(x), x ∈ R
N ,

(1.2)

where 0 < α < 1, C∂α
0,tu denotes the Caputo type time-fractional derivative of the function u(x, t) =

u(x1, x2, · · · , xN , t) of order α (see Definition 1 in Sect. 2), N ≥ 1, ∗ denotes the convolution, n ∈ N
+ and

n ≥ 2, I denotes the identity operator,
(
n
k

)
= Ck

n = n!
(n−k)!k! , (J∗)k(u) = J ∗ · · ·︸︷︷︸

k

∗J ∗ u, the convolution

kernel J : R
N → R is a nonnegative function and satisfies the following hypothesis, which will be imposed

throughout this paper:
(H): J ∈ C(RN , R+) is a radial function with J(0) > 0 and

∫
RN J(x)dx = 1.

The remainder of this paper is organized as follows. Section 2 collects some necessary preliminaries. In
Sect. 3, we deal with the Cauchy problem for (1.1). The Laplace transform and the Fourier transform help
us obtain the explicit expression of the solutions in Fourier variables. After establishing the existence and
uniqueness result, we get the asymptotic behaviour of the unique solution and prove that this asymptotic
behaviour is same with the one for the unique solution of a space-time fractional diffusion equation
given by the same time-fractional derivative and the fractional Laplacian. The rescaled problem then be
considered in the end of Sect. 3 by rescaling the convolution kernel J in an appropriate way. Finally, in
Sect. 4, the higher-order problem (1.2) will be treated in exactly the same process as Sect. 3.

2. Preliminaries

In this section, we give some necessary preliminaries involving the fractional calculus, the Fourier trans-
form, the Laplace transform, the fractional Laplacian and some properties of the function J under the
hypothesis (H).
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Definition 1. (See [1–3]) Let ϕ : R
N ×[0,+∞) → R, α ∈ (0, 1). Then the fractional integral of the function

ϕ with the lower terminal t = 0 of order α is defined by

Iα
0,tϕ(x, t) :=

1
Γ(α)

t∫

0

(t − s)α−1ϕ(x, s)ds, t > 0,

where Γ(·) denotes the usual Gamma function.
The Caputo fractional derivative of the function ϕ with the lower terminal t = 0 of order α is defined

by

C∂α
0,tϕ(x, t) :=

1
Γ(1 − α)

t∫

0

(t − s)−α ∂ϕ(x, s)
∂s

ds, t > 0.

Lemma 1. (See [2]) Let α ∈ (0, 1). If ϕ ∈ C
(
[0,+∞); R

)
, then

Iα
0,t

(C
∂α
0,tϕ(t)

)
= ϕ(t) − ϕ(0).

Lemma 2. (See [39,40]) For the Mittag-Leffler function Eα,1(z) =
∑∞

k=0
zk

Γ(kα+1) , z ∈ C, α > 0, if
0 < α1 < α2 < 1 and α ∈ [α1, α2], then there exist positive constants mα,Mα depending only on α1, α2

such that
(i) Eα,1(−z) > 0, for any z > 0; (ii) mα

1+z ≤ Eα,1(−z) ≤ Mα

1+z , for all z > 0.

Lemma 3. (See [41]) For the Wright-type function

Mα(θ) :=
∞∑

k=0

θk

k!Γ(−αk + 1 − α)
, 0 < α < 1,

it holds

Mα(θ) ≥ 0, θ > 0;

∞∫

0

θδMα(θ)dθ =
Γ(1 + δ)
Γ(1 + αδ)

, δ > −1.

Moreover, the following relationship holds

Eα,1(−z) =

∞∫

0

Mα(θ)e−zθds, z ∈ C.

Definition 2. (See [31]) Let f ∈ L1(RN ). Then the Fourier transform of f is defined by

F [f ](ξ) = f̂(ξ) :=
∫

RN

e−i(x,ξ)f(x)dx,

where (·, ·) denotes the scalar product in R
N . The inverse Fourier transform of f is defined by

F−1[f ](x) = f̌(x) :=
1

(2π)N

∫

RN

ei(x,ξ)f(ξ)dξ.

Moreover, the inverse of the Fourier transform operator F is given by the inverse formula

f(x) = F−1[f̂ ](x) =
1

(2π)N

∫

RN

ei(x,ξ)f̂(ξ)dξ. (2.1)

Lemma 4. (See [31,42])
(i) Let f, f̂ ∈ L1(RN ). Then (2.1) holds for a.e. x ∈ R

N .
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(ii) Let f, g ∈ L1(RN ). Then f ∗ g ∈ L1(RN ) and f̂ ∗ g = f̂ · ĝ.
(iii) For a nonzero real number b, it holds f̂(bx) = 1

|b| f̂( ξ
b ).

Definition 3. (See [43]) Consider the Schwarz space S(RN ) of rapidly decaying C∞ functions in R
N . Let

f ∈ S(RN ) and s ∈ (0, 1). Then the fractional Laplacian operator (−Δ)s is defined as

(−Δ)sf(x) := C(N, s)P.V.

∫

RN

f(x) − f(y)
|x − y|N+2s

dy,

where P.V. is a commonly used abbreviation for “in the principal value sense” and C(N, s) is a dimensional
constant that depends on N and s, precisely given by

C(N, s) =
( ∫

RN

1 − cos(ζ1)
|x − y|N+2s

dζ

)−1

,

where ζ = (ζ1, ζ2, · · · , ζN ).

Lemma 5. (See [31,43]) Let 0 < λ ≤ 2 and f ∈ S(RN ). Then the Fourier transform of the fractional
Laplacian of f is given by

F [(−Δ)
λ
2 f ](ξ) = |ξ|λf̂(ξ).

Remark 1. More generally, let 0 < λ ≤ 2 and f ∈ S(RN ), then for fixed positive integer n ∈ N
+, it holds

F [(−Δ)
nλ
2 f ](ξ) = |ξ|λF [(−Δ)

(n−1)λ
2 f ](ξ)

= |ξ|2λF [(−Δ)
(n−2)λ

2 f ](ξ)

= · · · = |ξ|(n−1)λF [(−Δ)
λ
2 f ](ξ)

= |ξ|nλf̂(ξ). (2.2)

Lemma 6. (See [1]) Let α ∈ (0, 1). Assume that f is a continuous (or piecewise continuous) function
defined on [0,∞) of exponential order γ, which means that there exist positive constants M and T such
that e−γt|f(t)| ≤ M for all t > T . Then it holds

(i) L{C∂α
0,tf(t)}(s) = sαL{f(t)}(s) − sα−1f(0);

(ii) L{Eα,1(±λtα}(s) =
sα−1

sα ∓ λ
,

where L{f(t)}(s) denotes the Laplace transform of f .

Lemma 7. (See [31]) Under the hypothesis (H) for the function J , it holds

(i) Ĵ(ξ) is real for all ξ ∈ R
N due to the symmetry of J .

(ii) |Ĵ(ξ)| ≤ 1, Ĵ(0) = 1.
(iii) Assume that there exist A > 0 and 0 < β ≤ 2 such that

Ĵ(ξ) = 1 − A|ξ|β + o(|ξ|β), ξ → 0, (2.3)

then
∣
∣Ĵ(ξ) − 1 + A|ξ|β∣

∣ ≤ |ξ|βh(ξ),

where h ≥ 0 is bounded and satisfies h(ξ) → 0 as ξ → 0.
Moreover, for a given constant B > 0, there exist a > 0 and 0 < δ < 1 such that

∣
∣Ĵ(ξ) − 1 + A|ξ|β∣

∣ ≤ B|ξ|β , |ξ| ≤ a,
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and

|Ĵ(ξ)| ≤ 1 − δ, |ξ| ≥ a.

Remark 2. In Lemma 7 (iii), the notation f(ξ) = g(ξ) + o(|ξ|β) as ξ → 0 means that

lim
ξ→0

f(ξ) − g(ξ)
|ξ|β = 0.

3. The Cauchy problem for (1.1)

There are three tasks in this section, the first one is to discuss the existence and uniqueness of the
solution of (1.1) by Fourier variable, the second one is to investigate the asymptotic behaviour of the
unique solution as t → +∞ and the last one is to analyze the rescaled problem.

3.1. Existence and uniqueness

In this subsection, we utilize the techniques of the Laplace transform and the Fourier transform to obtain
the existence and uniqueness of the solution of (1.1). Before this, we first present the following definition
concerning the concept of the solution of (1.1).

Definition 4. By a mild solution of the time-fractional nonlocal diffusion problem (1.1), we mean that a
function u ∈ C

(
[0,+∞);L1(RN )

)
satisfying (1.1) in the sense of integration, that is, u satisfies

u(t) = u0(x) +
1

Γ(α)

t∫

0

(t − s)α−1

∫

RN

J(x − y)u(y, s)dy − u(x, s)ds.

Next, we prove a useful lemma that will play an important role in the main result in this subsection.

Lemma 8. For any fixed t > 0, the Mittag-Leffler function Eα,1

(−(1−Ĵ(·))tα)
is continuous and bounded

on the whole R
N .

Proof. With the consideration of Lemma 7 (i), the continuity then follows immediately by recalling that
Eα,1(z) (z ∈ C) is an entire function and noting that −(1− Ĵ(·))tα is continuous. As for the boundedness,
it is easy to observe from Lemma 2 (ii) and Lemma 7 (ii) that

Eα,1

( − (1 − Ĵ(ξ))tα
) ≤ Mα

1 + (1 − Ĵ(ξ))tα
≤ Mα

holds true for all ξ ∈ R
N . �

Now, we are ready to give the existence and uniqueness result.

Theorem 1. Let u0, û0 ∈ L1(RN ). Then (1.1) has a unique solution u ∈ C
(
[0,+∞);L1(RN )

)
, which can

be given in the form of Fourier variable by

û(ξ, t) = Eα,1

( − (1 − Ĵ(ξ))tα
) · û0(ξ). (3.1)

Proof. Applying the spatial Fourier transform to (1.1) and using Lemma 4 (ii), we have
{

C∂α
0,tû(ξ, t) = Ĵ(ξ) · û(ξ, t) − û(ξ, t) = (Ĵ(ξ) − 1)û(ξ, t), t > 0,

û(ξ, 0) = û0(ξ).
(3.2)
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By taking the temporal Laplace transform to the first equation of (3.2) and using Lemma 6 (i), we get

L{û(ξ, t)}(s) =
sα−1û0(ξ)

sα + (1 − Ĵ(ξ))
. (3.3)

Next, we take the inverse Laplace transform to (3.3) and make use of Lemma 6 (ii), it then yields that

û(ξ, t) = Eα,1

( − (1 − Ĵ(ξ))tα
) · û0(ξ). (3.4)

In view of Lemma 8 and û0 ∈ L1(RN ), the inverse Fourier transform then can be utilized to (3.4) to
guarantee the existence. Finally, as for uniqueness, we recall that the Fourier transform operator F is an
isomorphism from S(RN ) onto S(RN ), which indicates that its inverse exists and is unique. �

3.2. Asymptotic behaviour

We focus our attention in this subsection on the analysis of the asymptotic behaviour of the unique
solution of (1.1). We shall prove that the asymptotic behaviour is same as the one that holds for the
unique solution of the following space-time fractional diffusion equation

C∂α
0,tv(x, t) = −A(−Δ)

β
2 v(x, t), x ∈ R

N , t > 0, (3.5)

which is equipped with the same initial datum with (1.1), i.e.,

v(x, 0) = u0(x), x ∈ R
N , (3.6)

where the definition of the fractional Laplacian is from Definition 3 and the constants A, β can be found
if (2.3) holds.

Remark 3. Obviously, if β = 2, then (3.5) becomes a standard time-fractional heat equation, which has
been considered as a hot topic in mathematical physics researches in recent years. For more related works
and further information about the time-fractional heat equations and their applications, one can refer to
[44–49] and the references therein.

Firstly, by using the similar ideas as in the proof of Theorem 1, we give the explicit formula of the
solution to (3.5)-(3.6) in Fourier variable.

Theorem 2. Let u0, û0 ∈ L1(RN ). Then, in Fourier variable, the unique solution of (3.5)-(3.6) can be
expressed by

v̂(ξ, t) = Eα,1

( − A|ξ|βtα
) · û0(ξ). (3.7)

Proof. By the Fourier transform and Lemma 5, it follows that
{

C∂α
0,tv̂(ξ, t) = −A|ξ|β v̂(ξ, t), t > 0,

v̂(ξ, 0) = û0(ξ).
(3.8)

Acting the Laplace transform on the first equation of (3.8) and using Lemma 6 (i), we then obtain

L{v̂(ξ, t)}(s) =
sα−1û0(ξ)
sα + A|ξ|β . (3.9)

Furthermore, taking the inverse Laplace transform to (3.9) and using Lemma 6 (ii), we have

v̂(ξ, t) = Eα,1

( − A|ξ|βtα
) · û0(ξ).

Observe that Eα,1

( − A|·|βtα
)

is bounded and continuous on the whole R
N (similar to Lemma 8) and

û0 ∈ L1(RN ), the desired result follows automatically by the inverse Fourier transform. �

Before showing our main result in this section, it is essential to emphasize the feasibility of the following
basic fact.
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Lemma 9. Let α ∈ (0, 1), β ∈ (0, 2]. Then there must exist a real-valued function r satisfying

lim
t→+∞ r(t) = 0, lim

t→+∞ r(t)t
α
β = +∞. (3.10)

Proof. This result is obvious. In fact, we can find such functions r of power type, like r(t) = tμ with
−α

β < μ < 0. �

Now, we give the following asymptotic behaviour result for the particular case N = 1.

Theorem 3. Suppose that there exist A > 0 and 1 < β ≤ 2 such that (2.3) holds. Let u0, û0 ∈ L1(R).
Then the asymptotic behaviour of the unique solution of (1.1) is given by

lim
t→+∞ t

α
β max

x∈R

|u(x, t) − v(x, t)| = 0, (3.11)

where v is the unique solution of (3.5)-(3.6). Moreover, there exists a constant C1 > 0 such that
∥
∥u(·, t) − v(·, t)∥∥

L∞(R)
≤ C1t

− α
β . (3.12)

Proof. By (3.1) and (3.7), we have in Fourier variable that
∫

R

|û − v̂|(ξ, t)dξ

=
∫

R

∣
∣
∣
∣

(

Eα,1

( − (1 − Ĵ(ξ))tα
) − Eα,1

( − A|ξ|βtα
)
)

û0(ξ)
∣
∣
∣
∣dξ

≤
∫

|ξ|≥r(t)

∣
∣
∣
∣

(

Eα,1

( − (1 − Ĵ(ξ))tα
) − Eα,1

( − A|ξ|βtα
)
)

û0(ξ)
∣
∣
∣
∣dξ

︸ ︷︷ ︸
I1

+
∫

|ξ|<r(t)

∣
∣
∣
∣

(

Eα,1

( − (1 − Ĵ(ξ))tα
) − Eα,1

( − A|ξ|βtα
)
)

û0(ξ)
∣
∣
∣
∣dξ

︸ ︷︷ ︸
I2

,

where the function r can be found by Lemma 9. To deal with I1, we note that it holds

I1 ≤
∫

|ξ|≥r(t)

∣
∣Eα,1

( − A|ξ|βtα
)∣
∣ · |û0(ξ)|dξ

︸ ︷︷ ︸
I11

+
∫

|ξ|≥r(t)

∣
∣Eα,1

( − (1 − Ĵ(ξ))tα
)∣
∣ · |û0(ξ)|dξ

︸ ︷︷ ︸
I12

.

On the one hand, by changing the variable η = ξt
α
β and using Lemma 2, we get

I11 ≤ t−
α
β

∫

|η|≥r(t)t
α
β

Eα,1

( − A|η|β)|û0(ηt−
α
β )|dη

≤ t−
α
β Mα

∫

|η|≥r(t)t
α
β

1
1 + A|η|β |û0(ηt−

α
β )|dη,
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which implies that

t
α
β I11 ≤ Mα‖û0‖L∞(R)

∫

|η|≥r(t)t
α
β

1
1 + A|η|β dη → 0, t → +∞. (3.13)

On the other hand, let a, δ be as in Lemma 7 (iii) for B = A
2 , then we can decompose I12 into two parts

as follows:

I12 ≤
∫

a≥|ξ|≥r(t)

Eα,1

( − (1 − Ĵ(ξ))tα
)|û0(ξ)|dξ

︸ ︷︷ ︸
I1
12

+
∫

|ξ|≥a

Eα,1

( − (1 − Ĵ(ξ))tα
)|û0(ξ)|dξ

︸ ︷︷ ︸
I2
12

.

For I1
12, it follows from Lemma 7 (iii), the inequality ye−y ≤ 1 for y > 0, Lemma 3 and Lemma 2 (ii) that

I1
12 =

∫

a≥|ξ|≥r(t)

( ∞∫

0

Mα(θ)e−(1−Ĵ(ξ))tαθdθ

)

|û0(ξ)|dξ

=
∫

a≥|ξ|≥r(t)

( ∞∫

0

Mα(θ)e−A|ξ|βtαθ+[Ĵ(ξ)−1+A|ξ|β ]tαθdθ

)

|û0(ξ)|dξ

≤
∫

a≥|ξ|≥r(t)

( ∞∫

0

Mα(θ)e−A|ξ|βtαθe

∣
∣Ĵ(ξ)−1+A|ξ|β

∣
∣tαθdθ

)

|û0(ξ)|dξ

≤
∫

a≥|ξ|≥r(t)

( ∞∫

0

Mα(θ)e− A
2 |ξ|βtαθdθ

)

|û0(ξ)|dξ

=
∫

a≥|ξ|≥r(t)

Eα,1

( − A

2
|ξ|βtα

)|û0(ξ)|dξ

≤ Mα

∫

a≥|ξ|≥r(t)

1
1 + A

2 |ξ|βtα
|û0(ξ)|dξ.

Setting η = ξt
α
β again, we then obtain

t
α
β I1

12 ≤ Mα

∫

at
α
β ≥|η|≥r(t)t

α
β

1
1 + A

2 |η|β |û0(ηt−
α
β )|dη

≤ Mα‖û0‖L∞(R)

∫

|η|≥r(t)t
α
β

1
1 + A

2 |η|β dη → 0, t → +∞. (3.14)

Next, by Lemma 7 (iii) and Lemma 2 (ii) again, we estimate I2
12 as follows:

I2
12 =

∫

|ξ|≥a

Eα,1

( − (1 − Ĵ(ξ))tα
)|û0(ξ)|dξ
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=
∫

|ξ|≥a

( ∞∫

0

Mα(θ)e(Ĵ(ξ)−1)tαθdθ

)

|û0(ξ)|dξ

≤
∫

|ξ|≥a

( ∞∫

0

Mα(θ)e−tαθe|Ĵ(ξ)|tαθdθ

)

|û0(ξ)|dξ

≤
∫

|ξ|≥a

( ∞∫

0

Mα(θ)e−δtαθdθ

)

|û0(ξ)|dξ

=
∫

|ξ|≥a

Eα,1

( − δtα
)|û0(ξ)|dξ ≤ Mα

∫

|ξ|≥a

1
δtα

|û0(ξ)|dξ,

which means that

t
α
β I2

12 ≤ Mα

δ

∫

|ξ|≥a

1

tα(1− 1
β )

|û0(ξ)|dξ

≤ Mα

δtα(1− 1
β )

‖û0‖L1(R) → 0, t → +∞. (3.15)

Combining (3.13),(3.14) with (3.15), we deduce that t
α
β I1 → 0 as t → +∞, and our next task is to check

that t
α
β I2 → 0 (t → +∞). In fact, from Lemma 3, Lemma 7 (iii), the elementary inequalities ye−y ≤ 1

for y > 0 and |ey − 1| ≤ C|y| for |y| bounded and some C > 0, we derive that

I2 =
∫

|ξ|<r(t)

∣
∣
∣
∣

(

Eα,1

( − (1 − Ĵ(ξ))tα
) − Eα,1

( − A|ξ|βtα
)
)

û0(ξ)
∣
∣
∣
∣dξ

=
∫

|ξ|<r(t)

∣
∣
∣
∣

∞∫

0

Mα(θ)
(

e−(1−Ĵ(ξ))tαθ − e−A|ξ|βtαθ

)

dθ · û0(ξ)
∣
∣
∣
∣dξ

=
∫

|ξ|<r(t)

∣
∣
∣
∣

∞∫

0

Mα(θ)e−A|ξ|βtαθ

(

e(Ĵ(ξ)−1+A|ξ|β)tαθ − 1
)

dθ · û0(ξ)
∣
∣
∣
∣dξ

≤ C

∫

|ξ|<r(t)

∣
∣
∣
∣

∞∫

0

Mα(θ)e−A|ξ|βtαθh(ξ)|ξ|βtαθdθ · û0(ξ)
∣
∣
∣
∣dξ

≤ C

∫

|ξ|<r(t)

|ξ|βtαh(ξ)
A|ξ|βtα

(
∞∫

0

Mα(θ)dθ
)|û0(ξ)|dξ

=
C

A

∫

|ξ|<r(t)

h(ξ)|û0(ξ)|dξ ≤ C‖û0‖L∞(R)

A

∫

|ξ|<r(t)

h(ξ)dξ → 0, t → +∞.

Consequently, the above arguments show that

lim
t→+∞ t

α
β

∥
∥û(·, t) − v̂(·, t)∥∥

L1(R)
= lim

t→+∞ t
α
β

∫

R

|û − v̂|(ξ, t)dξ = 0,
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which further implies that

t
α
β |u(x, t) − v(x, t)| = t

α
β

∣
∣
∣
∣

1
2π

∫

R

ei(x,ξ)
(
û(ξ, t) − v̂(ξ, t)

)
dξ

∣
∣
∣
∣

≤ t
α
β

1
2π

∫

R

∣
∣û(ξ, t) − v̂(ξ, t)

∣
∣dξ → 0, t → +∞.

This means that the asymptotic behaviour (3.11) is satisfied.
Moreover, it holds

t
α
β

∥
∥u − v

∥
∥

L∞(R)
= t

α
β

∥
∥u(·, t) − v(·, t)∥∥

L∞(R)

= t
α
β ess supx∈R

∣
∣u(x, t) − v(x, t)

∣
∣

≤ t
α
β max

x∈R

∣
∣u(x, t) − v(x, t)

∣
∣ → 0, t → +∞,

which tells us that there exist C1 > 0 and T > 0 such that
∥
∥u(·, t) − v(·, t)∥∥

L∞(R)
≤ C1t

− α
β , ∀t > T.

This ensures the convergence of u − v in L∞(R) and the proof is completed. �

Remark 4. Clearly, Theorem 3 indicates that the decay rate is t−
α
β , which depends on not only α (the

order of time-fractional derivative) but also β (the order of spatial fractional Laplacian).

3.3. Analysis of the rescaled problem

In this subsection, by rescaling the kernel J in (1.1) via the way Jε(x) = 1
εJ(x

ε ), we show that the
time-fractional heat problem C∂α

0,tv(x, t) = Δv(x, t) can be approximated by a rescaled problem
{

C∂α
0,tuε(x, t) = 1

ε2

(
Jε ∗ uε(x, t) − uε(x, t)

)
, x ∈ R, t > 0,

uε(x, 0) = u0(x), x ∈ R.
(3.16)

Theorem 4. Assume that (2.3) holds for A = 1, β = 2. Let uε be the unique solution of (3.16). Then, for
every T > 0, it holds

lim
ε→0

‖uε − v‖L∞(R×(0,T )) = 0, (3.17)

where v is the unique solution of the following time-fractional heat equation
C∂α

0,tv(x, t) = Δv(x, t), x ∈ R, t > 0, (3.18)

which has the same initial condition with (3.16), that is,

v(x, 0) = u0(x), x ∈ R. (3.19)

Proof. Using the same methods as in Theorem 1 and Theorem 2, noting that
∫
RN Jε(x)dx = 1 and

Ĵε(ξ) = Ĵ(εξ) are satisfied by the condition (H) and Lemma 4 (iii) respectively, we can obtain the
explicit formulas for the solutions of (3.16) and (3.18)-(3.19) in Fourier variables as follows:

ûε(ξ, t) = Eα,1

( − 1
ε2

(1 − Ĵ(εξ))tα
) · û0(ξ),

v̂(ξ, t) = Eα,1

( − |ξ|2tα) · û0(ξ).
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Then, we have in Fourier variable that
∫

R

|ûε − v̂|(ξ, t)dξ

=
∫

R

∣
∣
∣
∣

(

Eα,1

( − 1
ε2

(1 − Ĵ(εξ))tα
) − Eα,1

( − |ξ|2tα)
)

û0(ξ)
∣
∣
∣
∣dξ

≤
∫

|ξ|≥r(ε)

∣
∣
∣
∣

(

Eα,1

( − 1
ε2

(1 − Ĵ(εξ))tα
) − Eα,1

( − |ξ|2tα)
)

û0(ξ)
∣
∣
∣
∣dξ

+
∫

|ξ|<r(ε)

∣
∣
∣
∣

(

Eα,1

( − 1
ε2

(1 − Ĵ(εξ))tα
) − Eα,1

( − |ξ|2tα)
)

û0(ξ)
∣
∣
∣
∣dξ,

where the function r satisfies r(ε) → 0 as ε → 0.
Obviously, for t ∈ [0, T ], we can proceed as in the proof of Theorem 3 to derive that

|uε(x, t) − v(x, t)| =
∣
∣
∣
∣

1
2π

∫

R

ei(x,ξ)
(
ûε(ξ, t) − v̂(ξ, t)

)
dξ

∣
∣
∣
∣

≤ 1
2π

∫

R

∣
∣ûε(ξ, t) − v̂(ξ, t)

∣
∣dξ → 0, ε → 0,

which verifies that

max
x∈R,t∈[0,T ]

∣
∣uε(x, t) − v(x, t)

∣
∣ → 0, ε → 0.

Hence, it must hold

‖uε − v‖L∞(R×(0,T )) = ess sup(x,t)∈R×(0,T )

∣
∣uε(x, t) − v(x, t)

∣
∣

≤ max
x∈R,t∈[0,T ]

∣
∣uε(x, t) − v(x, t)

∣
∣ → 0, ε → 0.

This completes the proof. �

4. Higher-order problem (1.2)

In this section, we consider (1.2), a time-fractional nonlocal diffusion problem with a nonlocal diffusion
operator of higher order.

4.1. Existence and uniqueness

Firstly, as it was done for (1.1) in Subsect. 3.1, we will investigate the existence and uniqueness of the
solution of (1.2), which should be also understood in the sense of integration.

Theorem 5. Let u0, û0 ∈ L1(RN ). Then (1.2) possesses a unique solution u ∈ C
(
[0,+∞);L1(RN )

)
, which

is given in Fourier variable by the explicit formula

û(ξ, t) = Eα,1

( − (1 − Ĵ(ξ))ntα
) · û0(ξ). (4.1)
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Proof. Applying the Fourier transform to (1.2) and using Lemma 4 (ii), we have
⎧
⎨

⎩

C∂α
0,tû(ξ, t) = (−1)n−1

∑n
k=0

(
n
k

)
(−1)n−k

(
J(ξ)

)k
û(ξ, t)

= (−1)n−1
(
J(ξ) − 1

)n
û(ξ, t), t > 0,

û(ξ, 0) = û0(ξ).
(4.2)

Taking the Laplace transform to the first equation of (4.2) and using Lemma 6 (i), it yields that

L{û(ξ, t)}(s) =
sα−1û0(ξ)

sα − (−1)n−1
(
Ĵ(ξ) − 1

)n . (4.3)

The inverse Laplace transform then can be used to derive

û(ξ, t) = Eα,1

(
(−1)n−1

(
Ĵ(ξ) − 1

)n
tα

) · û0(ξ) = Eα,1

( − (
1 − Ĵ(ξ)

)n
tα

) · û0(ξ).

On account that û0 ∈ L1(RN ) and the Mittag-Leffler function Eα,1

( − (
1 − Ĵ(ξ)

)n
tα

)
is bounded and

continuous, we deduce that û(·, t) ∈ L1(RN ) and hence the result follows by conducting the inverse
Fourier transform. �

4.2. Asymptotic behaviour

This subsection deals with the asymptotic behaviour of the unique solution of (1.2) as t → +∞. Before
obtaining the main result, we give a result concerning the explicit expression of the solution to the
following time-fractional diffusion equation with a high order fractional Laplacian of the form

C∂α
0,tv(x, t) = −An(−Δ)

nβ
2 v(x, t), x ∈ R

N , t > 0, (4.4)

subjected to the same initial condition with (1.2), i.e.,

v(x, 0) = u0(x), x ∈ R
N . (4.5)

Similarly, the constants A > 0 and β ∈ (0, 2] here are assumed to fulfill (2.3).

Theorem 6. Let u0, û0 ∈ L1(RN ). Then, in Fourier variable, the unique solution of (4.4)-(4.5) can be
expressed by

v̂(ξ, t) = Eα,1

( − An|ξ|nβtα
) · û0(ξ). (4.6)

Proof. The proof can be easily done by using (2.2) and is quite similar to Theorem 2, so we omit it here.
�

Theorem 7. Suppose that there exist A > 0 and 0 < β ≤ 2 such that (2.3) holds. Let u0, û0 ∈ L1(RN )
and N < nβ. Then the asymptotic behaviour of the unique solution of (1.2) is given by

lim
t→+∞ t

Nα
nβ max

x∈RN
|u(x, t) − v(x, t)| = 0,

where v is the unique solution of (4.4)-(4.5). Moreover, there exists a constant C2 > 0 such that
∥
∥u(·, t) − v(·, t)∥∥

L∞(RN )
≤ C2t

− Nα
nβ .

Proof. By combining (4.1) with (4.6), we have in Fourier variable that
∫

RN

|û − v̂|(ξ, t)dξ

=
∫

RN

∣
∣
∣
∣

(

Eα,1

( − (1 − Ĵ(ξ))ntα
) − Eα,1

( − An|ξ|nβtα
)
)

û0(ξ)
∣
∣
∣
∣dξ
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≤
∫

|ξ|≥r(t)

∣
∣
∣
∣

(

Eα,1

( − (1 − Ĵ(ξ))ntα
) − Eα,1

( − An|ξ|nβtα
)
)

û0(ξ)
∣
∣
∣
∣dξ

︸ ︷︷ ︸
[I1]

+
∫

|ξ|<r(t)

∣
∣
∣
∣

(

Eα,1

( − (1 − Ĵ(ξ))ntα
) − Eα,1

( − An|ξ|nβtα
)
)

û0(ξ)
∣
∣
∣
∣dξ

︸ ︷︷ ︸
[I2]

,

where the function r satisfies r(t) → 0 as t → +∞ and will be determined later.
For [I1], it holds

[I1] ≤
∫

|ξ|≥r(t)

∣
∣Eα,1

( − An|ξ|nβtα
)∣
∣ · |û0(ξ)|dξ

︸ ︷︷ ︸
[I11]

+
∫

|ξ|≥r(t)

∣
∣Eα,1

( − (1 − Ĵ(ξ))ntα
)∣
∣ · |û0(ξ)|dξ

︸ ︷︷ ︸
[I12]

.

Firstly, let us consider [I11]. Setting η = ξt
α

nβ , then it follows from Lemma 2 that

[I11] ≤ t−
Nα
nβ

∫

|η|≥r(t)t
α

nβ

Eα,1

( − An|η|nβ
)|û0(ηt−

α
nβ )|dη

≤ t−
Nα
nβ ‖û0‖L∞(RN )Mα

∫

|η|≥r(t)t
α

nβ

1
1 + An|η|nβ

dη,

which implies that

t
Nα
nβ [I11] → 0 (t → +∞) (4.7)

holds true if we assume that

r(t)t
α

nβ → +∞ (t → +∞). (4.8)

Next, we check that

t
Nα
nβ [I12] → 0 (t → +∞). (4.9)

On the one hand, by decomposing [I12] into two parts, we obtain

[I12] ≤
∫

a0≥|ξ|≥r(t)

Eα,1

( − (1 − Ĵ(ξ))ntα
)|û0(ξ)|dξ

︸ ︷︷ ︸
[I1

12]

+
∫

|ξ|≥a0

Eα,1

( − (1 − Ĵ(ξ))ntα
)|û0(ξ)|dξ

︸ ︷︷ ︸
[I2

12]

,
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where a0 is an arbitrary positive constant. Let a and δ be as in Lemma 7 (iii) for B = 1
2nA and choose

a0 = a. Then it follows from Lemma 2 (ii) and Lemma 3 that

[I1
12] =

∫

a≥|ξ|≥r(t)

( ∞∫

0

Mα(θ)e−(1−Ĵ(ξ))ntαθdθ

)

|û0(ξ)|dξ

≤
∫

a≥|ξ|≥r(t)

( ∞∫

0

Mα(θ)e−(1− 1
2n )nAn|ξ|nβtαθdθ

)

|û0(ξ)|dξ

=
∫

a≥|ξ|≥r(t)

Eα,1

( − (1 − 1
2n

)nAn|ξ|nβtα
)|û0(ξ)|dξ

≤ Mα

∫

a≥|ξ|≥r(t)

1
1 + (1 − 1

2n )nAn|ξ|nβtα
|û0(ξ)|dξ. (4.10)

Then, by changing the variable in (4.10) as before, i.e., η = ξt
α

nβ , we have

t
Nα
nβ [I1

12] ≤ Mα

∫

at
α

nβ ≥|η|≥r(t)t
α

nβ

1
1 + (1 − 1

2n )nAn|η|nβ
|û0(ηt−

α
nβ )|dη

≤ Mα

(1 − 1
2n )nAn

‖û0‖L∞(RN )

∫

|η|≥r(t)t
α

nβ

1
|η|nβ

dη → 0,

as t → +∞, provided that (4.8) holds. On the other hand, we estimate [I2
12] as follows:

[I2
12] =

∫

|ξ|≥a

Eα,1

( − (1 − Ĵ(ξ))ntα
)|û0(ξ)|dξ

=
∫

|ξ|≥a

( ∞∫

0

Mα(θ)e−(1−Ĵ(ξ))ntαθdθ

)

|û0(ξ)|dξ

≤
∫

|ξ|≥a

( ∞∫

0

Mα(θ)e−δntαθdθ

)

|û0(ξ)|dξ

=
∫

|ξ|≥a

Eα,1

( − δntα
)|û0(ξ)|dξ ≤ Mα

∫

|ξ|≥a

1
δntα

|û0(ξ)|dξ,

which shows that

t
Nα
nβ [I2

12] ≤ Mα‖û0‖L1(RN )

δntα(1 − N
nβ )

→ 0, t → +∞. (4.11)

Therefore, (4.9) holds if we impose the condition (4.8).
Now, it remains for us to deal with [I2]. By the relationship Eα,1(−z) =

∫ ∞
0

Mα(θ)e−zθds, z ∈ C

again, we can rewrite [I2] as

[I2] =
∫

|ξ|<r(t)

∣
∣
∣
∣

∞∫

0

Mα(θ)
(

e−(1−Ĵ(ξ))ntαθ − e−An|ξ|nβtαθ

)

dθ · û0(ξ)
∣
∣
∣
∣dξ
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=
∫

|ξ|<r(t)

∣
∣
∣
∣

∞∫

0

Mα(θ)e−An|ξ|nβtαθ

(

e

(
−(1−Ĵ(ξ))n+An|ξ|nβ

)
tαθ − 1

)

dθ · û0(ξ)
∣
∣
∣
∣dξ.

By the binomial formula, it holds

− (1 − Ĵ(ξ))n + An|ξ|nβ

= (−1)n−1(Ĵ(ξ) − 1)n + An|ξ|nβ

= (−1)n−1
[(

Ĵ(ξ) − 1 + A|ξ|β) − A|ξ|β]n + An|ξ|nβ

= (−1)n−1

( n∑

k=0

(
n

k

)
(
Ĵ(ξ) − 1 + A|ξ|β)k(−A|ξ|β)n−k

)

+ An|ξ|nβ

= (−1)n−1

( n∑

k=1

(
n

k

)
(
Ĵ(ξ) − 1 + A|ξ|β)k(−A|ξ|β)n−k

)

+ (−1)n−1(−A|ξ|β)n + An|ξ|nβ

= (−1)n−1

( n∑

k=1

(
n

k

)
(
Ĵ(ξ) − 1 + A|ξ|β)k(−A|ξ|β)n−k

)

.

Next, by Lemma 7 (iii), the elementary inequalities ye−y ≤ 1 for y > 0 and |ey −1| ≤ C|y| for |y| bounded
and some C > 0, we have

[I2] ≤ C

∫

|ξ|<r(t)

∞∫

0

Mα(θ)e−An|ξ|nβtαθtαθ

( n∑

k=1

(
n

k

)
∣
∣Ĵ(ξ) − 1 + A|ξ|β∣

∣k

× ∣
∣ − A|ξ|β∣

∣n−k
)

dθ · û0(ξ)dξ

≤ C

∫

|ξ|<r(t)

∞∫

0

Mα(θ)e−An|ξ|nβtαθtαθ

( n∑

k=1

(
n

k

)

An−k
(
h(ξ)

)k
)

× |ξ|nβdθ · û0(ξ)dξ

≤ CCA,h

∫

|ξ|<r(t)

|ξ|nβtαh(ξ)
An|ξ|nβtα

(
∞∫

0

Mα(θ)dθ
)|û0(ξ)|dξ

=
CCA,h

An

∫

|ξ|<r(t)

h(ξ)|û0(ξ)|dξ

≤ CCA,h‖û0‖L∞(RN )

An

∫

|ξ|<r(t)

h(ξ)dξ → 0, t → +∞, (4.12)

where the constant CA,h > 0 satisfies the inequality

( n∑

k=1

(
n

k

)

An−k
(
h(ξ)

)k
)

≤ CA,hh(ξ).
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Hence, we deduce from (4.7), (4.9) and (4.12) that

t
Nα
nβ

∫

RN

|û − v̂|(ξ, t)dξ ≤ t
Nα
nβ ([I1] + [I2]) → 0, t → +∞ (4.13)

holds true if there exists a function r with r(t) → 0 as t → +∞ such that the condition (4.8) is satisfied.
In fact, this can be done by Lemma 9 changing there β by nβ.

By (4.13), we know

lim
t→+∞ t

Nα
nβ

∥
∥û(·, t) − v̂(·, t)∥∥

L1(RN )
= lim

t→+∞ t
Nα
nβ

∫

RN

|û − v̂|(ξ, t)dξ = 0,

which shows that

t
Nα
nβ |u(x, t) − v(x, t)| = t

Nα
nβ

∣
∣
∣
∣

1
(2π)N

∫

RN

ei(x,ξ)
(
û(ξ, t) − v̂(ξ, t)

)
dξ

∣
∣
∣
∣

≤ t
Nα
nβ (2π)−N

∫

RN

∣
∣û(ξ, t) − v̂(ξ, t)

∣
∣dξ → 0, t → +∞.

Therefore, we obtain

t
Nα
nβ max

x∈RN
|u(x, t) − v(x, t)| → 0, t → +∞.

Furthermore, it holds

t
Nα
nβ

∥
∥u − v

∥
∥

L∞(RN )
= t

Nα
nβ

∥
∥u(·, t) − v(·, t)∥∥

L∞(RN )

= t
Nα
nβ ess supx∈RN

∣
∣u(x, t) − v(x, t)

∣
∣

≤ t
Nα
nβ max

x∈RN
|u(x, t) − v(x, t)| → 0, t → +∞,

which states that there exist C2 > 0 and T > 0 such that
∥
∥u(·, t) − v(·, t)∥∥

L∞(RN )
≤ C2t

− Nα
nβ , ∀t > T.

This guarantees the convergence of u − v in L∞(RN ). �

4.3. Rescaling the kernel in (1.2)

With regard to the corresponding rescaled problem for (1.2), we conclude this section with a direct
generalization of Subsect. 3.3 by using the same procedure with the proof of Theorem 7.

Corollary 1. Suppose that all the conditions in Theorem 7 are satisfied. Rescaling the kernel J by

Jε(x) = ε−NJ(
x

ε
).

Let uε be the unique solution of the following rescaled higher-order nonlocal problem
{

C∂α
0,tuε(x, t) = (−1)n−1

εnβ

(
Jε ∗ I − 1

)n(
uε(x, t)

)
, x ∈ R

N , t > 0,
uε(x, 0) = u0(x), x ∈ R

N .
(4.14)

Then, for every T > 0, it holds

lim
ε→0

‖uε − v‖L∞(RN ×(0,T )) = 0, (4.15)

where v is the unique solution of (4.4)-(4.5).
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