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Sign-changing solutions for Kirchhoff-type equations with indefinite nonlinearities
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Abstract. We are interested in the existence of sign-changing solutions for the following Kirchhoff-type equation

⎧
⎪⎪⎨

⎪⎪⎩

−
⎛

⎝a + b

∫

Ω

|∇u|2dx

⎞

⎠Δu =
(
h+(x) + λh−(x)

) |u|p−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where a, b > 0, Ω ⊂ R
3 is a bounded domain with smooth boundary, the potential h : Ω → R is a sign-changing continuous

function, and λ > 0 is a parameter. If p ∈ (4, 6), we prove the existence of least energy sign-changing solution ub,λ, the

asymptotic behavior of ub,λ as b → 0+ or λ → +∞ are also analyzed. Moreover, if the set {x ∈ Ω : h(x) > 0} possesses
several disjoint components, we also prove the existence of multi-bump sign-changing solutions.

Mathematics Subject Classification. 35J60, 35J20, 35J25.
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1. Introduction

In the past decades, the following Kirchhoff-type equations

−
⎛

⎝a + b

∫

R3

|∇u|2dx

⎞

⎠Δu + V (x)u = f(x, u), x ∈ R
3, (1.1)

has been investigated by many authors, where V : R
3 → R, f ∈ C(R3 × R, R) and a, b > 0 are constants.

If V (x) ≡ 0 and replace R
3 by a bounded domain Ω ⊂ R

3 in (1.1), we then obtain the following Kirchhoff
Dirichlet problem

⎧
⎪⎪⎨

⎪⎪⎩

−
⎛

⎝a + b

∫

Ω

|∇u|2dx

⎞

⎠Δu = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω.

(1.2)

Equation (1.2) is related to the stationary analogue of the following equation

ρ
∂2u

∂2t
−
⎛

⎝
P0

h
+

E

2L

L∫

0

∣
∣
∣
∂u

∂x

∣
∣
∣
2

dx

⎞

⎠
∂2u

∂2x
= 0,
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which is proposed by Kirchhoff in [19] as an extension of the classical D’Alembert’s wave equations for
free vibration of elastic strings. After the pioneer work of Lions [20], where a functional analysis approach
was proposed to the equation

⎧
⎪⎪⎨

⎪⎪⎩

utt −
⎛

⎝a + b

∫

Ω

|∇u|2dx

⎞

⎠Δu = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.3)

equation (1.3) began to call attention of several researchers, see [2,5,8] and the references therein.
Kirchhoff’s model takes into account the changes in length of the string produced by transverse

vibrations. In (1.2), u denotes the displacement, f(x, u) is the external force, b is the initial tension and a
is related to the intrinsic properties of the string. We point out that such nonlocal problems also appear
in other fields as biological systems, where u describes a process which depends on the average of itself,
for example, population density. For more mathematical and physical background of (1.2), we refer the
reader to the papers [1,2,5,15,16,19,21] and the references therein.

Mathematically, Eq. (1.1) is a nonlocal problem as the appearance of the nonlocal term
∫

R3

|∇u|2dxΔu,

which implies that (1.1) is not a pointwise identity. This causes some mathematical difficulties which make
the study of (1.1) particularly interesting. A lot of interesting results on the existence of positive solutions,
multiple solutions, semiclassical state solutions and sign-changing solutions for (1.1) are obtained in last
decade, see for examples, [6,9,11,12,15–18,21,22,24,26–28] and the references therein.

In particular, Chen, Kuo and Wu [6] studied the following nonlinear Kirchhoff-type equation with
indefinite nonlinearity

⎧
⎪⎪⎨

⎪⎪⎩

−
⎛

⎝a + b

∫

Ω

|∇u|2dx

⎞

⎠Δu = λf(x)|u|q−2u + g(x)|u|p−2u, x ∈ Ω,

u = 0, on ∂Ω,

(1.4)

where a, b > 0, Ω is a smooth bounded domain in R
N with 1 < q < 2 < p < 2∗ (2∗ = 2N

N−2 if
N ≥ 3, 2∗ = +∞ if N = 1, 2), λ > 0 is a parameter, the weight functions f, g ∈ C(Ω) satisfy f+(x) :=
max{f(x), 0} 	≡ 0 and g+(x) := max{g(x), 0} 	≡ 0. By using Nehari manifold and fibering map, the
authors proved the existence of multiple positive solutions for Eq. (1.4). We point out that Kirchoff-type
equations with potential well and indefinite nonlinearities were also investigated in [26,30].

Recently, Figueiredo et al [13] investigated ground states of elliptic problems over cones. As an appli-
cation, the authors [13] proved the following Kirchhoff-type equation

⎧
⎪⎪⎨

⎪⎪⎩

−M

⎛

⎝

∫

Ω

|∇u|2dx

⎞

⎠Δu = b(x)|u|r−2u, x ∈ Ω,

u ∈ H1
0 (Ω),

(1.5)

has a positive ground state solution provided b+(x) := max{b(x), 0} 	≡ 0 and r ∈ (4, 6), where Ω ⊂ R
3 is

a bounded domain with smooth boundary, M : [0,+∞) → [0,+∞) is a monotone increasing C1 function
such that M(0) := m0 > 0 and t 
→ M(t)

t is increasing on (0,+∞).
Based on the above results, a natural question is whether Eq. (1.5) has sign-changing solutions with

b(x) is a sign-changing function. The present paper is devoted to this aspect and partially answers this
question. More precisely, we devoted to study the existence of sign-changing solutions for the following
Kirchhoff-type equation
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⎧
⎪⎪⎨

⎪⎪⎩

−
⎛

⎝a + b

∫

Ω

|∇u|2dx

⎞

⎠Δu = (h+(x) + λh−(x)) |u|p−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.6)

where a, b > 0, Ω ⊂ R
3 is a bounded domain with smooth boundary, the potential h : Ω → R is a

sign-changing continuous function, λ > 0 is a parameter, and

h+(x) = max
{
h(x), 0

}
, h−(x) = min

{
h(x), 0

}
.

Throughout this paper, we denote H1
0 (Ω) the usual Sobolev space equipped with the inner product

and norm

(u, v) =
∫

Ω

∇u∇vdx, ‖u‖ = (u, u)1/2.

Define the energy functional Ib,λ : H1
0 (Ω) → R by

Ib,λ(u) :=
a

2

∫

Ω

|∇u|2dx +
b

4

⎛

⎝

∫

Ω

|∇u|2dx

⎞

⎠

2

− 1
p

∫

Ω

(
h+(x) + λh−(x)

) |u|pdx. (1.7)

Obviously, the functional Ib,λ is well-defined and belongs to C1(H1
0 (Ω), R). Moreover, for any u, ϕ ∈

H1
0 (Ω), we have

〈I ′
λ(u), ϕ〉 = a

∫

Ω

∇u∇ϕdx + b

∫

Ω

|∇u|2dx

∫

Ω

∇u∇ϕdx −
∫

Ω

(
h+(x) + λh−(x)

) |u|p−2uϕdx. (1.8)

In the case h(x) ≡ 1, by constrained minimization method, Figueiredo and Nascimento [12] and Shuai
[25] proved the existence of least energy sign-changing solution for Eq. (1.6). The authors first proved the
following set

Mb,λ =
{

u ∈ H1
0 (Ω), u± 	= 0 and 〈I ′

b,λ(u), u+〉 = 〈I ′
b,λ(u), u−〉 = 0

}
(1.9)

is nonempty, which is a crucial step. Then, the authors sought a minimizer of the energy functional
Ib,λ restricted on Mb,λ and proved the minimizer is a sign-changing solution of (1.6) by quantitative
deformation lemma. In the first step, the authors proved that, for each u ∈ H1

0 (Ω) with u± 	= 0, there
exists a unique pair (s, t) ∈ R+ × R+ such that su+ + tu− ∈ Mb,λ, see Lemma 2.3 in [12] and Lemma 2.1
in [25]. However, if h(x) is a sign-changing continuous function, this fact does not hold for all u ∈ H1

0 (Ω)
with u± 	= 0, but rather in some part of it. A direct observation is that, a necessary condition for u ∈ Mb,λ

is u+, u− ∈ A, where

A :=
{

u ∈ H1
0 (Ω) \ {0} :

∫

Ω

(
h+(x) + λh−(x)

) |u|pdx > 0
}

. (1.10)

Thus, the method that used in [12,25] cannot be applied to Eq. (1.6), we need some crucial modifications.
Our first main result can be stated as follows.

Theorem 1.1. Assume h : Ω → R is a sign-changing continuous function, p ∈ (4, 6) and λ > 0, then
Eq. (1.6) possesses one least energy sign-changing solution ub,λ, which has precisely two nodal domains.
Moreover, Ib,λ(ub,λ) > 2cb,λ, where

cb,λ := inf
u∈Nb,λ

Ib,λ(u) (1.11)

and
Nb,λ :=

{
u ∈ H1

0 (Ω) \ {0} : 〈I ′
b,λ(u), u〉 = 0

}
. (1.12)
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Theorem 1.1 implies that, the energy of any sign-changing solution of Eq. (1.6) is larger than two
times the least energy, this property is called energy doubling by Weth in [29]. It is obvious that the least
energy of the sign-changing solution ub,λ obtained in Theorem 1.1 depends on b and λ. We next focus on
the convergence property of ub,λ as b → 0+ or λ → +∞. Our main results in this direction can be stated
as follows.

Theorem 1.2. If the assumptions of Theorem 1.1 hold, for any sequence {bn} with bn → 0+ as n → ∞,
there exists a subsequence, still denoted by {bn}, such that ubn,λ → u0,λ strongly in H1

0 (Ω) as n → ∞,
where ubn,λ denote the least energy sign-changing solution of Eq. (1.6) with b = bn obtained by Theorem
1.1, and u0,λ is a least energy sign-changing solution of the following equation

{−aΔu = (h+(x) + λh−(x)) |u|p−2u, x ∈ Ω,
u = 0, on ∂Ω,

(1.13)

which changes sign only once.

The proof of Theorem 1.2 includes three steps, we first prove {ubn,λ} is bounded in H1
0 (Ω), then we

prove ubn,λ → u0,λ strongly in H1
0 (Ω), and we finally prove that u0,λ is just a least energy sign-changing

solution of (1.13).

Theorem 1.3. If the assumptions of Theorem 1.1 hold, for any sequence {λn} with λn → +∞ as n → ∞,
there exists a subsequence, still denoted by {λn}, such that ub,λn

→ ū strongly in H1
0 (Ω) as n → ∞, where

ub,λn
denote the least energy sign-changing solution of Eq. (1.6) with λ = λn obtained by Theorem 1.1,

and ū is a least energy sign-changing solution of following equation
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
⎛

⎝a + b

∫

Ω

|∇u|2dx

⎞

⎠Δu = h+(x)|u|p−2u, x ∈ Ω \ Ω−,

u = 0, x ∈ Ω−,
u = 0, x ∈ ∂Ω.

(1.14)

which changes sign only once, here Ω− := {x ∈ Ω | h(x) < 0}.
Next, we study the existence of multi-bump sign-changing solutions for Eq. (1.6). We now assume

h : Ω → R is a sign-changing continuous function satisfying
(h1) Ω+ := {x ∈ Ω | h(x) > 0} = Ω\Ω−;
(h2) the set Ω+ is the union of k (k ≥ 2) open connected and disjoint Lipschitz components, that is

Ω+ = ∪k
i=1Ωi and dist(Ωi,Ωj) > 0 for i 	= j; i, j = 1, 2, . . . , k. (1.15)

Theorem 1.4. Assume h : Ω → R is a sign-changing continuous function and (h1)–(h2) hold. If p ∈ (4, 6),
then, for any non-empty subset Γ ⊂ {1, 2, . . . , k} with

Γ = Γ1 ∪ Γ2 ∪ Γ3 and Γi ∩ Γj = ∅ for i 	= j, i, j = 1, 2, 3, (1.16)

there exists a constant ΛΓ > 0 such that for λ ≥ ΛΓ, Eq. (1.6) has a sign-changing multi-bump solution
ub,λ, which possesses the following property: for any sequence {λn} with λn → +∞ as n → ∞, there
exists a subsequence, still denoted by {λn}, such that ub,λn

→ u strongly in H1
0 (Ω) as n → ∞, where u

solves the following equation
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
⎛

⎝a + b

∫

ΩΓ

|∇u|2dx

⎞

⎠Δu = h+(x)|u|p−2u, x ∈ ΩΓ = ∪i∈ΓΩi,

u = 0, x ∈ Ω \ ΩΓ,
u = 0, x ∈ ∂Ω.

(1.17)

Moreover, u|Ωi
is positive for i ∈ Γ1, u|Ωi

is negative for i ∈ Γ2, and u|Ωi
changes sign exactly once for

i ∈ Γ3.
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If b = 0, Eq. (1.6) does not depend on the nonlocal term
∫

Ω

|∇u|2dxΔu any more. In this case, Eq. (1.6)

becomes to the following semilinear elliptic equation
{−aΔu = (h+(x) + λh−(x)) |u|p−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.18)

Under the conditions (h1)–(h2), separate the components of Ω+ arbitrarily into three families, i.e.,

Ω+ =
(∪I

i=1ω̃i

) ∪ (∪J
j=1ω̂j

) ∪ (∪K
i=kωk

)
,

by using constrained minimization method, Girão and Gomes [14] proved the existence of multi-bump
nodal solution uλ for Eq. (1.18) if λ > 0 large enough. Moreover, for any sequence {λn} with λn → +∞
as n → ∞, there exists a subsequence, still denoted by {λn}, such that uλn

→ u strongly in H1
0 (Ω) as

n → ∞, where u solves the following equation
{−aΔu = h+(x)|u|p−2u, x ∈ Ω+,

u = 0, x ∈ Ω \ Ω+,
(1.19)

here u|ω̃i
changes sign exactly once for i = 1, 2, . . . , I, u|ω̂j

is positive for j = 1, 2, . . . , J , u|ωk
≡ 0 for

k = 1, 2, . . . ,K. We refer the reader to [4] for multiple positive solutions for Eq. (1.18).
However, we cannot apply the same method that used in [14] to Eq. (1.6), because Kirchhoff-type

equation depends on the global information of its solution. Different from the method used in [14], we first
construct a special minimax value of the energy functional; Then, by careful analysis of the deformation
flow to the energy functional, we prove the existence of multi-bump sign-changing solutions for Eq. (1.6);
Finally, we show that the multi-bump sign-changing solutions are localized near the components of Ω+

and converge to the solutions (1.17) with prescribed sign properties. We remark that our method also
can be used to study the existence of multi-bump sign-changing solutions for Eq. (1.18).

The paper is organized as follows. In Sect. 2, we give some primarily results. In Sect. 3, we prove
Theorems 1.1–1.3. In Sect. 4 and 5, we devote to proving Theorem 1.4.

2. Some preliminary results

In this section, we give some preliminary results.

Lemma 2.1. Assume h : Ω → R is a sign-changing continuous function and p ∈ (4, 6). If u ∈ A, then
there exists a unique t > 0 such that tu ∈ Nb,λ, where A is defined by (1.10), Nb,λ is defined by (1.12).

Proof. For u ∈ A, we define

Vu(t) = 〈I ′
b,λ(tu), tu〉 = at2

∫

Ω

|∇u|2dx + bt4

⎛

⎝

∫

Ω

|∇u|2dx

⎞

⎠

2

− tp
∫

Ω

(
h+(x) + λh−(x)

) |u|pdx.

Since u ∈ A, then
∫

Ω

(
h+(x) + λh−(x)

) |u|pdx > 0.

Therefore, Vu(t) > 0 for t > 0 small enough and Vu(t) < 0 for t < 0 large enough, since p ∈ (4, 6). Thus,
there exists t0 > 0 such that I ′

b,λ(t0u) = 0, that is t0u ∈ Nb,λ.
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Assume t1, t2 > 0 such that t1u, t2u ∈ Nb,λ, that is

at21

∫

Ω

|∇u|2dx + bt41

⎛

⎝

∫

Ω

|∇u|2dx

⎞

⎠

2

− tp1

∫

Ω

(
h+(x) + λh−(x)

) |u|pdx = 0 (2.1)

and

at22

∫

Ω

|∇u|2dx + bt42

⎛

⎝

∫

Ω

|∇u|2dx

⎞

⎠

2

− tp2

∫

Ω

(
h+(x) + λh−(x)

) |u|pdx = 0. (2.2)

It follows from (2.1) and (2.2) that

a

(
1
t21

− 1
t22

)∫

Ω

|∇u|2dx = (tp−4
1 − tp−4

2 )
∫

Ω

(
h+(x) + λh−(x)

) |u|pdx,

which implies t1 = t2. �

Lemma 2.2. Assume h : Ω → R is a sign-changing continuous function and p ∈ (4, 6), if u ∈ H1
0 (Ω) with

u± ∈ A, then there is a unique pair (su, tu) of positive numbers such that suu+ + tuu− ∈ Mb,λ.

Proof. We prove the lemma by two steps.
Step 1: Define

−→
F (s, t) := (f1(s, t), f2(s, t)), where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(s, t) = as2‖u+‖2 + bs4‖u+‖4 + bs2t2‖u+‖2‖u−‖2 − sp

∫

Ω

(
h+(x) + λh−(x)

) |u+|pdx,

f2(s, t) = at2‖u−‖2 + bt4‖u−‖4 + bs2t2‖u+‖2‖u−‖2 − tp
∫

Ω

(
h+(x) + λh−(x)

) |u−|pdx.
(2.3)

Since u± ∈ A, then
∫

Ω

(
h+(x) + λh−(x)

) |u+|pdx > 0 and
∫

Ω

(
h+(x) + λh−(x)

) |u−|pdx > 0.

We deduce that there exist 0 < r < R such that
{

f1(r, t) > 0 and f1(R, t) < 0 for all t ∈ [r,R],
f2(s, r) > 0 and f2(s,R) < 0 for all s ∈ [r,R], (2.4)

since p ∈ (4, 6). Then, by using Miranda lemma [23], we conclude that there exists (su, tu) ∈ R+ × R+

such that

f1(su, tu) = 0 and f2(su, tu) = 0,

which implies that suu+ + tuu− ∈ Mb,λ.
Step 2: We prove (su, tu) is unique.
Case 1: u ∈ Mb,λ. Suppose (s̄, t̄) 	= (1, 1) be another pair of positive numbers such that s̄u+ + t̄u− ∈

Mb,λ, then
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

as̄2‖u+‖2 + bs̄4‖u+‖4 + bs̄2t̄2‖u+‖2‖u−‖2 = s̄p

∫

Ω

(
h+(x) + λh−(x)

) |u+|pdx,

at̄2‖u−‖2 + bt̄4‖u−‖4 + bs̄2t̄2‖u+‖2‖u−‖2 = t̄p
∫

Ω

(
h+(x) + λh−(x)

) |u−|pdx.
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Without loss of generality, we assume s̄ ≥ t̄ > 0, then
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a
1
s̄2

‖u+‖2 + b‖u+‖4 + b‖u+‖2‖u−‖2 ≥ s̄p−4

∫

Ω

(
h+(x) + λh−(x)

) |u+|pdx,

a
1
t̄2

‖u−‖2 + b‖u−‖4 + b‖u+‖2‖u−‖2 ≤ t̄p−4

∫

Ω

(
h+(x) + λh−(x)

) |u−|pdx.

Since u ∈ Mb,λ, we have
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a‖u+‖2 + b‖u+‖4 + b‖u+‖2‖u−‖2 =
∫

Ω

(
h+(x) + λh−(x)

) |u+|pdx,

a‖u−‖2 + b‖u−‖4 + b‖u+‖2‖u−‖2 =
∫

Ω

(
h+(x) + λh−(x)

) |u−|pdx.

Thus, we conclude that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a

(
1
s̄2

− 1
)

‖u+‖2 ≥ (
s̄p−4 − 1

)
∫

Ω

(
h+(x) + λh−(x)

) |u+|pdx,

a

(
1
t̄2

− 1
)

‖u−‖2 ≤ (
t̄p−4 − 1

)
∫

Ω

(
h+(x) + λh−(x)

) |u−|pdx,

which implies 1 ≥ s̄ ≥ t̄ ≥ 1. Thus, (s̄, t̄) = (1, 1).
Case 2: u 	∈ Mb,λ but u± ∈ A, then by Step 1, we know that there exists (su, tu) ∈ R+ × R+ such

that suu+ + tuu− ∈ Mb,λ. Assume that (s′
u, t′u) ∈ R+ × R+ also satisfying s′

uu+ + t′uu− ∈ Mb,λ. Hence
we have

s′
u

su
suu+ +

t′u
tu

tuu− ∈ Mb,λ. (2.5)

Since suu+ + tuu− ∈ Mb,λ, by the arguments of case 1, we deduce that

s′
u

su
=

t′u
tu

= 1.

Thus, s′
u = su and t′u = tu. �

Lemma 2.3. Assume h : Ω → R is a sign-changing continuous function and p ∈ (4, 6), suppose that
u± ∈ A such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a‖u+‖2 + b‖u+‖4 + b‖u+‖2‖u−‖2 ≤
∫

Ω

(
h+(x) + λh−(x)

) |u+|pdx,

a‖u−‖2 + b‖u−‖4 + b‖u+‖2‖u−‖2 ≤
∫

Ω

(
h+(x) + λh−(x)

) |u−|pdx.

Then the unique pair (su, tu) of positive numbers obtained in Lemma 2.2 satisfies 0 < su, tu ≤ 1.

Proof. Suppose that su ≥ tu > 0, since suu+ + tuu− ∈ Mb, then we have

as2
u‖u+‖2 + bs4

u

⎛

⎝

∫

Ω

|∇u+|2dx

⎞

⎠

2

+ bs4
u

∫

Ω

|∇u+|2dx

∫

Ω

|∇u−|2dx

≥ as2
u‖u+‖2 + bs4

u

⎛

⎝

∫

Ω

|∇u+|2dx

⎞

⎠

2

+ bs2
ut2u

∫

Ω

|∇u+|2dx

∫

Ω

|∇u−|2dx
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= sp
u

∫

Ω

(
h+(x) + λh−(x)

) |u+|pdx. (2.6)

On the other hand,

a‖u+‖2 + b

⎛

⎝

∫

Ω

|∇u+|2dx

⎞

⎠

2

+ b

∫

Ω

|∇u+|2dx

∫

Ω

|∇u−|2dx ≤
∫

Ω

(
h+(x) + λh−(x)

) |u+|pdx. (2.7)

Combine (2.6) and (2.7), we then get
(

1
s2

u

− 1
)

a‖u+‖2 ≥ (sp−4
u − 1)

∫

Ω

(
h+(x) + λh−(x)

) |u+|pdx.

Therefore, we must have su ≤ 1. Then the proof is completed. �

Lemma 2.4. Assume h : Ω → R is a sign-changing continuous function and p ∈ (4, 6). If u± ∈ A, then the
vector (su, tu) which obtained in Lemma 2.2 is the unique maximum point of the function φ : (R+×R+) →
R defined by φ(s, t) := Ib,λ(su+ + tu−).

Proof. From the proof of Lemma 2.2, (su, tu) is the unique critical point of φ in R+ ×R+. Since p ∈ (4, 6),
we deduce that φ(s, t) → −∞ uniformly as |(s, t)| → +∞, so it is sufficient to check that the maximum
point is not achieved on the boundary of R+ × R+.

Fix t̄ > 0, since

φ(s, t̄) = Ib,λ(su+ + t̄u−)

=
as2

2

∫

Ω

|∇u+|2dx +
bs4

4

⎛

⎝

∫

Ω

|∇u+|2dx

⎞

⎠

2

− sp

∫

Ω

(
h+(x) + λh−(x)

) |u+|pdx

+
bs2t̄2

2

∫

Ω

|∇u+|2dx

∫

Ω

|∇u−|2dx

+
at̄2

2

∫

Ω

|∇u−|2dx +
bt̄4

4

⎛

⎝

∫

Ω

|∇u+|2dx

⎞

⎠

2

− t̄p
∫

Ω

(
h+(x) + λh−(x)

) |u−|pdx

is an increasing function with respect to s if s > 0 small enough, therefore the pair (0, t̄) is not a maximum
point of φ in R+ × R+. �

By Lemma 2.2, we now define

mb,λ := inf
{

Ib,λ(u) : u ∈ Mb,λ

}
. (2.8)

Lemma 2.5. Assume h : Ω → R is a sign-changing continuous function and p ∈ (4, 6), then mb,λ > 0 is
achieved.

Proof. For every u ∈ Mb,λ, we have 〈I ′
b,λ(u), u〉 = 0. Then, by using Sobolev embedding theorem, one

gets

a‖u‖2 ≤ a

∫

Ω

|∇u|2dx + b

⎛

⎝

∫

Ω

|∇u|2dx

⎞

⎠

2

=
∫

Ω

(
h+(x) + λh−(x)

) |u|pdx

≤
∫

Ω

h+(x)|u|pdx ≤ ‖h+(x)‖L∞(Ω)

∫

Ω

|u|pdx
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≤ C‖u‖p. (2.9)

Thus, there exists a constant α > 0 such that ‖u‖2 ≥ α. Therefore

Ib,λ(u) = Ib,λ(u) − 1
p
〈I ′

b,λ(u), u〉 ≥
(

1
2

− 1
p

)

a‖u‖2 ≥
(

1
2

− 1
p

)

aα, for each u ∈ Mb,λ,

which implies mb,λ ≥
(

1
2 − 1

p

)
aα > 0.

Let {un} ⊂ Mb,λ be a sequence such that Ib,λ(un) → mb,λ. Then {un} is bounded in H1
0 (Ω), up to

a subsequence, still denote by {un}, such that u±
n ⇀ u±

b,λ weakly in H1
0 (Ω). Since un ∈ Mb,λ, we have

〈I ′
b,λ(un), u±

n 〉 = 0, that is

a

∫

Ω

|∇u±
n |2dx + b

∫

Ω

|∇un|2dx

∫

Ω

|∇u±
n |2dx =

∫

Ω

(
h+(x) + λh−(x)

) |u±
n |pdx. (2.10)

Similar as (2.9) there exist a constant μ > 0 such that ‖u±
n ‖2 ≥ μ for all n ∈ N. Since un ∈ Mb,λ, thus

μ ≤ ‖u±
n ‖2 <

∫

Ω

(
h+(x) + λh−(x)

) |u±
n |pdx ≤

∫

Ω

h+(x)|u±
n |pdx.

By the compactness of the embedding H1
0 (Ω) ↪→ Lq(Ω) for 2 ≤ q < 6, we get

∫

Ω

h+(x)|u±
b,λ|pdx ≥

∫

Ω

(
h+(x) + λh−(x)

) |u±
b,λ|pdx ≥ μ. (2.11)

Hence, u±
b,λ ∈ A. By the weak semicontinuity of norm, we have

a‖u±
b,λ‖2 + b

∫

Ω

|∇ub,λ|2dx

∫

Ω

|∇u±
b,λ|2dx ≤ lim inf

n→∞
{
a‖u±

n ‖2 + b

∫

Ω

|∇un|2dx

∫

Ω

|∇u±
n |2dx

}
. (2.12)

It follows from (2.10) that

a‖u±
b,λ‖2 + b

∫

Ω

|∇ub,λ|2dx

∫

Ω

|∇u±
b,λ|2dx ≤

∫

Ω

(
h+(x) + λh−(x)

) |u±
b,λ|pdx. (2.13)

From (2.13) and Lemma 2.3, there exists (s̄, t̄) ∈ (0, 1] × (0, 1] such that

ub,λ := s̄u+
b,λ + t̄u−

b,λ ∈ Mb,λ.

Hence

mb,λ ≤ Ib,λ(ub,λ) = Ib,λ(ub,λ) − 1
p
〈I ′

b,λ(ub,λ), ub,λ〉

=
(

1
2

− 1
p

)

a

∫

Ω

|ub,λ|2dx +
(

1
4

− 1
p

)

b

⎛

⎝

∫

Ω

|ub,λ|2dx

⎞

⎠

2

=
(

1
2

− 1
p

)

a
[
‖s̄u+

b,λ‖2 + ‖t̄u−
b,λ‖2

]
+
(

1
4

− 1
p

)

b
[
‖s̄u+

b,λ‖2 + ‖t̄u−
b,λ‖2

]2

≤
(

1
2

− 1
p

)

a
[
‖u+

b,λ‖2 + ‖u−
b,λ‖2

]
+
(

1
4

− 1
p

)

b
[
‖u+

b,λ‖2 + ‖u−
b,λ‖2

]2

≤ lim inf
n→∞

[

Ib,λ(un) − 1
p
〈I ′

b,λ(un), un〉
]

= mb,λ, (2.14)

which implies that s̄ = t̄ = 1. Thus, ub,λ = ub,λ and Ib,λ(ub,λ) = mb,λ. �
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3. Proof of Theorems 1.1–1.3.

The main aim of this section is to prove Theorems 1.1–1.3. We first prove that the minimizer ub,λ to the
minimization problem (2.8) is indeed a sign-changing solution of Eq. (1.6), that is, I ′

b,λ(ub,λ) = 0.

Proof of Theorem 1.1. Using the quantitative deformation lemma, we prove that I ′
b,λ(ub,λ) = 0.

It is clear that 〈I ′
b,λ(ub,λ), u+

b,λ〉 = 0 = 〈I ′
b,λ(ub,λ), u−

b,λ〉. If (s, t) ∈ R+×R+ and (s, t) 	= (1, 1), it follows
from Lemma 2.4 that

Ib,λ(su+
b,λ + tu−

b,λ) < Ib,λ(u+
b,λ + u−

b,λ) = mb,λ. (3.1)

If I ′
b,λ(ub,λ) 	= 0, then there exist δ > 0 and ρ > 0 such that

‖I ′
b,λ(v)‖ ≥ ρ, for all ‖v − ub,λ‖ ≤ 3δ.

Let D := (1
2 , 3

2 ) × ( 1
2 , 3

2 ) and g(s, t) := su+
b,λ + tu−

b,λ. It follows from Lemma 2.4 again that

m̄b,λ := max
∂D

Ib,λ ◦ g < mb,λ (3.2)

For ε := min{(mb,λ − m̄b,λ)/2, ρδ/8} and S := B(ub,λ, δ), [see [31], Lemma 2.3] yields a deformation η
such that

(a) η(1, u) = u if u 	∈ I−1
b,λ([mb,λ − 2ε,mb,λ + 2ε]) ∩ S2δ;

(b) η(1, I
mb,λ+ε
b,λ ∩ S) ⊂ I

mb,λ−ε
b,λ ;

(c) Ib,λ (η(1, u)) ≤ Ib,λ(u) for all u ∈ H1
0 (Ω).

It is clear that
max

(s,t)∈D̄
Ib,λ (η(1, g(s, t))) < mb,λ. (3.3)

We now prove that η(1, g(D)) ∩ Mb,λ 	= ∅, contradicting to the definition of mb,λ. Let us define
h(s, t) := η(1, g(s, t)) and

Ψ0(s, t) :=
(
I ′
b,λ(su+

b,λ + tu−
b,λ)u+

b,λ, I ′
b,λ(su+

b,λ + tu−
b,λ)u−

b,λ

)
,

Ψ1(s, t) :=
(

1
s
I ′
b,λ (h(s, t)) h+(s, t),

1
t
I ′
b,λ (h(s, t)) h−(s, t)

)

.

Lemma 2.2 and the the degree theory now yields deg(Ψ0,D, 0) = 1. It follows from (3.2) that g = h
on ∂D. Consequently, we obtain deg(Ψ1,D, 0) =deg(Ψ0,D, 0) = 1. Therefore, Ψ1(s0, t0) = 0 for some
(s0, t0) ∈ D, so that η(1, g(s0, t0)) = h(s0, t0) ∈ Mb,λ, which is a contradiction. From this, ub,λ is a
critical point of Ib,λ, and so, a sign-changing solution for equation (1.6).

Now, we show that ub,λ has exactly two nodal domains. The proof on the number of nodal domains
follows the arguments in Bartsch [3] and Castro et al. [7]. To this end, we assume by contradiction that

ub,λ = u1 + u2 + u3

with

ui 	= 0, u1 ≥ 0, u2 ≤ 0 and suppt(ui) ∩ suppt(uj) = ∅, for i 	= j, i, j = 1, 2, 3

and
〈I ′

b,λ(ub,λ), ui〉 = 0, for i = 1, 2, 3. (3.4)

Setting v := u1 + u2, we see that v+ = u1 and v− = u2, i.e. v± 	= 0. Then, we can conclude v± ∈ A. By
Lemma 2.2, there exists a unique pair (sv, tv) of positive numbers such that

svv+ + tvv− ∈ Mb,λ,

or equivalently,

svu1 + tvu2 ∈ Mb,λ.
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And so,
Ib,λ(svu1 + tvu2) ≥ mb,λ. (3.5)

Moreover, using the fact that 〈I ′
b,λ(ub,λ), ui〉 = 0 for i = 1, 2, 3, it follows that

〈I ′
b,λ(v), v±〉 < 0.

From Lemma 2.3, we have that

(sv, tv) ∈ (0, 1] × (0, 1].

On the other hand,

0 =
1
4
〈I ′

b,λ(ub,λ), u3〉 =
a

4

∫

Ω

|∇u3|2dx +
b

4

⎛

⎝

∫

Ω

|∇u3|2dx

⎞

⎠

2

+
b

4

∫

Ω

|∇u1|2dx

∫

Ω

|∇u3|2dx

+
b

4

∫

Ω

|∇u2|2dx

∫

Ω

|∇u3|2dx − 1
4

∫

Ω

(
h+(x) + λh−(x)

) |u3|pdx

< Ib,λ(u3) +
b

4

∫

Ω

|∇u1|2dx

∫

Ω

|∇u3|2dx +
b

4

∫

Ω

|∇u2|2dx

∫

Ω

|∇u3|2dx. (3.6)

Then, by using (3.4), we can calculate that

Ib,λ(svu1 + tvu2) =
as2

v

4
‖u1‖2 +

(
1
4

− 1
p

)

sp
v

∫

Ω

(
h+(x) + λh−(x)

) |u1|pdx +
at2v
4

‖u2‖2

+
(

1
4

− 1
p

)

tpv

∫

Ω

(
h+(x) + λh−(x)

) |u2|pdx

≤ a

4
‖u1‖2 +

(
1
4

− 1
p

)∫

Ω

(
h+(x) + λh−(x)

) |u1|pdx +
a

4
‖u2‖2

+
(

1
4

− 1
p

)∫

Ω

(
h+(x) + λh−(x)

) |u2|pdx

= Ib,λ(u1) + Ib,λ(u2) +
b

2

∫

Ω

|∇u1|2dx

∫

Ω

|∇u2|2dx

+
b

4

∫

Ω

|∇u1|2dx

∫

Ω

|∇u3|2dx +
b

4

∫

Ω

|∇u2|2dx

∫

Ω

|∇u3|2dx. (3.7)

Then, from (3.5), (3.6) and (3.7), we have

mb,λ ≤ Ib,λ(svu1 + tvu2) < Ib,λ(u1) + Ib,λ(u2) + Ib,λ(u3) +
b

2

∫

Ω

|∇u1|2dx

∫

Ω

|∇u2|2dx

+
b

2

∫

Ω

|∇u1|2dx

∫

Ω

|∇u3|2dx +
b

2

∫

Ω

|∇u2|2dx

∫

Ω

|∇u3|2dx

= Ib,λ(ub,λ) = mb,λ,

which is a contradiction. This way, u3 = 0, and ub,λ has exactly two nodal domains.
Recall that cb,λ and Nb,λ are defined by (1.11) and (1.12), respectively. Then, similar as the proof of

Lemma 2.5, for each b > 0, we can deduce that there exists vb,λ ∈ Nb,λ such that Ib,λ(vb,λ) = cb,λ > 0. By
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Corollary 2.9 in [15], the critical points of the functional Ib,λ on Nb,λ are critical points of Ib,λ in H1
0 (Ω),

we conclude that I ′
b,λ(vb,λ) = 0. Thus, vb,λ is a ground state solution of (1.6).

On the other hand, suppose that ub,λ = u+
b,λ+u−

b,λ is a least energy sign-changing solution for Eq. (1.6).
By Lemma 2.1, there is unique s̄ > 0, t̄ > 0 such that

s̄u+
b,λ ∈ Nb,λ and t̄u+

b,λ ∈ Nb,λ.

Then, by Lemma 2.4, we get

2cb,λ ≤ Ib,λ(s̄u+
b,λ) + Ib,λ(t̄u−

b,λ) < Ib,λ(s̄u+
b,λ + t̄u−

b,λ) ≤ Ib,λ(u+
b,λ + u−

b,λ) = mb,λ,

that is mb,λ > 2cb,λ. This completes the proof. �

Now, we are in a situation to prove Theorem 1.2. In the following, we regard b > 0 as a parameter in
equation (1.6). We shall analyze the convergence property of ub,λ as b → 0+.

Proof of Theorem 1.2. For any b > 0 and λ > 0, denote ub,λ ∈ H1
0 (Ω) the least energy sign-changing

solution of (1.6) obtained in Theorem 1.1, which changes sign only once.
Step 1. We claim that, for any sequence {bn} with bn → 0+ as n → ∞, {ubn,λ} is bounded in H1

0 (Ω).
Choose a nonzero function ϕ ∈ C∞

0 (Ω) with ϕ± ∈ A. Since p ∈ (4, 6), then, for any b ∈ [0, 1], there
exists a pair (τ1, τ2) of positive numbers, which does not depend on b, such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

aτ2
1 ‖ϕ+‖2 + bτ4

1

⎛

⎝

∫

Ω

|∇ϕ+|2dx

⎞

⎠

2

+ bBϕτ2
1 τ2

2 − τp
1

∫

Ω

(
h+(x) + λh−(x)

) |ϕ+|pdx < 0,

aτ2
2 ‖ϕ−‖2 + bτ4

2

⎛

⎝

∫

Ω

|∇ϕ−|2dx

⎞

⎠

2

+ bBϕτ2
1 τ2

2 − τp
2

∫

Ω

(
h+(x) + λh−(x)

) |ϕ−|pdx < 0,

where Bϕ =
∫

Ω

|∇ϕ+|2dx
∫

Ω

|∇ϕ−|2dx. In view of Lemma 2.2 and Lemma 2.3, for any b ∈ [0, 1], there

exists a unique pair (sϕ(b), tϕ(b)) ∈ (0, 1] × (0, 1] such that

ϕ̄ := sϕ(b)τ1ϕ
+ + tϕ(b)τ2ϕ

− ∈ Mb,λ. (3.8)

Thus, for any b ∈ [0, 1], we have

Ib,λ(ub,λ) ≤ Ib,λ(ϕ̄) = Ib,λ(ϕ̄) − 1
4
〈I ′

b,λ(ϕ̄), ϕ̄〉

=
a

4
‖ϕ̄‖2 +

(
1
4

− 1
p

)∫

Ω

(
h+(x) + λh−(x)

) |ϕ̄|pdx

≤ a

4
‖ϕ̄‖2 +

(
1
4

− 1
p

)∫

Ω

h+(x)|ϕ̄|pdx

≤ a

4
‖τ1ϕ

+‖2 +
a

4
‖τ2ϕ

−‖2 +
(

1
4

− 1
p

)∫

Ω

h+(x)
(
τp
1 |ϕ+|p + τp

2 |ϕ−|p)dx

:= C0, (3.9)

where C0 does not depend on b. For n large enough, it follows that

C0 + 1 ≥ Ibn,λ(ubn,λ) = Ibn,λ(ubn,λ) − 1
4
〈I ′

bn,λ(ubn,λ), ubn,λ〉 ≥ a

4
‖ubn,λ‖2, (3.10)

which implies {ubn,λ} is bounded in H1
0 (Ω).

Step 2. There exists a subsequence of {bn}, still denoted by {bn}, such that

ubn,λ ⇀ u0,λ weakly in H1
0 (Ω).
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Then, u0,λ is a weak solution of (1.13). Since ubn,λ is the least energy sign-changing solution of (1.6)
with b = bn, then by the compactness of the embedding H1

0 (Ω) ↪→ Lq(Ω) for 2 ≤ q < 6, we deduce that
ubn,λ → u0,λ strongly in H1

0 (Ω) as n → ∞. In fact,

‖ubn,λ − u0,λ‖2 = 〈I ′
bn,λ(ubn,λ) − I ′

0,λ(u0,λ), ubn,λ − u0,λ〉 − bn

∫

Ω

|∇ubn,λ|2dx

∫

Ω

∇ubn,λ (∇ubn,λ − ∇u0,λ) dx

+

∫

Ω

(
h+(x) + λh−(x)

) [
|ubn,λ|p−2ubn,λ − |u0,λ|p−2u0,λ

]
(ubn,λ − u0,λ) dx,

and the right hand of last equality tend to zero as n → ∞. Then, by the same arguments as (2.11), we
conclude u±

0,λ 	= 0, hence u0,λ is sign-changing solution of equation (1.13).
Step 3. Suppose that v0 is a least energy sign-changing solution of (1.13), the existence of v0 was

proved by Vladimir in [32]. By Lemma 2.2, for each bn > 0, there is a unique pair (sbn
, tbn

) of positive
numbers such that

sbn
v+
0 + tbn

v−
0 ∈ Mbn,λ.

Then, we have

a(sbn
)2‖v+

0 ‖2 + bn(sbn
)4

⎛

⎝

∫

Ω

|∇v+
0 |2dx

⎞

⎠

2

+ bn(sbn
tbn

)2
∫

Ω

|∇v+
0 |2dx

∫

Ω

|∇v−
0 |2dx

= (sbn
)p

∫

Ω

(
h+(x) + λh−(x)

) |v+
0 |pdx (3.11)

and

a(tbn
)2‖v−

0 ‖2 + bn(tbn
)4

⎛

⎝

∫

Ω

|∇v−
0 |2dx

⎞

⎠

2

+ bn(sbn
tbn

)2
∫

Ω

|∇v+
0 |2dx

∫

Ω

|∇v−
0 |2dx

= (tbn
)p

∫

Ω

(
h+(x) + λh−(x)

) |v−
0 |pdx. (3.12)

Recall that v±
0 satisfies

a‖v+
0 ‖2 =

∫

Ω

(
h+(x) + λh−(x)

) |v+
0 |pdx

and

a‖v−
0 ‖2 =

∫

Ω

(
h+(x) + λh−(x)

) |v−
0 |pdx.

Up to a subsequence, one can easily deduce that

(sbn
, tbn

) → (1, 1), as n → ∞. (3.13)

It follows from (3.13) and Lemma 2.4 that

I0,λ(v0) ≤ I0,λ(u0,λ) = lim
n→∞ Ibn,λ(ubn,λ) = mbn,λ

≤ lim
n→∞ Ibn,λ

(
sbn

v+
0 + tbn

v−
0

)
= I0,λ(v+

0 + v−
0 ) = I0,λ(v0), (3.14)

which implies u0,λ is a least energy sign-changing solution of Eq. (1.13). This completes the proof of
Theorem 1.2. �
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Proof of Theorem 1.3. For arbitrary b > 0, let ub,λn
∈ H1

0 (Ω) is a least energy sign-changing solution for
Eq. (1.6) with λ = λn, which is obtained by Theorem 1.1. Obviously,

mb,0 ≥ mb,λ, for each λ > 0. (3.15)

Therefore

mb,0 ≥ mb,λn
= Ib,λn

(ub,λn
)

= Ib,λn
(ub,λn

) − 1
p
〈I ′

b,λn
(ub,λn

), ub,λn
〉

=
(

1
2

− 1
p

)

a

∫

Ω

|∇ub,λn
|2dx +

(
1
4

− 1
p

)

b

⎛

⎝

∫

Ω

|∇ub,λn
|2dx

⎞

⎠

2

,

which implies that {ub,λn
} is bounded in H1

0 (Ω). Up to a subsequence, we may suppose there exists
ub,0 ∈ H1

0 (Ω) such that ub,λn
⇀ ub,0 weakly in H1

0 (Ω).
Since {ub,λn

} is bounded in H1
0 (Ω), it follows from (3.15) that

−λn

p

∫

Ω

h−(x)|ub,λn
|pdx = Ib,λn

(ub,λn
) − a

2

∫

Ω

|∇ub,λn
|2 dx − b

4

⎛

⎝

∫

Ω

|∇ub,λn
|2 dx

⎞

⎠

2

+
1
p

∫

Ω

h+(x) |ub,λn
|p dx

≤ C.

Therefore

−1
p

∫

Ω

h−(x)|ub,0|pdx = lim inf
n→∞

⎡

⎣−1
p

∫

Ω

h−(x)|ub,λn
|pdx

⎤

⎦

= lim inf
n→∞

⎡

⎣
1
λn

⎛

⎝−λn

p

∫

Ω

h−(x)|ub,λn
|pdx

⎞

⎠

⎤

⎦ = 0,

which implies ub,0 = 0 on Ω−.
On the other hand, since 〈I ′

b,λn
(ub,λn) − I ′

b,0(ub,0), ub,λn
− ub,0〉 = 0, then

a

∫

Ω

|∇ub,λn
− ∇ub,0|2 dx + b

∫

Ω

|∇ub,λn
|2 dx

∫

Ω

|∇ub,λn
− ∇ub,0|2 dx

= b

⎛

⎝

∫

Ω

|∇ub,0|2dx −
∫

Ω

|∇ub,λn
|2 dx

⎞

⎠

∫

Ω

∇ub,0 (∇ub,λn
− ∇ub,0) dx

+
∫

Ω

(
h+(x) + λh−(x)

) (|ub,λn
|p−2

ub,λn
− |ub,0|p−2ub,0

)
(ub,λn

− ub,0) dx,

(3.16)

the right hand of (3.16) tend to zero as n → ∞ since ub,λn
⇀ ub,0 weakly in H1

0 (Ω), which implies
ub,n → ub,0 strongly in H1

0 (Ω). Therefore

〈I ′
b,0 (ub,0) , ϕ〉 = lim inf

n→∞ 〈I ′
b,λn

(ub,λn) , ϕ〉 = 0, for each ϕ ∈ H1
0 (Ω),
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which implies ub,0 is a solution of Eq. (1.14). By a similar method that used in [25], one can prove the
existence of least energy sign-changing solution for equation (1.14). Suppose vb,0 is a least energy sign-
changing solution for Eq. (1.14), by Lemma 2.2, for each λn > 0, there exist a unique pair of positive
numbers (sλn

, tλn
) such that

sλn
v+

b,0 + tλn
v−

b,0 ∈ Mb,λn
.

That is

a(sλn
)2‖v+

b,0‖2 + b (sλn
)4
⎛

⎝

∫

Ω

|∇v+
b,0|2dx

⎞

⎠

2

+ b (sλn
tλn

)2
∫

Ω

∣
∣
∣∇v+

b,0

∣
∣
∣
2

dx

∫

Ω

∣
∣
∣∇v−

b,0

∣
∣
∣
2

dx

= sp
λn

∫

Ω

(
h+(x) + λnh−(x)

) |v+
b,0|pdx, (3.17)

and

a(tλn
)2‖v−

b,0‖2 + b (tλn
)4
⎛

⎝

∫

Ω

|∇v−
b,0|2dx

⎞

⎠

2

+ b (sλn
tλn

)2
∫

Ω

∣
∣
∣∇v+

b,0

∣
∣
∣
2

dx

∫

Ω

∣
∣
∣∇v−

b,0

∣
∣
∣
2

dx

= tpλn

∫

Ω

(
h+(x) + λnh−(x)

) |v−
b,0|pdx, (3.18)

Recall that v±
b,0 satisfying

a‖v+
0,λ‖2 + b‖v+

0,λ‖4 =
∫

Ω

h+(x)|v+
b,0|pdx and a‖v−

0,λ‖2 + b‖v−
0,λ‖4 =

∫

Ω

h+(x)|v−
b,0|pdx. (3.19)

It follows from (3.17)–(3.19) that

(sλn
, tλn

) → (1, 1), as n → ∞. (3.20)

Therefore, by (3.20) and Lemma 2.4, we can deduce that

Ib,0 (vb,0) ≤ Ib,0 (ub,0) = lim
n→∞ Ib,λn

(ub,λn
)

≤ lim
n→∞ Ib,λn

(
sλn

v+
b,0 + tλn

v−
b,0

)
= Ib,0

(
v+

b,0 + v−
b,0

)
= Ib,0 (vb,0) .

(3.21)

Therefore, we conclude that ub,0 is a least energy sign-changing solution for Eq. (1.14), which changes
sign once. The proof is completed. �

4. A special minimax value for the energy functional

In this section, we assume h : Ω → R is a sign-changing continuous function and (h1)–(h2) hold.
We first state a result on the existence of solutions for Eq. (1.17).

Theorem 4.1. (Theorem1.2, [10]) Suppose that 4 < p < 6 and (h1)–(h2) hold. Then, for any non-empty
subset Γ ⊂ {1, 2, . . . , k} satisfies (1.16), Eq. (1.17) has a nontrivial solution u ∈ H1

0 (Ω) with u|Ωi
is

positive for i ∈ Γ1, u|Ωi
is negative for i ∈ Γ2, u|Ωi

changes sign exactly once for i ∈ Γ3, and u ≡ 0 on
Ω \ ΩΓ. Furthermore, u is the least energy solution among all solutions with these sign properties, that
is, u achieves the following extremum

mΓ := inf
{

IΓ(u)
∣
∣
∣
∣

u is a solution of (1.17) with u |Ωi
is positive for i ∈ Γ1, u|Ωi

is
negative for i ∈ Γ2 and u |Ωi

changes sign exactly once for i ∈ Γ3.

}

(4.1)
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The functional IΓ : H1
0 (ΩΓ) → R is defined by

IΓ(u) :=
1
2

∫

ΩΓ

a|∇u|2dx +
b

4

⎛

⎝

∫

ΩΓ

|∇u|2dx

⎞

⎠

2

−
∫

ΩΓ

h+(x)|u|pdx. (4.2)

Without loss of generality, we next only consider the case Γ1 = {1}, Γ2 = {2}, Γ3 = {3} for simplicity.
In this case, Γ = ∪3

i=1Γi = {1, 2, 3} and

ΩΓ = ∪3
i=1Ωi with dist(Ωi,Ωj) > 0 for i 	= j, i, j = 1, 2, 3.

We can choose open sets Ωρ
i :=

{
x ∈ Ω dist(x,Ωi) < ρ

}
for i = 1, 2, 3 with smooth boundary such that

Ωi ⊂⊂ Ωρ
i and dist(Ωρ

i ,Ω
ρ
j ) > 0 for i 	= j, i, j = 1, 2, 3.

We denote Ωρ := ∪3
i=1Ω

ρ
i and define

Îb,λ(u) :=
a

2

∫

Ωρ

|∇u|2dx +
b

4

⎛

⎝

∫

Ωρ

|∇u|2dx

⎞

⎠

2

− 1
p

∫

Ωρ

(
h+(x) + λh−(x)

) |u|pdx, u ∈ H1
0 (Ωρ). (4.3)

Now, we consider the following constraint minimization problem

m̂λ := inf
u∈M̂b,λ

Îb,λ(u),

where

M̂b,λ :=
{

u ∈ H1
0 (Ωρ)

∣
∣ 〈Î ′

b,λ(u), ui〉 = 0 for i = 1, 2, u+
1 	= 0, u−

2 	= 0

and 〈Î ′
b,λ(u), u±

3 〉 = 0, u±
3 	= 0

}
.

Combining the approach applied in Sect. 2 in [10] and that used in the proof of Theorem 1.1, we
deduce that there exists vλ ∈ H1

0 (Ωρ) such that

Îb,λ(vλ) = m̂λ and Î ′
b,λ(vλ) = 0.

Proposition 4.2. Suppose λn → +∞ as n → ∞ and {vλn
} ⊂ H1

0 (Ωρ) satisfying

Îb,λn
(vλn

) = m̂λn
and Î ′

b,λn
(vλn

) = 0.

then, up to a subsequence, there exists v ∈ H1
0 (Ωρ) such that

(i) vn → v strongly in H1
0 (Ωρ), where we write vλn

as vn for simplicity;
(ii) v = 0 in Ωρ\ΩΓ and v is a solution to Eq. (1.17);

(iii) Îb,λn
(vn) → Îb,0(v) =

a

2

∫

ΩΓ

|∇v|2dx +
b

4

⎛

⎝

∫

ΩΓ

|∇v|2dx

⎞

⎠

2

−
∫

ΩΓ

h+(x)|v|pdx.

Proof. It is easy to prove that {vn} is bounded in H1
0 (Ωρ), since m̂λn

≤ mΓ. Then, up to a subsequence,
there exists v ∈ H1

0 (Ωρ) such that
⎧
⎨

⎩

vn ⇀ v weakly in H1
0 (Ωρ),

vn → v strongly in Lq(Ωρ) for 2 ≤ q < 6,
vn → v for a.e. x ∈ Ωρ.

(4.4)

We first prove v = 0 in Ωρ \ ΩΓ. Set Ωρ
− =

{
x ∈ Ωρ : h(x) < 0

}
, since {vλn

} is bounded in H1
0 (Ωρ), then
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−1
p

∫

Ωρ
−

λnh−(x)|vn|pdx = Îb,λn
(vn) − a

2

∫

Ωρ

|∇vn|2dx − b

4

⎛

⎝

∫

Ωρ

|∇vn|2dx

⎞

⎠

2

+
1
p

∫

Ωρ

h+(x)|vn|pdx ≤ C. (4.5)

Therefore

−
∫

Ωρ
−

h−(x)|v|pdx = lim inf
n→∞

⎡

⎢
⎣− 1

λn

∫

Ωρ
−

λnh−(x)|vn|pdx

⎤

⎥
⎦ = 0,

which indicates that v = 0 on Ωρ
−. Thus, we conclude v = 0 in Ωρ \ ΩΓ.

By using the fact 〈Î ′
b,λn

(vn) − Î ′
b,0(v), vn − v〉 = 0 that

a

∫

Ωρ

|∇vn − ∇v|2dx + b

∫

Ωρ

|∇vn|2dx

∫

Ωρ

|∇vn − ∇v|2dx

= b

⎛

⎝

∫

Ωρ

|∇v|2dx −
∫

Ωρ

|∇vn|2dx

⎞

⎠

∫

Ωρ

∇v(∇vn − ∇v)dx

+
∫

Ωρ

h+(x)
(|vn|p−2vn − |v|p−2v

)
(vn − v)dx +

∫

Ωρ

λnh−(x)|vn|p−2vn(vn − v)dx.

Obviously, the right hand of the last equality tend to zero as n → ∞, since {vn} is bounded in H1
0 (Ωρ)

and v = 0 in Ωρ\ΩΓ. Thus, vn → v strongly in H1
0 (Ωρ), and hence v is a solution of (1.17).

Finally, it is easy to conclude that (iii) from (i)–(ii). �
Moreover, we have the following asymptotic behavior for m̂λ as λ → +∞.

Lemma 4.3. There holds that
(i) 0 < m̂λ ≤ mΓ, for all λ ≥ 0;
(ii) m̂λ → mΓ, as λ → +∞.

Proof. The proof of point (i) is trivial, so we omit the detail.
Now, we are going to prove point (ii). Let {λn} be a sequence with λn → +∞ as n → +∞. For each

λn, there exists vλn
∈ H1

0 (Ωρ) with

Îb,λn
(vλn

) = m̂b,λn
and Î ′

b,λn
(vλn

) = 0. (4.6)

We suppose, up to a subsequence, {Îb,λn
(vλn

)} converges, since m̂b,λn
≤ mΓ. By using similar arguments

as in Proposition 4.2, we know that there exists v ∈ H1
0 (Ωρ) such that

vλn
→ v strongly in H1

0 (Ωρ) as n → +∞,

and (v|Ω1)
+, (v|Ω2)

−, (v|Ω3)
± 	= 0. Moreover,

m̂b,λn
= Îb,λn

(vλn
) → Îb,0(v), (4.7)

and
0 = Î ′

b,λn
(vλn

) → Î ′
b,0(v). (4.8)

By the definition of mΓ, we have that

lim
ni→+∞ m̂b,λn

= Îb,0(v) ≥ mΓ. (4.9)

By conclusion (i) of this Lemma, we know that m̂b,λn
→ mΓ as n → ∞. �
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Next, we denote the solution of (1.17) given in Theorem 4.1 by v ∈ H1
0 (Ω), that is

v ∈ H1
0 (ΩΓ), IΓ(v) = mΓ, I ′

Γ(v) = 0, (4.10)

and v1 = v|Ω1 is positive, v2 = v|Ω2 is negative, v3 = v|Ω3 changes sign exactly once. Obviously, there
exist constants τ2 > τ1 > 0 such that

τ1 ≤ ‖v1‖, ‖v2‖, ‖v+
3 ‖, ‖v−

4 ‖ ≤ τ2. (4.11)

We now define γ0 : [12 , 3
2 ]4 → H1

0 (Ω) by

γ0(t1, t2, t3, t4) := t1v1 + t2v2 + t3v
+
3 + t4v

−
3 (4.12)

and
mλ := inf

γ∈Σλ

max
t∈[ 1

2 , 3
2 ]

4
Ib,λ(γ(t)), (4.13)

where

Σλ : =
{

γ ∈ C
([

1
2
,
3
2

]4

,H1
0 (Ω)

)

: ‖γ(t)‖ ≤ 6τ2 + τ1, (γ|Ωρ
1
)+, (γ|Ωρ

2
)−, (γ|Ωρ

3
)± 	= 0

and γ = γ0 on ∂

[
1
2
,
3
2

]4 }
. (4.14)

Obviously, γ0 ∈ Σλ, so Σλ 	= ∅. Thus mλ is well-defined.

Lemma 4.4. For any γ ∈ Σλ, there exists an 4-tuple t∗ = (t∗1, t
∗
2, t

∗
3, t

∗
4) ∈ D = (1

2 , 3
2 )4 such that

〈Î ′
b,λ(γ(t∗)|Ωρ), γ+

1 (t∗)〉 = 〈Î ′
b,λ(γ(t∗)|Ωρ), γ−

2 (t∗)〉 = 0 and 〈Î ′
b,λ(γ(t∗)|Ωρ), γ±

3 (t∗)〉 = 0,

where γi(t) = γ(t)|Ωρ
i

for i = 1, 2, 3.

Proof. For each γ ∈ Σλ, let us define Ψ : [12 , 3
2 ]4 → R

4 given by

Ψ(t) =
(
Î ′
b,λ (γ(t)|Ωρ) γ+

1 (t), Î ′
b,λ (γ(t)|Ωρ) γ−

2 (t), Î ′
b,λ (γ(t)|Ωρ) γ+

3 (t), Î ′
b,λ (γ(t)|Ωρ) γ−

3 (t)
)

.

Denote

Ψ0(t) =
(
Î ′
b,λ (γ0(t)) t1v1, Î ′

b,λ (γ0(t)) t2v2, Î ′
b,λ (γ0(t)) t3v

+
3 , Î ′

b,λ (γ0(t)) t4v
−
3

)
.

Obviously,

Ψ(t) = Ψ0(t) 	= 0, for each t ∈ ∂

(
1
2
,
3
2

)4

.

Therefore, we can verify that

deg(Ψ,D, 0) = deg(Ψ0,D, 0) = 1.

This implies that there exists t∗ ∈ ( 1
2 , 3

2 )4 such that Ψ(t∗) = 0. �

Lemma 4.5. There holds that
(i) m̂λ ≤ mλ ≤ mΓ for all λ ≥ 1;
(ii) mλ → mΓ as λ → +∞;
(iii) There exists ε0 > 0 such that Ib,λ(γ(t)) < mΓ − ε0 for all λ > 0, γ ∈ Σλ and t = (t1, t2, t3, t4) ∈

∂[12 , 3
2 ]4.
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Proof. (i) Since γ0 ∈ Σλ, we have

mλ ≤ max
t∈[ 12 , 3

2 ]4
Ib,λ(γ0(t)) = Ib,λ(γ0(1, 1, 1, 1)) = mΓ,

where we have used Lemma 2.2 in [10]. Recall that

m̂λ := inf
u∈M̂b,λ

Îb,λ(u).

For each γ ∈ Σλ, fix t∗ ∈ ( 1
2 , 3

2 )4 given by Lemma 4.4, then

m̂λ ≤ Îb,λ(γ(t∗)|Ωρ).

Therefore,

max
t∈[ 12 , 3

2 ]4
Ib,λ(γ(t)) ≥ Îb,λ(γ(t∗)|Ωρ) ≥ m̂λ, for each γ ∈ Σλ.

Thus,

mλ ≥ m̂λ.

(ii) Since m̂λ → mΓ by Lemma 4.3 (ii), we have

mλ → mΓ as λ → +∞.

(iii) For t = (t1, t2, t3, t4) ∈ ∂[ 12 , 3
2 ]4, it holds γ(t) = γ0(t) and hence

Ib,λ(γ(t)) = Ib,λ(γ0(t)) for t = (t1, t2, t3, t4) ∈ ∂

[
1
2
,
3
2

]4

.

By Lemma 2.2 in [10], we know that (1, 1, 1, 1) is the unique maximum point of ϕ(t) = Ib,0(γ0(t)), which
gives that

Ib,λ(γ(t)) < m − ε0 for t = (t1, t2, t3, t4) ∈ ∂

[
1
2
,
3
2

]4

.

where ε0 > 0 is a small constant. �

5. Proof of Theorem 1.4.

In this section, we prove Theorem 1.4. More precisely, we show that the existence of sign-changing multi-
bump solutions to Eq. (1.6) for large λ, which converges to solutions of (1.17) with prescribed sign
properties as λ → +∞.

Define

S :=
{

u ∈ MΓ

∣
∣ IΓ(u) = mΓ

}
,

where

MΓ =
{

u ∈ H1
0 (ΩΓ) | 〈I ′

Γ(u), u|Ωi
〉 = 0, i = 1, 2, (u|Ω1)

+ 	= 0, (u|Ω2)
− 	= 0,

and 〈I ′
Γ(u), (u|Ω3)

±〉 = 0, (u|Ω3)
± 	= 0

}
.

Obviously, S contains all least energy solutions of (1.17) with u|Ω1 is positive, u|Ω2 is negative, u|Ω3

changes sign exactly once. Moreover, we have the following Lemma.

Lemma 5.1. S is compact in H1
0 (ΩΓ).
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Proof. Let {un} ⊂ S, then {un} is a bounded (PS)mΓ sequence of IΓ. Since IΓ satisfies (PS)-condition,
up to a subsequence, we may suppose un → u∞ strongly in H1

0 (ΩΓ). It follows that u∞ ∈ MΓ and
IΓ(u∞) = lim

n→∞ IΓ(un) = mΓ. Therefore, u∞ ∈ S. �

Lemma 5.2. Let d > 0 be a fixed number and let {un} ⊂ Sd be a sequence. Then, up to a subsequence,
un ⇀ u0 ∈ S2d weakly in H1

0 (Ω) as n → ∞, where

Sd :=
{

u ∈ H1
0 (Ω) : distλ(u,S) ≤ d

}

and dist denotes the distance in H1
0 (Ω).

Proof. Since S is compact in H1
0 (Ω), then there exists a sequence {ūn} ⊂ S such that

dist (un,S) = dist (un, ūn) ≤ d.

By Lemma 5.1, there exists ū ∈ S such that, up to a subsequence, ūn → ū strongly in H1
0 (Ω). Hence,

dist (ūn, ū) ≤ d for n large enough. Thus, {un} is bounded and, up to a subsequence, un ⇀ u0 weakly in
H1

0 (Ω). Since B2d(ū) is weakly closed in H1
0 (Ω), therefore, u0 ∈ B2d(ū) ⊂ S2d. �

Lemma 5.3. Let d ∈ (0, τ1), where τ1 is given by (4.11). Suppose that there exist a sequence λn > 0 with
λn → +∞, and {un} ⊂ Sd satisfying

lim
n→∞ Ib,λn

(un) ≤ mΓ, lim
n→∞ I ′

b,λn
(un) = 0.

Then, up to a subsequence, {un} converges strongly in H1
0 (Ω) to an element u ∈ S.

Proof. Since lim
n→∞ Ib,λn

(un) ≤ mΓ and lim
n→∞ I ′

b,λn
(un) = 0, we deduce that {‖un‖} and {Iλn

(un)} are
bounded. Up to a subsequence, we may assume that

Ib,λn
(un) → c ∈ (−∞,mΓ].

By using Proposition 4.2, there exists u ∈ H1
0 (Ω) such that

un → u strongly in H1
0 (Ω), u = 0 in Ω \ ΩΓ and Ib,λn

(un) → IΓ(u). (5.1)

Moreover, u is a solution to the following equation
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
⎛

⎝a + b

∫

ΩΓ

|∇u|2dx

⎞

⎠Δu = h+(x)|u|p−2u, x ∈ ΩΓ,

u = 0, x ∈ Ω \ ΩΓ,
u = 0, x ∈ ∂Ω.

(5.2)

Since {un} ⊂ Sd and d ∈ (0, τ1), we deduce that (u|Ω1)
+ 	= 0, (u|Ω2)

− 	= 0 and (u|Ω3)
± 	= 0. Consequently,

IΓ(u) ≥ m. The conclusion IΓ(u) = m follows from the fact that Ib,λn
(un) → IΓ(u) ≤ mΓ, Thus, u ∈ S

is proved. �

Lemma 5.4. Let τ1 > 0 be as in Lemma 5.3. Then, for δ ∈ (0, d), there exist constants 0 < σ < 1 and
Λ1 > 0 such that ‖I ′

b,λ(u)‖H−1 ≥ σ for any u ∈ Imλ

b,λ ∩ (Sδ\S δ
2 ) and λ ≥ Λ1.

Proof. We argue by contradiction. Suppose that there exist a number δ0 ∈ (0, d), a positive sequence
{λj} with λj → 0, and a sequence of function {uj} ⊂ I

mλj

b,λj
∩ (Sδ0\S δ0

2 ) such that

lim
j→+∞

I ′
b,λj

(uj) = 0.

Up to a subsequence, we obtain

{uj} ⊂ Sδ0 , lim
j→∞

Ib,λj
(uj) ≤ mΓ.
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Hence, we can apply Lemma 5.3 and assert that there exists u ∈ S such that uj → u strongly in H1
0 (Ω).

As a consequence, dist (uj ,S) → 0 as j → +∞. This contradict the fact that uj 	∈ S δ0
2 . �

From now on, we fix a small constant δ ∈ (0, d) and corresponding constants 0 < σ < 1 and Λ1 > 0
such that our Lemma 5.4 hold. For convenient, we next denote Q := [12 , 3

2 ]4.

Lemma 5.5. There exist Λ2 ≥ Λ1 and α > 0 such that for any λ ≥ Λ2,

Ib,λ(γ0(t1, t2, t3, t4)) ≥ mλ − α implies that γ0(t1, t2, t3, t4) ∈ S δ
2 . (5.3)

Proof. Assume by contradiction that there exist λn → ∞, αn → 0 and (t(n)
1 , t

(n)
2 , t

(n)
3 , t

(n)
4 ) ∈ Q such that

Ib,λ(γ0(t
(n)
1 , t

(n)
2 , t

(n)
3 , t

(n)
4 )) ≥ mλn

− αn and γ0(t
(n)
1 , t

(n)
2 , t

(n)
3 , t

(n)
4 ) 	∈ S δ

2 . (5.4)

Passing to a subsequence, we may assume that (t(n)
1 , t

(n)
2 , t

(n)
3 , t

(n)
4 ) → (t̄1, t̄2, t̄3, t̄4) ∈ Q. Then, Lemma

4.5 implies that

IΓ(γ0(t̄1, t̄2, t̄3, t̄4)) ≥ lim
n→∞ (mλn

− αn) = mΓ.

From Lemma 2.2 in [10], we can deduce that (t̄1, t̄2, t̄3, t̄4) = (1, 1, 1, 1) and hence

lim
n→∞ ‖γ0(t

(n)
1 , t

(n)
2 , t

(n)
3 , t

(n)
4 ) − γ0(1, 1, 1, 1)‖ = 0.

However, γ0(1, 1, 1, 1) = v ∈ S, which contradicts to (5.4). �

Next, we set

α0 := min
{α

2
,
ε0

2
,
1
8
δσ2

}
, (5.5)

where δ, σ are given in Lemma 5.4, α is from Lemma 5.5, ε0 is from Lemma 4.5 (iii). By Lemma 4.4,
there exists Λ3 ≥ Λ2 such that

|mλ − mΓ| < α0 for all λ ≥ Λ3. (5.6)

Proposition 5.6. For each λ ≥ Λ3, there exists a critical point uλ of Ib,λ with uλ ∈ Sδ ∩ ImΓ
b,λ .

Proof. Fix λ ≥ Λ3. Assume by contradiction that there exists 0 < ρλ < 1 such that ‖I ′
b,λ(u)‖ ≥ ρλ on

Sδ ∩ImΓ
λ . Then there exists a pseudo-gradient vector field Tλ in H1

0 (Ω) which is defined on a neighborhood
Zλ of Sδ ∩ ImΓ

b,λ such that for any u ∈ Zλ there holds

‖Tλ(u)‖ ≤ 2min{1, ‖I ′
b,λ(u)‖},

〈I ′
b,λ(u), Tλ(u)〉 ≥ min{1, ‖I ′

b,λ(u)‖}‖I ′
b,λ(u)‖.

Let ψλ be a Lipschitz continuous function on H1
0 (Ω) such that 0 ≤ ψλ ≤ 1, ψλ ≡ 1 on Sδ ∩ ImΓ

b,λ and
ψλ ≡ 0 on H1

0 (Ω)\Zλ. Let ξλ be a Lipschitz continuous function on R such that 0 ≤ ξλ ≤ 1, ξλ(t) ≡ 1 if
|t − mΓ| ≤ α

2 and ξλ(t) ≡ 0 if |t − mΓ| ≥ α. Define

eλ(u) :=
{−ψλ(u)ξλ(Ib,λ(u))Tλ(u), if u ∈ Zλ,

0, if u ∈ H1
0 (Ω) \ Zλ.

(5.7)

Then there exists a global solution ηλ : H1
0 (Ω) × [0,+∞) → H1

0 (Ω) for the initial value problem
{

d
dθηλ(u, θ) = eλ(ηλ(u, θ)),
ηλ(u, 0) = u.

(5.8)

It is easy to see that ηλ has the following properties:
(1) ηλ(u, θ) = u if θ = 0 or u ∈ H1

0 (Ω)\Zλ or |Ib,λ(u) − mΓ| ≥ α.
(2) ‖ d

dθ ηλ(u, θ)‖ ≤ 2.
(3) d

dθ Ib,λ(ηλ(u, θ)) = 〈I ′
b,λ(ηλ(u, θ)), eλ(ηλ(u, θ))〉 ≤ 0. �
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Claim 1. For any (t1, t2, t3, t4) ∈ Q, there exists θ = θ(t1, t2, t3, t4) ∈ [0,+∞) such that ηλ(γ0(t1, t2,
t3, t4), θ) ∈ ImΓ−α0

b,λ , where α0 is given by (5.5).
Assume by contradiction that there exists (t1, t2, t3, t4) ∈ Q such that

Ib,λ(ηλ(γ0(t1, t2, t3, t4), θ)) > mΓ − α0

for any θ ≥ 0. Note that α0 < α, we see, from Lemma 5.5, that γ0(t1, t2, t3, t4) ∈ S δ
2 . Moreover, since

Ib,λ(γ0(t1, t2, t3, t4)) ≤ mΓ, we have, from the property (3) of ηλ, that

mΓ − α0 < Ib,λ(ηλ(γ0(t1, t2, t3, t4), θ)) ≤ Ib,λ(γ0(t1, t2, t3, t4)) ≤ mΓ

for θ ≥ 0. This implies that ξλ(Ib,λ(ηλ(γ0(t1, t2, t3, t4), θ))) ≡ 1. If ηλ(γ0(t1, t2, t3, t4), θ) ∈ Sδ for all
θ ≥ 0, we can deduce that

ψλ (ηλ(γ0(t1, t2, t3, t4), θ)) ≡ 1 and ‖I ′
b,λ(ηλ(γ0(t1, t2, t3, t4), θ))‖ ≥ ρλ

for all θ > 0. It follows that

Ib,λ

(
ηλ

(
γ0(t1, t2, t3, t4),

α

ρ2
λ

)) ≤ mΓ −

α

ρ2
λ∫

0

ρ2
λdt ≤ mΓ − α,

which is a contradiction. Thus, there exists θ3 > 0 such that ηλ(γ0(t1, t2, t3, t4), θ3) 	∈ Sδ. Note that
γ0(t1, t2, t3, t4) ∈ S δ

2 , there exist 0 < θ1 < θ2 ≤ θ3 such that

ηλ(γ0(t1, t2, t3, t4), θ1) ∈ ∂S δ
2 , ηλ(γ0(t1, t2, t3, t4), θ2) ∈ ∂Sδ

and

ηλ(γ0(t1, t2, t3, t4), θ) ∈ Sδ \ S δ
2 for all θ ∈ (θ1, θ2).

By Lemma 5.4, we have that

‖I ′
b,λ(ηλ(γ0(t1, t2, t3, t4), θ))‖ ≥ σ for all θ ∈ (θ1, θ2).

By using property (2) of ηλ we have

δ

2
≤ ‖ηλ(γ0(t1, t2, t3, t4), θ2) − ηλ(γ0(t1, t2, t3, t4), θ1)‖ ≤ 2|θ2 − θ1|.

This implies that

Ib,λ(ηλ(γ0(t1, t2, t3, t4), θ2))

≤ Ib,λ(ηλ(γ0(t1, t2, t3, t4), 0)) +

θ2∫

0

d
dθ

Ib,λ(ηλ(γ0(t1, t2, t3, t4), θ))dθ

< Ib,λ(γ0(t1, t2, t3, t4)) +

θ2∫

θ1

d
dθ

Ib,λ(ηλ(γ0(t1, t2, t3, t4), θ))dθ

≤ mΓ − σ2(θ2 − θ1) ≤ mΓ − 1
4
δσ2

< mΓ − α0, (5.9)

which is a contradiction. Thus, we finish the proof of Claim 1.
Now, we can define

T (t1, t2, t3, t4) := inf
{

θ ≥ 0 : Ib,λ(ηλ(γ0(t1, t2, t3, t4), θ)) ≤ mΓ − α0

}
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and

γ̃(t1, t2, t3, t4) := ηλ(γ0(t1, t2, t3, t4), T (t1, t2, t3, t4)).

Then Φλ(γ̃(t1, t2, t3, t4)) ≤ mΓ − α0 for all (t1, t2, t3, t4) ∈ Q.

Claim 2. γ̃(t1, t2, t3, t4) = ηλ(γ0(t1, t2, t3, t4), T (t1, t2, t3, t4)) ∈ Σλ.
For any (t1, t2, t3, t4) ∈ ∂Q, by (5.5)–(5.6), we have

Ib,λ(γ0(t1, t2, t3, t4)) ≤ IΓ(γ0(t1, t2, t3, t4)) < mΓ − ε0 ≤ mΓ − α0,

which implies that T (t1, t2, t3, t4) = 0 and thus γ̃(t1, t2, t3, t4) = γ0(t1, t2, t3, t4) for (t1, t2, t3, t4) ∈ ∂Q.
By the definition of Σλ in (4.14), it suffices to prove that ‖γ̃(t1, t2, t3, t4)‖ ≤ 6τ2+τ1 for all (t1, t2, t3, t4) ∈

Q and T (t1, t2, t3, t4) is continuous with respect to (t1, t2, t3, t4).
For any (t1, t2, t3, t4) ∈ Q, we have T (t1, t2, t3, t4) = 0 if Ib,λ(γ0(t1, t2, t3, t4)) ≤ mΓ − α0, and hence

γ̃(t1, t2, t3, t4) = γ0(t1, t2, t3, t4). By (4.11), we deduce that ‖γ̃(t1, t2, t3, t4)‖ ≤ 6τ2 < 6τ2 + τ1.
On the other hand, if Ib,λ(γ0(t1, t2, t3, t4)) > mΓ − α0, we can deduce that

Ib,λ(γ0(t1, t2, t3, t4)) > mλ − α,

thus γ0(t1, t2, t3, t4) ∈ S δ
2 and

mΓ − α0 < Ib,λ(ηλ(γ0(t1, t2, t3, t4), θ)) < mΓ + α0, for all θ ∈ [0, T (t1, t2, t3, t4)).

This implies that

ξλ(Ib,λ(ηλ(γ0(t1, t2, t3, t4), θ))) ≡ 1 for all θ ∈ [0, T (t1, t2, t3, t4)).

Now, we are going to prove that γ̃(t1, t2, t3, t4) ∈ Sδ. Otherwise, if γ̃(t1, t2, t3, t4) 	∈ Sδ, similar to the
proof of Claim 1, we can find two constants 0 < θ1 < θ2 < T (t1, t2, t3, t4) such that (5.9) hold. This
implies that Ib,λ(ηλ(γ0(t1, t2, t3, t4), θ2)) < mΓ − α0 which contradicts to the definition of T (t1, t2, t3, t4).
Therefore,

γ̃(t1, t2, t3, t4) = ηλ(γ0(t1, t2, t3, t4), T (t1, t2, t3, t4)) ∈ Sδ.

Thus there exists u ∈ S such that ‖γ̃(t1, t2, t3, t4) − u‖ ≤ δ ≤ τ1. It follows from (4.11) that

‖γ̃(t1, t2, t3, t4)‖ ≤ ‖u‖ + τ1 ≤ 6τ2 + τ1.

To prove the continuity of T (t1, t2, t3, t4), we fix arbitrarily (t1, t2, t3, t4) ∈ Q. First, we assume that
Ib,λ(γ̃(t1, t2, t3, t4)) < mΓ − α0. In this case, we deduce directly that T (t1, t2, t3, t4) = 0 by the definition
of T (t1, t2, t3, t4), which gives that

Ib,λ(γ0(t1, t2, t3, t4)) < m − α0.

By the continuity of γ0, there exists r > 0 such that for any (s1, s2, s3, s4) ∈ Br(t1, t2, t3, t4)∩Q, we have
Ib,λ(γ0(s1, s2, s3, s4)) < mΓ − α0. Thus, T (s1, s2, s3, s4) = 0, and hence T is continuous at (t1, t2, t3, t4).

Now, we assume that Ib,λ(γ̃(t1, t2, t3, t4)) = mΓ−α0. From the previous proof we see that γ̃(t1, t2, t3, t4) =
ηλ(γ0(t1, t2, t3, t4), T (t1, t2, t3, t4)) ∈ Sδ, and so

‖I ′
b,λ(ηλ(γ0(t1, t2, t3, t4), T (t1, t2, t3, t4)))‖ ≥ ρλ > 0.

Thus for any ω > 0, we have

Ib,λ(ηλ(γ0(t1, t2, t3, t4), T (t1, t2, t3, t4) + ω)) < mΓ − α0.

By the continuity of ηλ, there exists r > 0 such that

Ib,λ(ηλ(γ0(s1, s2, s3, s4), T (t1, t2, t3, t4) + ω))) < mΓ − α0,

for any (s1, s2, s3, s4) ∈ Br(t1, t2, t3, t4) ∩ Q. Thus, T (s1, s2, s3, s4) ≤ T (t1, t2, t3, t4) + ω. It follows that

0 ≤ lim sup
(s1,s2,s3,s4)→(t1,t2,t3,t4)

T (s1, s2, s3, s4) ≤ T (t1, t2, t3, t4). (5.10)
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If T (t1, t2, t3, t4) = 0, we immediately implies that

lim
(s1,s2,s3,s4)→(t1,t2,t3,t4)

T (s1, s2, s3, s4) = T (t1, t2, t3, t4).

If T (t1, t2, t3, t4) > 0, we can similarly deduce that

Ib,λ(ηλ(γ0(s1, s2, s3, s4), T (t1, t2, t3, t4) − ω)) > mΓ − α0.

for any 0 < ω < T (t1, t2, t3, t4).
By the continuity of ηλ again, we see that

lim inf
(s1,s2,s3,s4)→(t1,t2,t3,t4)

T (s1, s2, s3, s4) ≥ T (t1, t2, t3, t4). (5.11)

It follows from (5.10)–(5.11) that T is continuous at (t1, t2, t3, t4). This completes the proof of Claim 2.
Thus, we have proved that γ̃(t1, t2, t3, t4) ∈ Σλ and

max
(t1,t2,t3,t4)∈Q

Iλ(γ̃(t1, t2, t3, t4)) ≤ mΓ − α0,

which contradicts the definition of mΓ. This completes the proof. �

Proof of Theorem 1.4. We still prove Theorem 1.4 with Γ1 = {1}, Γ2 = {2} and Γ3 = {3}. For the
general Γ verifying (1.16), the proof is very similar and just needs a slight modification.

By Proposition 5.6, there exists a solution uλ for Eq. (1.6) with uλ ∈ Sδ ∩ ImΓ
b,λ for all λ ≥ Λ3.

Therefore, for any sequence {λn} with λn → +∞ as n → ∞, there exists a sequence {un} ⊂ H1
0 (Ω) such

that

Ib,λn
(un) ≤ mΓ, I ′

b,λn
(un) = 0.

By using Lemma 5.3, we can deduce that uλn
→ u ∈ S strongly in H1

0 (Ω). Thus, we complete the proof
of Theorem 1.4. �
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