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Abstract. This paper presents elasticity solutions for functionally graded piezoelectric plates under electric fields in cylindrical
bending. Based on the generalized Mian and Spencer plate theory, the assumption of the material parameters which can vary
along the thickness direction of the plate in an arbitrary fashion is kept; however, the materials are extended from elastic
materials to piezoelectric materials. The electric potential function is constructed following the forms of the displacement
functions in Mian and Spencer plate theory. The essential idea of Mian and Spencer plate theory (J Mech Phys Solids
46:2283–2295, 1998) is that the three-dimensional elasticity equations for inhomogeneous materials can be obtained by
two-dimensional solution for homogeneous materials by straightforward substitutions. Through rigorous derivation, the
corresponding elasticity solutions of cylindrical bending of functionally graded piezoelectric plates under electric fields are
obtained. In the numerical examples, the accuracy of the present solutions is verified and the responses of plates subjected
to electrical potential difference and electrical displacement are investigated, respectively.
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1. Introduction

Piezoelectric materials have been considered as promising candidates for actuators and sensors applied
in micro-electro-mechanical and smart systems due to their intrinsic coupling of the electric field and the
electric field [1]. Traditional piezoelectric devices are designed as laminated forms of piezoelectric materi-
als, which easily cause interfacial debonding and high-stress concentrations under mechanical or electric
loadings. Inspired by the concept of functionally graded materials, functionally graded piezoelectric ma-
terials (FGPMs) have been developed, whose composition and properties can be designed smoothly and
continuously in the preferred orientation [1,2].

Currently, numerical, semi-analytic and analytic methods have been proposed to investigate the me-
chanical/piezoelectric responses of FGPM plates [3–19]. Semi-analytical methods, combined analytical
methods with numerical methods, have been developed for the static, free vibration and buckling analy-
ses of FGPM plates with various boundary conditions [4–6]. For example, semi-analytical solutions were
elaborated based on the extended Stroh-like formalism for 3D static problems of electro-elastic mono-
and multilayered plates, where mechanical and electrical forces were applied on the top and/or bottom
layer and may take arbitrary forms [5]; Wu and Ding [6] employed a unified formulation of the finite
layer method, based on the Reissner mixed variational theorem, for the coupled electro-elastic analysis
of the simply-supported FGPM plates under electro-mechanical loads. As for numerical methods, such
as the differential quadrature (DQ), finite element (FE) and meshless methods, which have been adopted
for more complex problems of FGPM plates [8–10]. For instants, geometrically nonlinear static response
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of functionally graded piezoelectric plate under mechanical and electrical loads was studied by using Mesh-
less method [9]. Radial point interpolation method (RPIM) was used to create the shape function and
approximate the field variables. The first-order shear deformation plate theory (FSDT) and Von Karman
strains were used to model the nonlinear behavior of plate; Kumar and Harsha [10] executed a modal
analysis of functionally graded piezoelectric material rectangular plate to find the natural frequency with
different mode shapes by using the FE Technique where the piezoelectric material was considered to
be graded along the thickness according to the simplified power-law.

Although the analytical methods are limited to the relatively simple problems, the availability of
analytical solutions with the highest accuracy is inherently of much importance to serve as a benchmark
for numerical and semi-analytical modeling [11]. Based on the three-dimensional (3D) piezoelectricity
theory and the state space approach, Zhong and Shang [12] obtained an exact solution of a simply-
supported FGPM rectangular plate with exponent-law distribution under the sinusoidal mechanical and
electric loadings. Li et al. [13,14] and Zhao et al. [15] adopted the direct displacement method to perform a
3D analysis of the transversely isotropic FGPM circular plates subjected to a uniform mechanical loading,
electric potential difference and electric displacement on the upper and/or lower surfaces, respectively.
Li and Pan [16] investigated the static bending problems of a simply supported FGPM microplate with
considering the size effect, and the material properties were varied through the thickness according to a
power law. Liu and Wang [17] obtained 3D analytical solutions for the structural instability of a simply
supported orthotropic piezoelectric rectangular microplate by means of a linear perturbation analysis. An
analytical solution was presented by Ghafarollahi and Shodja [18] for the scattering of transverse surface
waves by a homogeneous piezoelectric fiber contained in a functionally graded piezoelectric half-space
with exponentially varying electromechanical properties using a multipole expansion method. Zenkour
and Hafed [19] presented the piezoelectric effect on the bending of simply supported FGPM plate by
using a simple quasi-3D sinusoidal shear deformation theory, in which material properties were assumed
to vary exponentially in the thickness direction. Besides, Bachir et al. [20,21] developed a refined shear
deformation theory with four unknown functions to obtain the elastic solutions of the thermo-mechanical
bending response for the functionally graded plate. As the reviewed papers mentioned above, it is worth
noting that due to the mathematical difficulties, not much work has been done to obtain elasticity
solutions of FGPM plates based on piezoelectricity theory.

Mian and Spencer [22] developed an ingenious theory for deriving 3D analytical solutions for isotropic
FGM plates with tractions-free surfaces. In this theory, the material properties are assumed to vary
arbitrarily in the thickness direction of plates. The origins of this method can be traced back to the
classical solutions by Michell [23] for plane stress of moderately thick elastic plates. Yang et al. [24,25]
extended above Mian and Spencer plate theory to study transversely isotropic FGM plates subjected to
uniform loads applied on the top and bottom surfaces. In this paper, we further extend the generalized
Mian and Spencer plate theory for deriving elasticity solutions of the equations of linear piezoelasticity
for FG piezoelectric materials, which are no longer the elastic materials and reveal the innovation of
the present work. This is not a trivial extension because the elastic deformation and electric field are
coupled for piezoelectric materials. To illustrate the procedure of this extension, functionally graded
piezoelectric plates under electric fields in cylindrical bending are investigated and the corresponding
elasticity solutions are presented. The proposed theory will be helpful for the further investigation on
related boundary value problems of FGPM plates.

2. Basic equations

In a rectangular Cartesian coordinate (x, y, z), consider an orthotropic and FGPM plate of uniform
thickness h, shown in Fig. 1a, with the xy plane at mid-plane (z = 0) and z-axis perpendicular to the
mid-plane. It is noteworthy that the material parameters are varied arbitrarily along the z-axis. As shown
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Fig. 1. a 3D FGPM plate and coordinate system; 2D FGPM plates subjected to an (b) electric potential difference and c
electric displacement

in Figs. 1b, c, two typical external electric loadings are applied, respectively, that is, a uniform electric
potential difference (Φ2 at z = h/2 and Φ1 at z = −h/2) and electric displacement D0 are uniformly
distributed on the top and/or bottom surfaces the of plate. When the plate is in a state of cylindrical
bending, the geometrical dimension of the plate along the y-axis is assumed to be far longer than the other
two directions such that 0 ≤ x ≤ l −∞ < y < ∞ and −h/2 ≤ z ≤ h/2 and then, the three-dimensional
(3D) plate problem can be simplified to a two-dimensional (2D) plane problem where all.

In the absence of body forces, the basic equations for piezoelasticity are given in the following [24]:

σx,x + τxz,z = 0, τxz,x + σz,z = 0. (1)
Dx,x + Dz,z = 0, (2)
σx = c11u,x + c13w,z + e31φ,z, σz = c13u,x + c33w,z + e33φ,z, τzx = c55 (u,z + w,x) + e15φ,x, (3)
Dx = e15 (u,z + w,x) − λ11φ,x, Dz = e31u,x + e33w,z − λ33φ,z (4)

where the comma denotes differentiation with respect to the indicated variable; σx, σz and τxz are the
stress components; u and w are the displacement components; Dx and Dz are the electric displacements; φ
is the electric potential; cij , eij and λij are the elastic, piezo-electric and dielectric coefficients, respectively.
It is noteworthy that these elastic coefficients are functions of z for FGPMs, and particularly become
constant coefficients for homogeneous materials.

Based on the generalized Mian and Spencer plate theory [22], we seek solutions of the displacements
as follows:

u (x, z) = ū (x) + F (z) ū,xx + A (z) w̄,x + B (z) w̄,xxx,

w (x, z) = w̄ (x) + G (z) ū,x + C (z) w̄,xx + D (z) , (5)

where A (z) , B (z) , C (z) , D (z) , F (z) , G (z) are the unknown functions to be determined Assume
functions ū = ū (x) and w̄ = w̄ (x) are the mid-plane displacements of the plate and hence, we have
A (0) = 0, B (0) = 0, C (0) = 0, D (0) = 0, F (0) = 0,G (0) = 0 from Eq. (5).

Following the above expression forms of the displacements, it is assumed that the electric potential
function has the following form:

φ (x, z) = φ1 (z) ū,x + φ2 (z) w̄,xx + φ0 (z) , (6)

where φ0 (z) , φ1 (z), φ2 (z) are the unknown functions to be determined
Substituting Eqs. (5)–(6) into Eqs. (3)–(4), the expressions of the stress components and electric

displacement components are rewritten as:

σx = ū,x

(
c11 + c13G

′+e31φ′
1
)

+ w̄,xx (c11A + c13C
′ + e31φ

′
2) + Fc11ū,xxx + Bc11w̄,xxxx
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+D′c13+e31φ′
0,

σz = ū,x (c13 + c33G
′+e33φ

′
1) + w̄,xx (c13A + c33C

′ + e33φ
′
2) + Fc13ū,xxx + Bc13w̄,xxxx

+D′c33 + e33φ
′
0,

τzx = ū,xx [c55 (F ′ + G) + e15φ1] + w̄,xxx [c55 (B′ + C) + e15φ2] + w̄,x [c55 (A′ + 1)] , (7)
Dx = ū,xx [e15 (F ′ + G) − λ11φ1] + w̄,xxx [e15 (B′ + C) − λ11φ2] + w̄,x [e15 (A′ + 1)] ,
Dz = ū,x (e31 + e33G

′ − λ33φ
′
1) + w̄,xx (e31A + e33C

′ − λ33φ
′
2) + e31F ū,xxx + e31Bw̄,xxxx

+e33D
′ − λ33φ

′
0. (8)

Substituting Eqs. (7)–(8) into Eqs. (1)–(2) and provided that:

[c55 (A′ + 1)]′ = 0, (9)

(c13 + c33G
′+e33φ

′
1)

′ = 0, (10)

(e31 + e33G
′ − ε33φ

′
1)

′ =0, (11)

c55 (A′ + 1) + (c13A + c33C
′ + e33φ

′
2)

′ = 0, (12)

e15 (A′ + 1) + (e31A + e33C
′ − ε33φ

′
2)

′ =0, (13)

c11 + c13G
′+e31φ

′
1 + (c55 (F ′ + G) + e15φ1)

′ = c55κ1, (14)

c11A + c13C
′ + e31φ

′
2 + (c55 (B′ + C) + e15φ2)

′ = c55κ2, (15)
ū,xxx = κ3, (16)
w̄,xxxx = κ4. (17)

where “′” denotes differentiation with respect to z, and κi(i = 1,2,3,4) are arbitrary constant to be
determined.

Accordingly, Eqs. (1)–(2) are rewritten as:

κ1κ3 + κ2κ4 = 0. (18)
[
c55 (F ′ + G) + (Fc13)

′ +e15φ1

]
κ3 +

[
c55 (B′ + C) + (c13B)′ +e15φ2

]
κ4+ (c33D′+e33φ

′
0)

′ = 0, (19)
[
e15 (F ′ + G) + (Fe31)

′ − ε11φ1

]
κ3 +

[
e15 (B′ + C) + (e31B)′ − ε11φ2

]
κ4+ (e33D′ − ε33φ

′
0)

′ = 0.

(20)

The mid-plane displacement components can be given by integrating Eqs. (16)–(17), respectively:

w̄ (x) =
1
24

κ4x
4 +

1
6
C1x

3 +
1
2
C2x

2 + C3x + C4, (21)

ū (x) =
1
6
κ3x

3 − 1
2

κ2

κ1
C1x

2 + C5x + C6. (22)

where Ci(i = 1, 2, . . . , 6) are integral constants to be determined by the edge boundary conditions at
x = 0, l

3. Under electric potential case

3.1. Determination of the displacement functions and electric potential functions

When only electric potential is applied, the boundary conditions on the top and bottom surfaces of the
plate can be expressed as:

z = −h/2 : σz = 0, τzx = 0, φ=Φ1 (23)

z = h/2 : σz = 0, τzx = 0, φ=Φ2 (24)
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The expression of the electric potential function in Eq. (6) is updated by introducing Eqs. (21)–(22):

φ (x, z) =
κ3φ1 (z) + κ4φ2 (z)

2
x2 −

[
κ2

κ1
φ1 (z) − φ2 (z)

]
C1x + φ1 (z) C5 + φ2 (z) C2 + φ0 (z) . (25)

Substituting Eq. (7) and Eq. (25) into Eqs. (23)–(24) leads to the following differential equations:

A′ (±h/2) + 1 = 0, (26)
c13 (±h/2) + c33 (±h/2) G′ (±h/2) +e33 (±h/2) φ′

1 (±h/2) = 0, (27)
c13 (±h/2) A (±h/2) + c33 (±h/2) C ′ (±h/2) +e33 (±h/2) φ′

2 (±h/2) = 0, (28)
c13 (±h/2) [κ3F (±h/2) + κ4B (±h/2)] + c33 (±h/2) D′ (±h/2) +e33 (±h/2) φ′

0 (±h/2) = 0 (29)
c55 (±h/2) [F ′ (±h/2) + G (±h/2)] + e15 (±h/2) φ1 (±h/2) =0 (30)
c55 (±h/2) [B′ (±h/2) + C (±h/2)] + e15 (±h/2) φ2 (±h/2) =0 (31)
κ3φ1 (±h/2) + κ4φ2 (±h/2) =0 (32)

φ1 (−h/2) C5 + φ2 (−h/2) C2 + φ0 (−h/2) = Φ1 (33)

φ1 (h/2) C5 + φ2 (h/2) C2 + φ0 (h/2) =Φ2 (34)

Integrating Eqs. (9)–(15) and (19)–(20) by virtue of Eqs. (26)–(34), the expressions of functions of
variable z in Eqs. (5) and (6) can be determined:

A (z) = −z (35)
B (z) = k2f5 (z) − Φ2f6 (z) + H4f7 (z) + B1 (z) + B0, (36)
C (z) = C1 (z) + H4a

0
0 (z) + C0, (37)

D (z) = −κ3 [D00 (z)H2 + D01 (z)] − κ4 [D00 (z)H4 + D02 (z)] + a0
0 (z)H7 + D0 (38)

F (z) = k1f5 (z) − Φ1f6 (z) + H2f7 (z) + F1 (z) + F0, (39)
G (z) = G1 (z) + H2a

0
0 (z) + G0, (40)

φ1 (z) = φ10 (z) − H2b
0
0 (z) + Φ1 (41)

φ2 (z) = φ20 (z) − H4b
0
0 (z) + Φ2, (42)

φ0 (z) = −κ3 [φ00 (z)H2 + φ01 (z)] − κ4 [φ00 (z) H4 + φ02 (z)] − b00 (z)H7 + Φ0, (43)

where the expressions of functions including a0
0 (z), b00 (z), F1 (z), B1 (z), fi (z) (i = 5, 6, 7),

D0i (z) (i = 0, 1, 2), φ0i (z) (i = 0, 1, 2) are listed in “Appendix A”; B0, C0, D0, F0, G0, Φ1, Φ2, Φ0, H2,
H4 and H7 are integration constants, in which H2, H4 and H7 can be expressed according to Eqs. (8),
(10) and (11):

H2 = e31 + e33G
′ (z) − λ33φ

′
1 (z) , H4 = e31A + e33C

′ (z) − λ33φ
′
2 (z) ,

H7=κ3e31 (−h/2) F (−h/2) + κ4e31 (−h/2) B (−h/2) + e33 (−h/2) D′ (−h/2) − λ33 (−h/2) φ′
0 (−h/2)

3.2. Determination of the remaining integral constants

Integrating Eqs. (14)–(15) gives:

κ1 =

h/2∫

−h/2

c11 + c13G
′+e31φ

′
1dξ

h/2∫

−h/2

c55dξ

=
h0
0 (h/2) − H2f

0
0 (h/2)

g5 (h/2)
,
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κ2 =

h/2∫

−h/2

c11A + c13C
′ + e31φ

′
2dξ

h/2∫

−h/2

c55dξ

=
−h0

1 (h/2) − H4f
0
0 (h/2)

g5 (h/2)
(44)

where g5 (z) =
z∫

−h/2

c55dξ, and hj
i (z) (i, j = 0, 1) is given in “Appendix A”.

Substituting Eqs. (41)–(42) into Eq. (32) leads to:

κ3Φ1 + κ4Φ2=0, (45)
κ3

[
φ10 (h/2) − H2b

0
0 (h/2)

]
+ κ4

[
φ20 (h/2) − H4b

0
0 (h/2)

]
=0. (46)

Integrating Eq. (19) and using Eq. (29) with z = h/2, we can obtain the following expression:

κ3

h/2∫

−h/2

[c55 (F ′ + G) +e15φ1]dξ + κ4

h/2∫

−h/2

[c55 (B′ + C) +e15φ2]dξ = 0. (47)

Substituting Eqs. (36)–(43) into above Eq. (47) leads to

κ3

[−h1
0 (h/2) + H2f

1
0 (h/2)

]
+ κ4

[
h1
1 (h/2) + H4f

1
0 (h/2)

]
=0. (48)

Substituting Eq. (44) into (18), Eqs. (46)–(48) become:
[
f0
1 (h/2) f0

0 (h/2) − b00 (h/2) h0
1 (h/2)

]
H2 +

[
f0
0 (h/2) f0

0 (h/2) − b00 (h/2) h0
0 (h/2)

]
H4

= f0
1 (h/2) h0

0 (h/2) − f0
0 (h/2) h0

1 (h/2) , (49)
[
h1
1 (h/2) f0

0 (h/2) − f1
0 (h/2) h0

1 (h/2)
]
H2 +

[
h1
0 (h/2) f0

0 (h/2) − f1
0 (h/2) h0

0 (h/2)
]
H4

= h1
1 (h/2) h0

0 (h/2) − h1
0 (h/2) . (50)

Thus, constants H2 and H4 can be determined by solving these two simultaneous equations.
Furthermore, we define the mean values of electric displacement along x-axis at x = 0, l as [13–15]

D∗
x=

1
h

h/2∫

−h/2

Dxdz = 0. (51)

We can arrive at the following expressions from Eq. (51):

Φ1 =
1

h/2∫

−h/2

λ11dξ

h/2∫

−h/2

{
e15 [F ′ (z) + G (z)] − λ11

[
φ10 (z) − H2b

0
0 (z)

]}
dξ,

Φ2 =
1

h/2∫

−h/2

λ11dξ

h/2∫

−h/2

{
e15 [B′ (z) + C (z)] − λ11

[
φ20 (z) − H4b

0
0 (z)

]}
dξ (52)

By considering the fact that φ (0, 0) = φ (l, 0) for the FGPM plate in this case, we obtain the following
equation:

1
2

[κ3φ1 (0) + κ4φ2 (0)] l2 − C1

[
κ2

κ1
φ1 (0) − φ2 (0)

]
l=0. (53)
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Accordingly, we can obtain the expressions of κ3 and κ4 by using Eqs. (18) and (53):

κ3=
2
l

κ2

κ1
C1, κ4= − 2

l
C1. (54)

Introducing Eqs. (41)–(43) into Eqs. (33)–(34), we have the following equation:

2
l

{
κ2

κ1
[φ01 (h/2)] − φ02 (h/2)

}
C1 − [

f0
1 (h/2) + H4b

0
0 (h/2)

]
C2

+
[
f0
0 (h/2) − H2b

0
0 (h/2)

]
C5 − b00 (h/2) H7 = Φ̄2 − Φ̄1. (55)

The six integral constants Ci(i = 1, 2, . . . , 6) arising from Eq. (21)–(22) can be determined by the
edge boundary conditions at x = 0,l, which there are simply supported (S), clamped (C) and free (F)
conditions:

S : ū = 0, w̄ = 0, Mx = 0, (56)
C : ū = 0, w̄ = 0, w̄,x = 0, (57)
F : Nx = 0, Mx = 0, Qx = 0, (58)

where the expressions of the resultant forces and moments are given in “Appendix B”. There are totally
4 different kinds of combination of Eqs. (56)–(58), namely SS, CC, SC, CF, in which the first letter denotes
the conditions at x = 0 and the second signifies those at x = l. For any kind of the above-mentioned
boundary conditions, we have six equations from boundary conditions and a supplementary equation
from Eq. (55) which are just enough to determine constants: Ci(i = 1, 2, . . . , 6) and H7 completely.

Therefore, the elasticity solutions of FGPM plates under the external electric potentials can be ob-
tained from Eqs. (3)–(5).

4. Under electric displacement case

4.1. Determination of the displacement and electric potential functions

When an electric displacement is applied on the top surface of the plate, the boundary conditions on the
top and bottom surfaces are proposed as

z = −h/2 : σz = 0, τzx = 0, Dz = 0 (59)
z = h/2 : σz = 0, τzx = 0, Dz = −D0 (60)

Similarly, substituting the related stress and electric displacement components in Eqs. (7)–(8) into
Eqs. (59)–(60), and in view of Eqs. (26)–(31), the following equations can be gotten:

e31 (±h/2) + e33 (±h/2) G′ (±h/2) − λ33 (±h/2) φ′
1 (±h/2) =0, (61)

e31 (±h/2) A (±h/2) + e33 (±h/2) C ′ (±h/2) − λ33 (±h/2) φ′
2 (±h/2) =0, (62)

e31 (−h/2) F (−h/2)κ3 + e31 (−h/2) B (−h/2) κ4 + e33 (−h/2) D′ (−h/2)
−λ33 (−h/2) φ′

0 (−h/2) =0, (63)
e31 (+h/2) F (+h/2)κ3 + e31 (+h/2) B (+h/2) κ4 + e33 (+h/2) D′ (+h/2)

−λ33 (+h/2) φ′
0 (+h/2) = −D0. (64)

Based on some of Eqs. (9)–(15), and Eqs. (19)–(20), (26)–(31) and (61)–(64), the displacement and
electric potential functions can be easily deduced:

A (z) = −z (65)
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B (z) =

z∫

−h/2

1
c55

[B10 (ξ) − e15φ2 (ξ)] − C (ξ)dξ + B0, (66)

C (z) = −
z∫

−h/2

λ33c13 + e33e31
c33λ33 + e233

A (ξ)dξ + C0, (67)

D (z) = −
z∫

−h/2

λ33 [D10 (ξ) + D00 (ξ)] + e33 [D20 (ξ) + D01 (ξ)]
c33λ33 + e233

dξ + D0, (68)

F (z) =

z∫

−h/2

1
c55

[F10 (ξ) − e15φ1 (ξ)] − G (ξ)dξ + F0, (69)

G (z) = −
z∫

−h/2

λ33c13 + e33e31
c33λ33 + e233

dξ + G0, (70)

φ1 (z) =

z∫

−h/2

c33e31 − c13e33
c33λ33 + e233

dξ + Φ1, (71)

φ2 (z) =

z∫

−h/2

c33e31 − c13e33
c33λ33 + e233

A (ξ) dξ + Φ2, (72)

φ0 (z) =

z∫

−h/2

c33 [D20 (ξ) + D01 (ξ)] − e33 [D10 (ξ) + D00 (ξ)]
c33λ33 + e233

dξ + Φ0, (73)

where the expressions of functions F10 (z), B10 (z), D10 (z), D00 (z), D20 (z) and D01 (z) are listed in
“Appendix C”; B0, C0, D0, F0, G0, Φ1, Φ2 and Φ0 are integration constants which revealed in “Appendix
C”.

4.2. Determination of the remaining integral constants

The determination of κ1 and κ2 is similar to the electric potential case with integrating Eqs. (10)–
(11), while κ3 and κ4 can be obtained via the following equations which can be obtained by integrating
Eqs. (19)–(20) with the aid of Eqs. (63)–(64):

κ3

h/2∫

−h/2

[c55 (F ′ + G) + e15φ1]dξ + κ4

h/2∫

−h/2

[c55 (B′ + C) + e15φ2]dξ = 0 (74)

κ3

h/2∫

−h/2

[e15 (F ′ + G) − λ11φ1]dξ + κ4

h/2∫

−h/2

[e15 (B′ + C) − λ11φ2]dξ=D0 (75)

Considering the boundary conditions at x = 0,l (as shown in Eqs. (56)–(58)), six integral constants,
Ci(i = 1, 2, . . . , 6) can be determined by six equations provided by any two kind of boundary conditions.
Accordingly, the elasticity solutions of FGPM plate under the external electric displacement can be
obtained completely from Eqs. (3)–(5).
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Table 1. Constants of some typical piezoelectric materials

Property PZT-4 [14] BATIO3 [27] COFE2O4 [27]

Elastic

(109N/m2)

c011=139.0, c033=115.0, cB11=166.0, cB33=162.0, cC11=286.0, c033=269.5,

c013=74.3, c055=25.6 cC13=78.0, cC55=43.0 cC13=170.5, cC55=45.3
Piezoelectric
(C/m2)

e031= − 5.2, e033=15.1, eC31= − 4.4, eC33=18.6, eB31=0, eB33=0, eB15=0

e015=12.7 eC15=11.6
Dielectric
(10−9C/(Vm))

λ0
11=6.5, λ0

33=5.6 λC
11=11.2, λ0

33=12.6 λC
11=0.08, λ0

33=0.093

Table 2. Comparison of Wand σ̄x at top and bottom surfaces

z/h CC SS

W σ̄x W σ̄x

−0.5 0.5 −0.5 0.5 −0.5 0.5 −0.5 0.5

Present 4.3746 −4.3790 −7.1766 −7.1766 5.4683 −5.4738 −5.0954 −5.0954
FEM 4.5293 −4.5293 −6.9947 −6.9947 5.5638 −5.5638 −5.0090 −5.0090
Errors (%) −3.42 −3.32 2.60 2.60 −1.72 −1.62 1.72 1.72

5. Numerical results and discussion

To illustrate the present elasticity solutions, numerical examples are given in this section to reveal the
electrical responses of FGPM plates subjected to a uniform electric potential difference and electric
displacement, respectively. Unless stated otherwise, the thickness of FGPM plate h =0.15 m, the width
l =1 m, and x = l/2 in this work. Note that the material parameters can be varied arbitrarily along
the thickness direction in this paper

5.1. Verification

The verification of the proposed analytical solutions is performed via a homogeneous piezoelectric plate
subjected to a uniform electric potential difference. We compare the present results with a numerical
model which are established by ABAQUS software via finite element method (FEM). The 8-node reduced
integration element (C3D8R) is adopted to mesh the plate, and the material property of piezoelectric
material PZT-4 is listed in Table 1. An incremental electric potential difference (1V) is applied between
the top and bottom surfaces of the plate to obtain the piezoelectric responses.

Taking CC and SS boundary conditions as typical examples to prove the accuracy of the present
analytical solutions for brevity. Figure 2 shows the distributions of the dimensionless deflection W̄ (W̄ =
W/h) and normal stress component σ̄x (σ̄x = σx/c011) along the thickness direction of the plate. It is
obviously that the present solutions are in excellent agreement with FEM results. As shown in Table
2, the absolute errors of the dimensionless deflection W̄ and normal stress σ̄x are less than 3.42% and
2.60%, respectively. These results indicate that the present analytical solution is valid and accuracy in
predicting the piezoelectric responses of plates.
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Fig. 2. Comparison of dimensionless a deflection Wand b stress component σ̄x between the present and FEM results

5.2. Under electric potential case

We now consider a FGPM plate subjected to a uniform electric potential difference with Φ1 = 0 and
Φ1 = 1V and with material properties varied exponentially along the z-direction [18]:

cij (z) = c0ije
[(z+h/2)/h]p, eij (z) = e0ije

[(z+h/2)/h]p, λij (z) = λ0
ije

[(z+h/2)/h]p, i, j = 1, 2, ..., 6, (76)

where p is the gradient index to characterize the degree of material inhomogeneity. In Particular,
the FGPM will degrade into the homogenous piezoelectric material if p = 0. c0ij , e0ij and λ0

ij are the
elastic, piezoelectric and dielectric properties of PZT-4 [14] (given in Table 1) at the bottom surface
(z = −h/2) of plate, respectively. Without loss of generality, CS boundary condition is considered in this
case. Moreover, the following dimensionless quantities are introduced:

W̄ =
W

h
, σ̄x =

σx

c011
, Φ̄∗ =

φ
(
Φ2 − Φ1

) , D̄z =
Dz√
c011ε

0
33

. (77)

Figure 3a plots the variations of the dimensionless electric potential Φ
∗

with the p changed from -10 to
10 along the thickness direction of the plate. It is found that Φ

∗
changes in a linear way when p = 0. As

for the FGPMs, Φ
∗

exhibits an obvious nonlinear behavior. Affected by the distribution characteristics
of exponential function in Eq. (76), Φ

∗
firstly increases sharply and then, shows a slowly increase when

p > 0, while Φ
∗

firstly show a relatively gentle rising and then, increases significantly when p < 0.
Moreover, these trends are becoming apparent with the increased absolute value of p. The dimensionless
electric displacement component D̄z for various values of p along the thickness direction of plate is shown
in Fig. 3b. It is observed that the distributions of D̄z basically keep constant along the thickness direction
of the plate, and the absolute value is increasing with p changed from -10 to 10.

When it comes to the elastic field, the through-the-thickness distributions of the dimensionless de-
flection W are presented in Fig. 4a. It is easy to observe that W tends to zero at the mid-plane of plate
regardless of p. W shows a linear trend for homogeneous materials and has an evident nonlinear change
for FGPMs. When p > 0, the maximum deflection occurs on the bottom surface of the FGPM plate; when
p < 0, the maximum value of the absolute deflection achieved on the top surface. It is also obvious that
W is central symmetric for the same absolute value of p. Figure 4b displays the variation of dimensionless
normal stress σ̄x along the thickness direction of plate. The distribution pattern of σ̄x is the same as that
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Fig. 3. Distribution of dimensionless a electric potential Φ
∗

and b electric displacement component Dz along the thickness
direction of plate

Fig. 4. Dimensionless a deflection W and b stress component σ̄x along the thickness direction of plate

of D̄z, which means that σ̄x keeps constant along the thickness direction of plate and the absolute value
increases with p.

5.3. Under electric displacement case

Next, we consider a FGPM plate subjected to an external electric displacement D0=0.01C/m2 uniformly
distributed on the top surface of plate. The material properties vary in a power law manner [15]:

cij (z) = cBij (1/2 − z/h)p + cCij [1 − (1/2 − z/h)p] ,

eij (z) = eBij (1/2 − z/h)p + eCij [1 − (1/2 − z/h)p] ,
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Fig. 5. Dimensionless displacements a W and b U along the thickness direction of plate

λij (z) = λB
ij (1/2 − z/h)p + λC

ij [1 − (1/2 − z/h)p] , i, j = 1, 2, ..., 6, (78)

where cBij , eBij , λB
ij , cCij , eCij and λC

ij are material coefficients of BaTiO3 and CoFe2O4(listed in Table 1)
[27]. The gradient index p =0 corresponds to BaTiO3 material. We take a FGPM plate with CF boundary
condition as a typical example in this case, and a set of dimensionless variables are introduced for the
sake of display:

Ū =
u

h
, W̄ =

W

h
, σ̄x =

σx

cC11
, σ̄z =

σz

cC11
, Φ̄∗ =

φ

h

√
λC
33

cC33
, D̄z =

Dz

D0
. (79)

Figure 5 shows the variations of the dimensionless displacements Wand U along the thickness direction
of the plate. The material gradient index p is taken for 0, 5 and 10. In contrast to the case of the
homogeneous piezoelectric material (p =0) where W appears linear distribution along thickness direction
in Fig. 5a, it becomes increasingly nonlinear distribution with increased p. Besides, it can be found that
the value of W increases withp. The dimensionless in-plane displacement U shows a linear variation across
the thickness direction in Fig. 5b. The maximal absolute value of U occurs at the top surface of the plate,
which also increases with p.

Distributions of the dimensionless stresses σ̄x and σ̄z along the thickness direction of the plate are
illustrated in Fig. 6. It can be observed that σ̄x basically presents a linear distribution through the
thickness direction, while σ̄z exhibit obvious nonlinear change characteristics. The maximal absolute
values of σ̄x and σ̄z are gained on the top surface and in the upper half of the plates, respectively. We
can see that σ̄z on the top and bottom surfaces of plate exactly meet the boundary conditions in Eqs.
(59)–(60). Moreover, compared with σ̄x, σ̄z is a high-order small quantity which is consistent with that
under mechanical loading.

As illustrated in Fig. 7a, the dimensionless electric displacement Dz is nonlinear along the thickness
direction for FGPMs as compared with a linear distribution for the homogeneous piezoelectric material
(p = 0). Moreover, the curve of the dimensionless electric potential Φ

∗
is plotted in Fig. 7b which shows

a nonlinear change along the thickness direction of the plate.
Furthermore, the effects of the boundary conditions, including SS, CC, CS and CF, on the thickness

distributions of W , σ̄x and Φ
∗

are revealed in Figs. 8a–c with p = 10. As shown in Fig. 8a, W has negative
values for the SS, CC and CS cases and obtains positive value for the CF case. Besides, W gains the
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Fig. 6. Dimensionless stress component a σ̄x and b σ̄z along the thickness direction of plate

Fig. 7. Dimensionless a electric displacement component Dz and b electric potential Φ
∗

along the thickness direction of
plate

maximal absolute value for the SS boundary condition. As for σ̄x in Fig. 8b, the maximal absolute values
appear on the top surface of the FGPM plates in which the CF plate has the maximum value. As shown in
Fig. 8c, it is obvious that the distributions of Φ

∗
exhibit mainly no difference for all boundary conditions

within the upper part of the FGPM plates, while there is a significant difference in the lower part of the
plates.

6. Conclusions

Elasticity solutions of FGPM plates under electric fields in cylindrical bending are presented in this paper.
The main conclusions are as follows:
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Fig. 8. Dimensionless a displacement W , b stress component σ̄x and c electric potential Φ
∗

along the thickness direction
of plate with p = 10

1. The generalized Mian and Spencer plate theory is extended by constructing the electric potential
functions referring to the forms of the displacement components, such that the boundary conditions
on the top and bottom surfaces of plate are exactly satisfied;

2. The present analytical solutions are verified through comparison with the FEM results with the aid
of ABAQUS software, which shows an excellent agreement;

3. In the numerical examples, a uniformly distributed electrical potential difference and electrical
displacement are applied on the top and bottom surfaces of plate, respectively. It is concluded that
the gradient index of material p, the edge boundary conditions and the distribution model of material
properties have a remarkable influence on the elastic and electric fields in the FGPM plates;

4. Since the present theory can deal with FGPM plates with arbitrary distribution model of material
properties and arbitrary edge boundary conditions, it indicates that the electro-mechanical responses
of FGPM plates under electric fields can be actively controlled and optimized by regulating above-
mentioned influencing factors.
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It should also be emphasized that the present theory is within the framework of piezoelectricity. The
proposed piezoelectricity solutions can serve as good benchmarks for the study of problem in the paper
based on various simplified plate theories or numerical methods.
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Appendix A: Expressions of the introduced functions related to variable z and integral
constants in electric potential case

gni (z) =

z∫

−h/2

(z − ξ)n ξi
λ33c13 + e33e31
c33λ33 + e233

dξ, (i, n = 0, 1)

hn
i (z) =

z∫

−h/2

(z − ξ)n ξi
(

c11 − c13
c13λ33 + e33e31
c33λ33 + e233

− e31
c13e33 − c33e31
e233 + c33λ33

)
dξ, (i, n = 0, 1) ,

fn
i (z) =

z∫

−h/2

(z − ξ)n ξi
c33e31 − c13e33
c33λ33 + e233

dξ, (i, n = 0, 1) ,

an
i (z) =

z∫

−h/2

(z − ξ)n ξi
e33

c33λ33 + e233
dξ, (i, n = 0, 1) ,

bni (z) =

z∫

−h/2

(z − ξ)n ξi
c33

c33λ33 + e233
dξ, (i, n = 0, 1) ,

f5 (z) =

z∫

−h/2

g5 (ξ)
c55

dξ, f6 (z) =

z∫

−h/2

e15
c55

dξ,
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f7 (z) =

z∫

−h/2

{
f0
0 (ξ) + e15b

0
0 (ξ)

c55
− [

a0
0 (ξ) − a0

0 (0)
]
}

dξ,

f16 (z) =

z∫

−h/2

{
e15
c55

[
f0
0 (ξ) + e15b

0
0 (ξ)

]
+ b00 (ξ) λ11

}
dξ,

f17 (z) =

z∫

−h/2

{
e15
c55

[
h0
0 (ξ) + e15f

0
0 (ξ)

]
+ f0

0 (ξ) λ11

}
dξ,

f18 (z) =

z∫

−h/2

{
e15
c55

[
h0
1 (ξ) + e15f

0
1 (ξ)

]
+ f0

1 (ξ) λ11

}
dξ,

k∗
31 (z) = c13 [F1 (z) + F0] − h1

0 (z) , k∗
32 (z) = e31 [F1 (z) + F0] − f17 (z) ,

k∗
33 (z) = c13f7 (z) + f1

0 (z) , k∗
41 (z) = c13 [B1 (z) + B0] + h1

1 (z) ,

k∗
42 (z) = e31 [B1 (z) + B0] + f18 (z) , k∗

44 (z) = e31f7 (z) + f16 (z) ,

B1 (z) = −
z∫

−h/2

{
1

c55

[
h0
1 (ξ) + e15f

0
1 (ξ)

] − [
g01 (z) − g01 (0)

]
}

dξ,

C1 (z) = g01 (z) D00 (z) =

z∫

−h/2

[
k∗
33 (ξ) λ33 + k∗

44 (ξ) e33
c33λ33 + e233

]
dξ,

D01 (z) =

z∫

−h/2

[
k∗
31 (ξ) λ33 + k∗

32 (ξ) e33
c33λ33 + e233

]
dξ, D02 (z) =

z∫

−h/2

[
k∗
41 (ξ) λ33 + k∗

42 (ξ) e33
c33λ33 + e233

]
dξ,

F1 (z) = −
z∫

−h/2

{
1

c55

[
h0
0 (ξ) + e15f

0
0 (ξ)

] − [
g00 (ξ) − g00 (0)

]
}

dξ,

G1 (z) = −g00 (z) , φ10 (z) = f0
0 (z) , φ20 (z) = −f0

1 (z) ,

φ00 (z) =

z∫

−h/2

[
k∗
33 (ξ) e33 − k∗

44 (ξ) c33
c33λ33 + e233

]
dξ,

φ01 (z) =

z∫

−h/2

[
k∗
31 (ξ) e33 − k∗

32 (ξ) c33
c33λ33 + e233

]
dξ,

φ02 (z) =

z∫

−h/2

[
k∗
41 (ξ) e33 − k∗

42 (ξ) c33
c33λ33 + e233

]
dξ,

(A-1)
B0 = −k2f5 (0) + Φ2f6 (0) − H4f7 (0) − B1 (0) ,

C0 = −g01 (0) − H4a
0
0 (0) ,

D0 = κ3 [D00 (z) H2 + D01 (z)] + κ4 [D00 (z)H4 + D02 (z)] − a0
0 (z) H7,

F0 = −k1f5 (0) + Φ1f6 (0) − H2f7 (0) − F1 (0) ,
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G0 = g00 (0) − H2a
0
0 (0) , Φ0=Φ̄1 − (Φ2C2 + Φ1C5) . (A-2)

Appendix B: Expressions of stress resultants and moments

Nx =

h/2∫

−h/2

σxdz =N1ū,x + N3w̄,xx + N5ū,xxx + N7w̄,xxxx + N0

Mx =

h/2∫

−h/2

σxzdz = M1ū,x + M3w̄,xx + M5ū,xxx + M7w̄,xxxx + M0

Qx =

h/2∫

−h/2

τzxdz = Q1ū,xx + Q2w̄,xxx (B-1)

where

N1 =

h/2∫

−h/2

(c11 + c13G
′ + e31φ

′
1)dz,N3 =

h/2∫

−h/2

(c11A + c13C
′ + e31φ

′
2)dz,

N5 =

h/2∫

−h/2

c11Fdz,N7 =

h/2∫

−h/2

c11Bdz,N0 =

h/2∫

−h/2

c13D
′ + e31φ

′
0dz,

M1 =

h/2∫

−h/2

z (c11 + c13G
′ + e31φ

′
1)dz,M3 =

h/2∫

−h/2

z (c11A + c13C
′ + e31φ

′
2)dz,

M5 =

h/2∫

−h/2

c11zFdz,M7 =

h/2∫

−h/2

c11zBdz,M0 =

h/2∫

−h/2

(c13D′ + e31φ
′) zdz,

Q1 =

h/2∫

−h/2

[c55 (F ′ + G) + e15φ1]dz,Q2 =

h/2∫

−h/2

[c55 (B′ + C) + e15φ2]dz, (B-2)

Appendix C: Expressions of the introduced functions related to variable z and integral
constants in electric displacement case

F10 (z) =

z∫

−h/2

[c55κ1 − c11 − c13G
′ (ξ) − e31φ

′
1 (ξ)]dξ,

B10 (z) =

z∫

−h/2

[c55κ2 − c11A (ξ) − c13C
′ (ξ) − e31φ

′
2 (ξ)]dξ,

D00 = c13 (−h/2) [κ3F (−h/2) + κ4B (−h/2)] ,
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D01 = e31 (−h/2) [κ3F (−h/2) + κ4B (−h/2)] ,

D10 (z) =

z∫

−h/2

{
κ3

[
c55 (F ′ + G) + (Fc13)

′ + e15φ1

]
+ κ4

[
c55 (B′ + C) + (c13B)′ + e15φ2

]}
dξ,

D20 (z) =

z∫

−h/2

{
κ3

[
e15 (F ′ + G) + (Fe31)

′ − λ11φ1

]
+ κ4

[
e15 (B′ + C) + (e31B)′ − λ11φ2

]}
dξ.(C-1)

B0 = −
0∫

−h/2

{
1

c55
[B10 (z) − e15φ2 (z)] − C (z)

}
dz,

C0 =

0∫

−h/2

[
λ33c13 + e33e31
c33λ33 + e233

A (z)
]
dz,

D0 =

0∫

−h/2

{
λ33 [D10 (z) + D00 (z)] + e33 [D20 (z) + D01 (z)]

c33λ33 + e233

}
dz,

F0 = −
0∫

−h/2

{
1

c55
[F10 (z) − e15φ1] − G (z)

}
dz, G0 =

0∫

−h/2

(
λ33c13 + e33e31
c33λ33 + e233

)
dz,

Φ1 = −
0∫

−h/2

(
c33e31 − c13e33
c33λ33 + e233

)
dz, Φ2= −

0∫

−h/2

[
c33e31 − c13e33
c33λ33 + e233

A (z)
]

dz,

Φ0 = −
0∫

−h/2

{
c33 [D20 (z) + D01 (z)] − e33 [D10 (z) + D00 (z)]

c33λ33 + e233

}
dz. (C-2)
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