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Lotka–Volterra competition model over a stream
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Abstract. In this paper, we study a three-patch two-species Lotka–Volterra competition patch model over a stream network.
The individuals are subject to both random and directed movements, and the two species are assumed to be identical except
for the movement rates. The environment is heterogeneous, and the carrying capacity is lager in upstream locations. We
treat one species as a resident species and investigate whether the other species can invade or not. Our results show that the
spatial heterogeneity of environment and the magnitude of the drift rates have a large impact on the competition outcomes
of the stream species.
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1. Introduction

The species living in stream environment is subject to both passive random movement and directed drift
[47]. Intuitively, the drift will carry individuals to the downstream end, which may be crowded or hostile.
However, random dispersal may drive the individuals to the upper stream locations, which are usually
more favorable for the species [23]. Therefore, the joint impact of both undirectional and directed dispersal
rates on the population dynamics of the species is usually complicated and has attracted increasing
research interests recently [22,25,34,40–42,47].

Dispersal has profound effects on the distribution and abundance of organisms, and understanding
the mechanisms for the evolution of dispersal is a fundamental question related to dispersal [26]. In the
seminal works of Hastings [19] and Dockery et al. [15], it has been shown that in a spatially heterogeneous
environment, when two competing species are identical except for the random dispersal rate, evolution
of dispersal favors the species with a smaller dispersal rate. However, in an advective environment when
individuals are subject to both undirectional random dispersal and directed movement, species with a
faster dispersal rate can be selected [3,4,11].

Two-species reaction–diffusion–advection competition models of the following form have been proposed
to study the evolution of dispersal for stream species [28,34–36,38,43,48,49,51–53]:
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Fig. 1. A stream with three patches, where d is the random movement rate and q is the directed drift rate. Patch 1 is the

upstream end, and patch 3 is the downstream end

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = d1uxx − q1ux + u[r(x) − u − v], 0 < x < l, t > 0,

vt = d2vxx − q2vx + v[r(x) − u − v], 0 < x < l, t > 0,

d1ux(0, t) − q1u(0, t) = d2vx(0, t) − q2v(0, t) = 0, t > 0,

d1ux(l, t) − q1u(l, t) = d2vx(l, t) − q2v(l, t) = 0, t > 0,

u(x, 0), v(x, 0) ≥ (�≡)0, 0 < x < l.

(1.1)

In [28,34,49], the authors have treated species u as a resident species and studied the conditions under
which the species u only semitrivial equilibrium is stable/unstable. Various results on the global dynamics
of (1.1) are presented in [36,38,43,52,53]. In particular, if r(x) is constant, the works [36,38,53] show
that the species with a larger diffusion rate and/or a smaller advection rate wins the competition. If r(x)
is a decreasing function, the authors in [37,52] use q1 and q2 as bifurcation parameters to study the global
dynamics of (1.1) and the related results will be discussed later (see Remark 3.14).

To study the evolution of dispersal in a river network, the authors in [23,24] propose and investigate
three-patch two-species Lotka–Volterra competition models. Let u = (u1, u2, u3) and v = (v1, v2, v3) be
the population density of two competing species, respectively, where ui and vi are the densities in patch
i. Suppose that the dispersal patterns of the individuals and the configuration of the patches are shown
in Fig. 1.

The competition patch model over the stream network in Fig. 1 (with r1 = r2 = r3) in [23,24] is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dui

dt
=

3∑

j=1

(d1Dij + q1Qij)uj + riui

(

1 − ui + vi
ki

)

, i = 1, 2, 3, t > 0,

dvi
dt

=
3∑

j=1

(d2Dij + q2Qij)vj + rivi

(

1 − ui + vi
ki

)

, i = 1, 2, 3, t > 0,

u(0) = u0 ≥ (�≡) 0, v(0) = v0 ≥ (�≡) 0,

(1.2)

where d1 and d2 are random movement rates; q1 and q2 are directed movement rates; r = (r1, r2, r3) is
the growth rate; k = (k1, k2, k3) is the carrying capacity; and two 3×3 matrices D = (Dij) and Q = (Qij)
represent the random movement pattern and directed drift pattern of individuals, respectively, where

D =

⎡

⎢
⎢
⎢
⎣

−1 1 0

1 −2 1

0 1 −1

⎤

⎥
⎥
⎥
⎦

, Q =

⎡

⎢
⎢
⎣

−1 0 0

1 −1 0

0 1 0

⎤

⎥
⎥
⎦ . (1.3)
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We can write the model as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du1

dt
= −(d1 + q1)u1 + d1u2 + r1u1

(

1 − u1 + v1
k1

)

,

du2

dt
= (d1 + q1)u1 − (2d1 + q1)u2 + d1u3 + r2u2

(

1 − u2 + v2
k2

)

,

du3

dt
= (d1 + q1)u2 − d1u3 + r3u3

(

1 − u3 + v3
k3

)

,

dv1
dt

= −(d2 + q2)v1 + d2v2 + r1v1

(

1 − u1 + v1
k1

)

,

dv2
dt

= (d2 + q2)v1 − (2d2 + q2)v2 + d2v3 + r2v2

(

1 − u2 + v2
k2

)

,

dv3
dt

= (d2 + q2)v2 − d2v3 + r3v3

(

1 − u3 + v3
k3

)

,

u(0) = u0 ≥ (�≡) 0, v(0) = v0 ≥ (�≡) 0.

(1.4)

We assume d1, d2, q1, q2 > 0 and ri, ki > 0 for i = 1, 2, 3. We adopt the same assumption in [23] on
k = (k1, k2, k3):

(H) k1 > k2 > k3 > 0.

Biologically, (H) means that the upstream locations are more favorable for both species.
Two-species Lotka–Volterra competition patch models have attracted many research interests recently.

Model (1.2) with n patches in spatially homogeneous environment (i.e., r1 = · · · = rn and k1 = · · · =
kn) has been considered in our earlier papers [7,10], but many techniques and results there cannot be
generalized to the situation when k1 = · · · = kn is not assumed. The authors in [18,45] have studied the
global dynamics of model (1.2) with two patches and q := q1 = q2. They have showed that there exists a
critical drift rate such that below it the species with a smaller dispersal rate wins the competition, while
above it the species with a larger dispersal rate wins. In a competition model with two patches, the authors
in [12,17,32] have showed that the species with more evenly distributed resources has less competition
advantage. In [8], the global dynamics of a Lotka–Volterra competition patch model is classified under
some assumptions on patches, which requires d1/q1 = d2/q2 in terms of (1.2). For more studies on
competition patch models, we refer to the works [2,5,6,27,30,33,44,46,50].

We will take an adaptive dynamics approach [14,16] to analyze (1.4) by viewing species u as the
resident species and species v as the mutant species. Model (1.4) has two semitrivial equilibria (u∗,0)
and (0,v∗). We fix parameters d1 and q1 and vary d2 and q2. We show that there exists a curve q = q∗

u (d)
dividing the (d2, q2)-plane into two regions such that (u∗,0) is stable if and only if (d2, q2) is above
the curve. Our results complement those in [23] by defining and analyzing the curve q = q∗

u (d) and
obtaining the global dynamics of model (1.4). In particular, we show that if q1 < q the curve q = q∗

u (d)
is bounded (see Fig. 3) and if q1 > q it is unbounded (see Fig. 4). This result is in sharp contrast with
the corresponding one for the model in spatially homogeneous environment (k1 = k2 = k3) [7], where the
curve q = q∗

u (d) is always unbounded. We give explicitly parameter ranges for competitive exclusion and
conditions for coexistence/bistability in three cases (q1 < q, q ≤ q1 ≤ q and q1 > q). Our results show
that the magnitude of the drift rates and the spatial heterogeneity of environment have a large impact
on the competition outcomes of the stream species.

Our paper is organized as follows. In Sect. 2, we list some preliminary results. In Sect. 3, we state the
main results on model (1.4). We give some conclusive remarks and numerical simulations in Sect. 4. The
proofs of the main results are presented in Sect. 5. In the Appendix, we show the relations of q, q, and q0.
These relations are implicitly included in the main results, and we prove them for reader’s convenience.
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2. Preliminary

Let A = (aij)n×n be a square matrix with real entries, σ(A) be the set of all eigenvalues of A, and s(A)
be the spectral bound of A, i.e., s(A) = max{Reλ : λ ∈ σ(A)}. The matrix A is called irreducible if it
cannot be placed into block upper triangular form by simultaneous row and column permutations and
essentially nonnegative if aij ≥ 0 for all 1 ≤ i, j ≤ n and i �= j. By the Perron–Frobenius theorem, if A is
irreducible and essentially nonnegative, then s(A) is an eigenvalue of A (called the principal eigenvalue
of A), which is the unique eigenvalue associated with a nonnegative eigenvector. The following result on
the monotonicity of spectral bound can be found in [1,9]:

Lemma 2.1. Let A = (aij)n×n be an irreducible and essentially nonnegative matrix and M = diag(mi) be
a real diagonal matrix. If s(A) = 0, then

d
dμ

s(μA + M) ≤ 0

for μ ∈ (0,∞) and the inequality is strict except for the case m1 = · · · = mn. Moreover,

lim
µ→0

s(μA + M) = max
1≤i≤n

{mi} and lim
µ→∞ s(μA + M) =

n∑

i=1

θimi,

where θi ∈ (0, 1), 1 ≤ i ≤ n, is determined by A and
n∑

i=1

θi = 1 (if A has each column sum equaling zero,

then θ = (θ1, . . . , θn)T is a positive eigenvector of A corresponding to eigenvalue 0).

Let m = (m1,m2,m3) be a real vector. We write m � 0 if mi > 0 for all i = 1, 2, 3, and m > 0 if
m ≥ 0 and m �= 0. Matrix dD+qQ+diag(mi) is irreducible and essentially nonnegative for any d, q > 0,
where D and Q are defined by (1.3). By the Perron–Frobenius theorem, s (dD + qQ + diag(mi)) is the
principal eigenvalue of the following eigenvalue problem:

3∑

j=1

(dDij + qQij)φj + miφi = λφi, i = 1, 2, 3. (2.1)

We need to consider the following single-species patch model:
⎧
⎪⎨

⎪⎩

dui

dt
=

3∑

j=1

(dDij + qQij)uj + riui

(

1 − ui

ki

)

, i = 1, 2, 3, t > 0,

u(0) = u0 > 0.

(2.2)

The global dynamics of (2.2) is as follows:

Lemma 2.2. Let D and Q be defined in (1.3), r,k � 0, d > 0, and q ≥ 0. Then, model (2.2) admits a
unique positive equilibrium u∗ � 0, which is globally asymptotically stable.

Proof. By [13,31,39], it suffices to show that 0 is unstable, i.e.,

s := s (dD + qQ + diag(ri)) > 0.

Let φT = (φ1, φ2, φ3)T � 0 with
∑3

i=1 φi = 1 be the positive eigenvector of dD + qQ + diag(ri) corre-
sponding to s. Multiplying (1, 1, 1) to the left of dDφ + qQφ + diag(ri)φ = sφ, we get s =

∑3
i=1 riφi > 0.

This proves the result. �

By Lemma 2.2, model (1.4) has two semitrivial equilibria (u∗,0) and (0,v∗), where u∗(resp., v∗) � 0
is the positive equilibrium of (2.2) with (d, q) replaced by (d1, q1) (resp., (d2, q2)). Linearizing model (1.4)
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at (u∗,0), we can easily see that its stability is determined by the sign of λ1 (d2, q2,1 − u∗/k), which is
the principal eigenvalue of the following eigenvalue problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λφ1 = −(d2 + q2)φ1 + d2φ2 + r1

(

1 − u∗
1

k1

)

φ1,

λφ2 = (d2 + q2)φ1 − (2d2 + q2)φ2 + d2φ3 + r2

(

1 − u∗
2

k2

)

φ2,

λφ3 = (d2 + q2)φ2 − d2φ3 + r3

(

1 − u∗
3

k3

)

φ3.

(2.3)

In particular, (u∗,0) is locally asymptotically stable if λ1 (d2, q2,1 − u∗/k) < 0 and unstable if
λ1 (d2, q2,1 − u∗/k) > 0. Here, we abuse the notation by denoting 1−u∗/k := (1−u∗

1/k1, 1−u∗
2/k2, 1−

u∗
3/k3).

3. Main results

We fix d1, q1 > 0, r,k � 0 and view species u as the resident species and v as the mutant species. We
investigate the dynamics of model (1.4) varying (d2, q2). For this purpose, we divide the first quadrant of
the (d, q)-plane into six regions:

G11 :=
{

(d, q) : d ≥ d1, q ≥ q1
d1

d, (d, q) �= (d1, q1)
}

,

G12 := {(d, q) : 0 < d < d1, q ≥ q1} ,

G13 :=
{

(d, q) : d ≥ d1, q1 ≤ q <
q1
d1

d, (d, q) �= (d1, q1)
}

,

G21 :=
{

(d, q) : 0 < d ≤ d1, 0 < q ≤ q1
d1

d, (d, q) �= (d1, q1)
}

,

G22 := {(d, q) : d > d1, 0 < q ≤ q1} ,

G23 :=
{

(d, q) : 0 < d ≤ d1,
q1
d1

d < q ≤ q1, (d, q) �= (d1, q1)
}

.

(3.1)

For readers’ convenience, we graph the six regions in Fig. 2.

3.1. Invasion curve

We consider the local stability of (u∗,0) in this subsection. Biologically, if (u∗,0) is stable, then a small
amount of species v cannot invade species u; if (u∗,0) is unstable, then a small amount of species v may
be able to invade species u. We prove that there exists a curve q = q∗

u (d) in the (d, q)-plane such that
(u∗,0) is locally asymptotically stable if (d2, q2) is above the curve and (u∗,0) is unstable if it is below
the curve. To this end, we define

d∗ =

⎧
⎨

⎩

∞, if
∑3

i=1 ri

(
1 − u∗

i

ki

)
≥ 0,

d0, if
∑3

i=1 ri

(
1 − u∗

i

ki

)
< 0,

(3.2)

where d = d0 > 0 is the unique root of λ1(d, 0,1−u∗/k) = 0 if
∑3

i=1 ri (1 − u∗
i /ki) < 0 (see the existence

of d0 in Lemma 5.2). We have the following result about the local stability/instability of the semitrivial
equilibrium (u∗,0):

Theorem 3.1. Suppose that (H) holds, r � 0, and d1, q1 > 0. Then, there exists a continuous function
q = q∗

u (d) : (0, d∗) → R+ passing through (d1, q1) such that the following statements hold for model (1.4):
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Fig. 2. Illustration of the six regions of (d, q)-plane

(i) If (d2, q2) ∈ S1, then the semitrivial equilibrium (u∗,0) is locally asymptotically stable;
(ii) If (d2, q2) ∈ S2, then the semitrivial equilibrium (u∗,0) is unstable.
Here, S1 ∪ S2 is a partition of the first quadrant of the (d, q)-plane defined as follows:

S1 := {(d, q) : 0 < d < d∗, q > q∗
u (d)} ∪ S∗

1 ,

S2 := {(d, q) : 0 < d < d∗, 0 < q < q∗
u (d)} ,

(3.3)

where

S∗
1 =

{
{(d, q) : d ≥ d∗, q > 0} , if d∗ �= ∞,

∅, if d∗ = ∞.
(3.4)

Remark 3.2. We call the curve in the first quadrant of (d, q)-plane defined by the function q = q∗
u (d) in

Theorem 3.1 the invasion curve. This curve consists with all the points (d, q∗
u (d)) such that λ1(d, q∗

u (d),1−
u∗/k) = 0, i.e., (u∗,0) is linearly neutrally stable. The invasion curve divides the first quadrant into
S1 ∪ S2, where S1 is the region above the curve and S2 is the region below it. By Theorem 3.1, (u∗,0) is
locally asymptotically stable if (d2, q2) ∈ S1 and unstable if (d2, q2) ∈ S2.

In the following of this paper, we denote

q := min
{

r1
k1

(k1 − k2),
r3
k3

(k2 − k3)
}

,

q := max
{

r1
k1

(k1 − k2),
r3
k3

(k2 − k3)
}

.

(3.5)

We take q and q as the threshold values for the drift rates. Specifically, if a drift rate is below q (above
q), we call it a slow (large) drift ; if a drift rate is between q and q, we call it an intermediate drift. These
definitions coincide with those in [23] if r1 = r2 = r3. It turns out that the magnitude of drift rate q1 will
have a large impact on the shape of the invasion curve and the dynamics of the model.

We have the following result about the invasion curve:

Proposition 3.3. Suppose that (H) holds, r � 0, and d1, q1 > 0. Let S1 and S2 be defined in Theorem
3.1. Then, the following statements hold:
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(i) G11 ⊂ S1 and G21 ⊂ S2;
(ii) If q1 > q, then G12 ⊂ S1 and G22 ⊂ S2;
(iii) If q1 < q, then G13 ⊂ S1 and G23 ⊂ S2

We explore further properties of the invasion curve:

Proposition 3.4. Suppose that (H) holds, r � 0, and d1, q1 > 0. Let q = q∗
u (d) : (0, d∗) → R+ be defined

in Theorem 3.1. Then, the following statements hold:
(i) limd→0 q∗

u (d) = q0, where

q0 = max
{

r1

(

1 − u∗
1

k1

)

, r2

(

1 − u∗
2

k2

)}

; (3.6)

(ii) If q1 < q, then

d∗ = d0 and lim
d→d∗

q∗
u (d) = 0; (3.7)

(iii) If q1 > q, then

d∗ = ∞ and lim
d→∞

q∗
u (d)
d

= θ (3.8)

for some θ ∈ (0, q1/d1);
(iv) If q ≤ q ≤ q, then (3.7) holds when

∑3
i=1 ri (1 − u∗

i /ki) < 0, (3.8) holds with θ ∈ (0, q1/d1) when
∑3

i=1 ri (1 − u∗
i /ki) > 0, and (3.8) holds with θ = 0 when

∑3
i=1 ri (1 − u∗

i /ki) = 0.

Remark 3.5. By Propositions 3.3 and 3.4, the invasion curve lies in G12 ∪ G22 when the drift rate q1 is
small, and it lies in G13 ∪G23 when q1 is large. Moreover, if q1 is small, the invasion curve is defined on a
bounded interval (0, d0); if q1 is large, it is defined on (0,∞) and has a slant asymptote q = θd for some
θ ∈ (0, q1/d1).

3.2. Competitive exclusion

In this subsection, we study the global dynamics of model (1.4) and find some parameter ranges of (d2, q2)
such that competitive exclusion happens. The relations of q, q and q0 are implicitly included in the results
below. However, for reader’s convenience, we include the proof in the Appendix.

Firstly, we consider the small drift case, i.e., q1 < q.

Theorem 3.6. Suppose that (H) holds, r � 0, and d1, q1 > 0 with q1 < q. Then, the following statements
hold:

(i) If (d2, q2) ∈ G21 ∪ G23, then the semitrivial equilibrium (0,v∗) of (1.4) is globally asymptotically
stable;

(ii) If (d2, q2) ∈ G11∪G∗
12∪G13, then the semitrivial equilibrium (u∗,0) of (1.4) is globally asymptotically

stable.
Here, G∗

12 is defined by

G∗
12 = {(d2, q2) : (d2, q2) ∈ G12, q2 > q}. (3.9)

Remark 3.7. Our results on model (1.4) for the small drift rate case are summarized in Fig. 3. We have
proved that competitive exclusion appears if (d2, q2) falls into the blue and yellow regions of Fig. 3.

Next, we consider the large drift case, i.e., q1 > q.

Theorem 3.8. Suppose that (H) holds, r � 0, and d1, q1 > 0 with q1 > q. Then, the following statements
hold:
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Fig. 3. Illustration of the results for the case q1 < q. If (d2, q2) is above the curve q = q∗
u (d), then (u∗,0) is stable; and

if (d2, q2) is under the curve, then (u∗,0) is unstable. If (d2, q2) ∈ G21 ∪ G23, (0, v∗) is globally asymptotically stable; if
(d2, q2) ∈ G11 ∪ G∗

12 ∪ G13, (u∗,0) is globally asymptotically stable

(i) If (d2, q2) ∈ G21∪G22∪G∗
23, then the semitrivial equilibrium (0,v∗) is globally asymptotically stable;

(ii) If (d2, q2) ∈ G11 ∪ G12, then the semitrivial equilibrium (u∗,0) is globally asymptotically stable.
Here, G∗

23 is defined by

G∗
23 = {(d2, q2) : (d2, q2) ∈ G23, q2 < q}. (3.10)

Remark 3.9. Our results on model (1.4) for the large drift rate case are summarized in Fig. 4. Differ-
ent from the small drift rate case, the invasion curve is unbounded. Again, we are able to prove that
competitive exclusion happens if (d2, q2) falls into the blue and yellow regions of Fig. 4.

Then, we consider the intermediate drift case, i.e., q ≤ q1 ≤ q, and we have the following results on
the global dynamics of model (1.4).

Theorem 3.10. Suppose that (H) holds, r � 0, and d1, q1 > 0 with q ≤ q1 ≤ q. Let G∗
12 be defined by

(3.9) and G∗
23 be defined by (3.10). Then, the following statements hold:

(i) If (d2, q2) ∈ G21 ∪ G∗
23, then the semitrivial equilibrium (0,v∗) is globally asymptotically stable;

(ii) If (d2, q2) ∈ G11 ∪ G∗
12, then the semitrivial equilibrium (u∗,0) is globally asymptotically stable.

Remark 3.11. Our results on model (1.4) for the intermediate drift rate case are summarized in Fig. 5.
In this case, the invasion curve may be defined on either a bounded or an unbounded interval. However,
we know that it must locate between the yellow and blue regions in Fig. 5, where competitive exclusion
happens.

In view of Theorems 3.6, 3.8, and 3.10, the global dynamics of model (1.4) in G11∪G21 is independent
of q1:

Corollary 3.12. Suppose that (H) holds, r � 0, and d1, q1 > 0. Then, the following statements hold:
(i) If (d2, q2) ∈ G11, then the semitrivial equilibrium (u∗,0) is globally asymptotically stable;
(ii) If (d2, q2) ∈ G21, then the semitrivial equilibrium (0,v∗) is globally asymptotically stable.
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Fig. 4. Illustration of the results for the case q1 > q. If (d2, q2) is above the curve q = q∗
u (d), then (u∗,0) is stable; and if

(d2, q2) is under the curve, then (u∗,0) is unstable. If (d2, q2) ∈ G21 ∪ G22 ∪ G∗
23, (0, v∗) is globally asymptotically stable;

and if (d2, q2) ∈ G11 ∪ G12, (u∗,0) is globally asymptotically stable

Fig. 5. Illustration of the results for the case q ≤ q1 ≤ q. If (d2, q2) ∈ G21 ∪ G∗
23, (0, v∗) is globally asymptotically stable;

and if (d2, q2) ∈ G11 ∪ G∗
12, (u∗,0) is globally asymptotically stable

More importantly, we have the following result about the evolution of random dispersal and directed
drift rates.

Corollary 3.13. Suppose that (H) holds, r � 0, and d1, q1 > 0. Then, the following statements hold:
(i) Fix d1 = d2. If q1 < q2, then the semitrivial equilibrium (u∗,0) is globally asymptotically stable; If

q1 > q2, then the semitrivial equilibrium (0,v∗) is globally asymptotically stable;
(ii) Fix q1 = q2 < q. If d1 < d2, then the semitrivial equilibrium (u∗,0) is globally asymptotically stable;

If d1 > d2, then the semitrivial equilibrium (0,v∗) is globally asymptotically stable;
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(iii) Fix q1 = q2 > q. If d1 < d2, then the semitrivial equilibrium (0,v∗) is globally asymptotically stable;
If d1 > d2, then the semitrivial equilibrium (u∗,0) is globally asymptotically stable.

Remark 3.14. By Corollary 3.13, the species with a smaller drift rate tends to have competitive advantage.
If the drift rate is small, the species with smaller random dispersal rate has competitive advantage; if the
drift rate is large, larger random dispersal rate is favored. We remark that Corollary 3.13 (i) was proved
in [37] for the PDE case, and the corresponding results of 3.13 (ii)–(iii) for the PDE case in [37] are as
follows: if d1 > d2, then there exists q(d1, d2) (resp. q(d1, d2)) such that (u∗,0) (resp. (0,v∗)) is globally
asymptotically stable for q1 = q2 > q(d1, d2) (resp. q1 = q2 < q(d1, d2)).

3.3. Coexistence and bistability

If (d2, q2) is in the blank regions of Figs. 3, 4 and 5, we show that bistability and coexistence may occur.
To this end, we explore the stability/instability of the semitrivial equilibrium (0,v∗(d2, q2)) along the
invasion curve q2 = q∗

u (d2). Let

λ̂1(d2) := λ1

(

d1, q1,1 − v∗ (d2, q∗
u (d2))

k

)

. (3.11)

Then, λ̂1(d1) = 0, the semitrivial equilibrium (0,v∗(d2, q∗
u (d2))) is stable if λ̂1(d2) < 0, and (0,v∗(d2, q∗

u (d2)))
is unstable if λ̂1(d2) > 0. The following result for the large drift case can be proved similarly as [7, Theorem
5.4], so we omit the proof here.

Theorem 3.15. Suppose that (H) holds, r � 0, and d1, q1 > 0 with q1 > q. Let q = q∗
u (d) : (0,∞) → R+

be defined in Theorem 3.1 and Proposition 3.4 (iii). Then, for any d2 > 0, the following statements hold:

(i) If λ̂1(d2) < 0, then

q̂(d2) := inf
{

q > 0 : q > q∗
u (d2) and λ1

(

d1, q1,1 − v∗ (d2, q)
k

)

≥ 0
}

exists and satisfies
⎧
⎨

⎩

q̂(d2) ∈ (q∗
u (d2), q1) for d2 < d1,

q̂(d2) ∈
(

q∗
u (d2),

q1
d1

d2

)

for d2 > d1.
(3.12)

Moreover, for any q2 ∈ (q∗
u (d2), q̂(d2)), both semitrivial equilibria (u∗,0) and (0,v∗) are locally

asymptotically stable and model (1.4) admits an unstable positive equilibrium.
(ii) If λ̂1(d2) > 0, then

q̂(d2) := sup
{

q > 0 : q < q∗
u (d2) and λ1

(

d1, q1,1 − v∗ (d2, q)
k

)

≤ 0
}

exists and satisfies
⎧
⎨

⎩

q̂(d2) ∈
(

q1
d1

d2, q
∗
u (d2)

)

for d2 < d1,

q̂(d2) ∈ (q1, q∗
u (d2)) for d2 > d1.

Moreover, for any q2 ∈ (q̂(d2), q∗
u (d2)), both semitrivial equilibria (u∗,0) and (0,v∗) are unstable

and model (1.4) admits a stable positive equilibrium.

Remark 3.16. In (ii) when both semitrivial equilibria are unstable, we may conclude that the solutions
are uniform persistent. If q ≤ q1 ≤ q (the intermediate drift case), Theorem 3.15 (i)–(ii) holds for any
d2 < d1, and we omit the statement to save space here.



ZAMP On the impact of spatial heterogeneity Page 11 of 32 117

The small drift rate case will be handled slightly different from the large drift rate case. For any θ > 0,
by Lemma 2.1 and Proposition 3.3 (ii), the line q = dθ and the invasion curve q = q∗

u (d) have exactly
one intersection point (d∗(θ), d∗(θ)θ). So we can reparameterize the invasion curve as follows:

{
d = d∗(θ),
q = q∗(θ) = d∗(θ)θ,

θ > 0. (3.13)

Let

λ̃1(θ) := λ1

(

d1, q1,1 − v∗ (d∗(θ), q∗(θ))
k

)

, θ > 0. (3.14)

Then, the semitrivial equilibrium (0,v∗ (d∗(θ), q∗(θ))) is stable if λ̃1(θ) < 0 and unstable if λ̃1(θ) > 0.
Noticing that q∗

u (d1) = q1, we have d∗(q1/d1) = d1 and

λ̃1 (q1/d1) = λ1

(

d1, q1,1 − v∗ (d1, q1)
k

)

= 0.

Theorem 3.17. Suppose that (H) holds, r � 0, and d1, q1 > 0 with 0 < q1 < q. Then, for any θ > 0, the
following statements hold:

(i) If λ̃1(θ) < 0, then

d̃∗(θ) := inf
{

d > 0 : d > d∗(θ) and λ1

(

d1, q1,1 − v∗ (d, dθ)
k

)

≥ 0
}

exists with d∗(θ) < d̃∗(θ) such that for any (d2, q2) with q2 = d2θ and d∗(θ) < d2 < d̃∗(θ) both
semitrivial equilibria (u∗,0) and (0,v∗) are locally asymptotically stable and model (1.4) admits an
unstable positive equilibrium.

(ii) If λ̃1(θ) > 0, then

d̃∗(θ) := sup
{

d > 0 : d < d∗(θ) and λ1

(

d1, q1,1 − v∗ (d, dθ)
k

)

≤ 0
}

exists with d̃∗(θ) < d∗(θ) such that for any (d2, q2) with q2 = d2θ and d̃∗(θ) < d2 < d∗(θ) both
semitrivial equilibria (u∗,0) and (0,v∗) are unstable and model (1.4) admits a stable positive equi-
librium.

Moreover, d̃∗(θ) satisfies
⎧
⎨

⎩

(d̃∗(θ), d̃∗(θ)θ) ∈ G12 if θ >
q1
d1

,

(d̃∗(θ), d̃∗(θ)θ) ∈ G22 if 0 < θ <
q1
d1

.
(3.15)

Proof. We prove (i), and (ii) can be proved similarly. Fix θ > 0. Suppose λ̃1(θ) < 0. Let

A =
{

d > 0 : d > d∗(θ) and λ1

(

d1, q1,1 − v∗ (d, dθ)
k

)

≥ 0
}

.

By Theorem 3.6 (ii), (0,v∗) is unstable or neutrally stable if (d2, q2) ∈ G11 ∪ G13, which yields A �= ∅.
Since λ̃1(θ) < 0, there exists ε0 > 0 such that

λ1

(

d1, q1,1 − v∗ (d∗(θ) + ε, θ(d∗(θ) + ε))
k

)

< 0, for any 0 < ε < ε0.

Therefore, d̃∗(θ) exists with d∗(θ) < d̃∗(θ).
If (d2, q2) satisfies q2 = d2θ and d̃∗(θ) < d2 < d∗(θ), by the definition of d̃∗(θ), we have

λ1 (d1, q1, r − v∗(d2, q2)) < 0,
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Fig. 6. Illustration of the main results for (1.4) with k1 = k2 = k3 in [7]. The blue cure is the invasion curve, which always
lies between the lines q = q1 and q = q1d/d1. Moreover, (u∗,0) is globally asymptotically stable if (d2, q2) ∈ G1, and (0, v∗)
is globally asymptotically stable if (d2, q2) ∈ G2

which means that (0,v∗) is locally asymptotically stable. By Theorem 3.1, (u∗,0) is also locally asymp-
totically stable. By the monotone dynamical system theory [20,21,46], model (1.4) admits an unstable
positive equilibrium. Finally, it is easy to see that (3.15) holds by Theorem 3.6. �

4. Discussions and numerical simulations

In this section, we discuss the results of the paper and present some numerical simulations.

4.1. Impact of spatial heterogeneity

If the environment is homogeneous, i.e., assumption (H) is replaced by k1 = k2 = k3, model (1.4) with n
patches has been investigated in our recent paper [7]. The main results in [7] are summarized in Fig. 6.
In particular, we prove that the invasion curve is between the lines q = q1 and q = q1d/d1, (u∗,0) is
globally asymptotically stable in G1, and (0,v∗) is globally asymptotically stable in G2. These results
are independent of the magnitude of drift rate q1 and are similar to the large drift rate case in this paper.
Biologically, the downstream end is crowded due to the drift and thereby less friendly compared with the
upstream end. If the environment perturbs from being uniformly distributed and the upstream locations
become advantageous, e.g., assumption (H) holds, then a larger drift rate may compensate for it. This
may explain why the homogeneous environment case is similar to the larger drift case in this paper.

4.2. Impact of drift rate

By Propositions 3.4 and 3.13, if the drift rate q1 is small (q1 < q), the invasion curve q = q∗
u (d) is defined

on a bounded interval and the species with a smaller random dispersal rate is advantageous; if q1 is large
(q1 > q), the invasion curve is unbounded with a slant asymptote q = θd for some θ > 0 and larger random
dispersal rate is favored. The results for the small drift rate case align with the ones in the seminal works
[15,19], which claim that the species with a smaller random dispersal rate will always out-compete the
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Fig. 7. The invasion curve for different values of q1. Here, k = (5, 3, 1), r = (1, 2, 1), and d1 = 1. The threshold values for
the drift rates are q = 0.4 and q = 2

other one in a spatial heterogeneous environment, when both species randomly move in space and are
different only by the movement rate. When the drift rate becomes large, the outcomes of the competition
change dramatically, and the species with a larger dispersal rate may win the competition.

We numerically explore the impact of the drift rate q1 on the shape of the invasion curve q = q∗
u (d).

Fix k = (5, 3, 1), r = (1, 2, 1), and d1 = 1. Then, we can compute the threshold values for the drift rates:
q = 0.4 and q = 2. In Fig. 7, we plot the invasion curves for q1 = 0.2, 0.5, 1.2, 4. If q1 = 0.2 or 0.5, the
invasion curves seem to be bounded with ∂dq

∗
u (d1) < 0, which indicates that a smaller random dispersal

rate is favored when q1 = q2 and d1 ≈ d2. In sharp contrast, if d1 = 1.2 or 4, the invasion curves seem to
be unbounded with ∂dq

∗
u (d1) > 0. This simulation also shows that the invasion curve can be bounded or

unbounded for the intermediate drift case (q < q1 < q).

4.3. Bistability and coexistence phenomena

Let d1 = 1, q1 = 1.5, r = (3, 7, 3), and k = (5, 3, 1). We graph the invasion curve (d∗(θ), q∗(θ)) and
λ̃(θ) in Fig. 8. The stability of (0,v∗) when (d2, q2) = (d∗(θ), q∗(θ)) is determined by the sign of λ̃(θ).
In Fig. 8, we can see that λ̃(θ) changes sign, which means that both bistability and coexistence are
possible. Indeed, if we choose (d2, q2) = (3.088, 1.239), which is slightly below the invasion curve, then
both (u∗,0) and (0,v∗) are locally asymptotically stable. As shown in Fig. 9, if the initial data are
(u(0),v(0)) = ((0.1, 0.1, 0.1), (5, 5, 5)), then the solution of (1.4) converges to (0,v∗); if the initial data
are (u(0),v(0)) = ((5, 5, 5), (0.1, 0.1, 0.1)), then the solution converges to (u∗,0). Finally, we choose
(d2, q2) = (10.28, 0.03), which is slightly above the invasion curve ((u∗,0) is unstable). Since λ̃ is positive,
(0,v∗) is also unstable, and the model has at least one stable positive equilibrium. We graph the solution
of (1.4) for initial data (u(0),v(0)) = ((5, 5, 5), (5, 5, 5)) and the solution seems to converge to a positive
equilibrium, see Fig. 10.
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Fig. 8. a The invasion curve (d∗(θ), q∗(θ)) when d1 = 1, q1 = 1.5, r = (3, 7, 3), and k = (5, 3, 1). b The sign of the curve

λ̃1(θ) determines the stability of (0, v∗) when (d2, q2) = (d∗(θ), q∗(θ))

Fig. 9. Solutions of (1.4) with d1 = 1, q1 = 1.5, d2 = 3.088, q2 = 1.239, r = (3, 7, 3), k = (5, 3, 1). For a, b, the initial data
are u(0) = (0.1, 0.1, 0.1) and v(0) = (5, 5, 5), and species v wins the competition; for c, d, the initial data are u(0) = (5, 5, 5)
and v(0) = (0.1, 0.1, 0.1), and species u wins the competition

4.4. Evolutionarily singular strategies

We formulate a conjecture based on Corollary 3.13 about the existence of an evolutionarily stable strategy
(ESS) for the diffusion rate, which may distinguish the 2-patch model from the 3-patch model.

We fix q2 = q1 > 0 and view the diffusion rate as an evolutionary strategy of the species. By Corollary
3.13 when q < q, we conjecture that there exists q ≤ q∗ < q∗ ≤ q such that if q < q, then the slower
diffuser always wins the competition; if q > q∗, then the faster diffuser prevails; if q1 ∈ (q∗, q∗), there
exists a unique d∗(q1) > 0 such that d1 = d∗(q1) is an evolutionarily singular strategy with the asymptotic
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Fig. 10. Solution of (1.4) with d1 = 1, q1 = 1.5, d2 = 10.28, q2 = 0.03, r = (3, 7, 3), k = (5, 3, 1), and the initial data are
u(0) = (5, 5, 5) and v(0) = (5, 5, 5). The two species seem to coexist

limits:

lim
q1→q+∗

d∗(q1) = 0, lim
q1→q∗−

d∗(q1) = +∞;

or

lim
q1→q+∗

d∗(q1) = +∞, lim
q1→q∗−

d∗(q1) = 0.

Moreover, we conjecture that the singular strategy is an ESS in the former case but not in the latter case
(Fig. 11).

We provide some numerical evidence to support the conjecture below. Since

λ1 (d1, q1,1 − u∗/k) = 0,

the sign of

S(d1, q1) :=
∂λ1 (d, q1,1 − u∗/k)

∂d

∣
∣
∣
∣
d=d1

is crucial to determine which strategy is favored when d2 ≈ d1: if S(d1, q1) < 0 the slow diffuser is favored;
if S(d1, q1) > 0 the faster diffuser is favored. By Corollary 3.13, S(d1, q1) changes signs. In particular,
if q1 < q, S(d1, q1) < 0 and if q1 > q, S(d1, q1) > 0. We numerically solve S(d1, q1) = 0 and plot the
solution in Fig. 11, which consists with a curve d1 = d∗(q1), where q1 ∈ (q∗, q∗). In the left figure, the sign
of S(d1, q1) changes from negative to positive when moving from above to below the curve. This suggests
that the diffusion rate d1 = d∗ may be an ESS for q ∈ (q∗, q∗). In the right figure, opposite phenomenon
appears when crossing the curve and we suspect that the singular strategy is not an ESS in this case.

We remark such an intermediate diffusion rate d1 = d∗ as an ESS does not appear in the corresponding
2-patch model. For the 2-patch model, as proved in [18,45] (see [23, Theorem 1]), there exists a critical
value q∗ such that if q1 = q2 < q∗ then d1 = 0 is an ESS; if q1 = q2 > q∗ then d1 = ∞ is an ESS. We also
note that if q = q in the 3-patch model, then the curve d1 = d∗(q1) is a vertical line and an intermediate
ESS also does not exists (which is similar to the 2-patch case).

Finally, we conjecture that the results in this paper hold for the N -patch model. Our results for
3-patch model are based on the monotonicity of the semitrivial equilibrium (see Lemma 5.1 (iii)–(iv)),
which we cannot prove for the N -patch model. Similarly, if the movement rates among patches are not
homogeneous (i.e., the off-diagonal entries of D and Q are not 1 s), it is also not trivial to show how the
movement rates affect the monotonicity of the semitrivial equilibrium.
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Fig. 11. The sign of S(d1, q1), where S(d1, q1) < 0 in the dark blue region and S(d1, q1) > 0 in the light blue region. Left
figure: r = (3, 7, 3), k = (5, 3, 1); right F r = (50, 3, 3), k = (5, 3, 1)

5. Proofs for the invasion curve

In this section, we present the proofs of the results on the invasion curve q∗
u (d). We begin with an analysis

on u∗. A similar result of the following lemma when r1 = r2 = r3 except for the sign of
∑3

i=1 ri (1 − u∗
i /ki)

can be found in [23].

Lemma 5.1. Suppose that (H) holds, r � 0, d1 > 0, and q1 ≥ 0. Then, the following statements on u∗

hold:

(i) d1u
∗
i+1 − (d1 + q1)u∗

i < 0 for i = 1, 2;
(ii) u∗

1 < k1 and u∗
3 > k3;

(iii) If q1 > q, then u∗
1 < u∗

2 < u∗
3 and

∑3
i=1 ri

(
1 − u∗

i

ki

)
> 0;

(iv) If q1 < q, then u∗
1 > u∗

2 > u∗
3 and

∑3
i=1 ri

(
1 − u∗

i

ki

)
< 0.

Proof. By (1.4), we have
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d1u
∗
2 − (d1 + q1)u∗

1 = −r1u
∗
1

(

1 − u∗
1

k1

)

,

(d1u∗
3 − (d1 + q1)u∗

2) − (d1u∗
2 − (d1 + q1)u∗

1) = −r2u
∗
2

(

1 − u∗
2

k2

)

,

d1u
∗
3 − (d1 + q1)u∗

2 = r3u
∗
3

(

1 − u∗
3

k3

)

.

(5.1)

Suppose to the contrary that d1u
∗
2 − (d1 + q1)u∗

1 ≥ 0. Then, by the first equation of (5.1), we have
u∗
2 ≥ u∗

1 ≥ k1. This, together with assumption (H) and the second equation of (5.1), implies that
d1u

∗
3 − (d1 + q1)u∗

2 > 0 and u∗
3 > k3, which contradicts the third equation of (5.1). Therefore, we have

d1u
∗
2 − (d1 + q1)u∗

1 < 0. Similarly, we can prove d1u
∗
3 − (d1 + q1)u∗

2 < 0. This proves (i). By (i) and the
first and third equations of (5.1), we can easily obtain (ii).
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The proof of (iv) is similar to that of (iii), so we only prove (iii) here. Suppose q1 > q. We rewrite
(5.1) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d1(u∗
2 − u∗

1) = −r1u
∗
1

(

1 − q1
r1

− u∗
1

k1

)

,

d1(u∗
3 − u∗

2) − (d1 + q1)(u∗
2 − u∗

1) = −r2u
∗
2

(

1 − u∗
2

k2

)

,

−(d1 + q1)(u∗
3 − u∗

2) = −r3u
∗
3

(

1 +
q1
r3

− u∗
3

k3

)

.

(5.2)

Suppose to the contrary that u∗
1 ≥ u∗

2. Then, by the first equation of (5.2), we have k1 − q1k1
r1

− u∗
1 ≥ 0.

Since q1 >
r1
k1

(k1 − k2), we obtain

k2 > k1 − q1k1
r1

≥ u∗
1 ≥ u∗

2.

Then, by the second equation of (5.2), we get u∗
2 > u∗

3. This, combined with q1 >
r3
k3

(k2 − k3), yields

k3

(

1 +
q1
r3

)

> k2 > u∗
2 > u∗

3,

which contradicts the last equation of (5.2). This proves u∗
1 < u∗

2.

Suppose to the contrary that u∗
2 ≥ u∗

3. Then, by the last equation of (5.2), we have u∗
3 ≥ k3

(

1 +
q1
r3

)

.

By q1 > q, we obtain

u∗
2 ≥ u∗

3 ≥ k3

(

1 +
q1
r3

)

> k2 > k1 − q1k1
r1

.

Then, by the second equation of (5.2), we have u∗
1 > u∗

2. By the first equation of (5.2), we get

0 > d1(u∗
2 − u∗

1) = −r1u
∗
1

(

1 − q1
r1

− u∗
1

k1

)

> 0,

which is a contradiction. This proves u∗
2 < u∗

3.
Dividing the ith equation of (5.2) by u∗

i , we have
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−(d1 + q1) + d1
u∗
2

u∗
1

+ r1

(

1 − u∗
1

k1

)

= 0,

(d1 + q1)
(

u∗
1

u∗
2

− 1
)

− d1

(

1 − u∗
3

u∗
2

)

+ r2

(

1 − u∗
2

k2

)

= 0,

(d1 + q1)
u∗
2

u∗
3

− d1 + r3

(

1 − u∗
3

k3

)

= 0.

(5.3)

Adding up the equations in (5.3), we obtain
3∑

i=2

(

(d1 + q1)
(

u∗
i−1

u∗
i

− 1
)

+ d1

(
u∗
i

u∗
i−1

− 1
))

+
3∑

i=1

ri

(

1 − u∗
i

ki

)

=
3∑

i=2

(u∗
i−1 − u∗

i )((d1 + q1)u∗
i−1 − d1u

∗
i )

u∗
i−1u

∗
i

+
3∑

i=1

ri

(

1 − u∗
i

ki

)

= 0.

(5.4)

Then, by (i) and u∗
1 < u∗

2 < u∗
3, we have

∑3
i=1 ri

(
1 − u∗

i

ki

)
> 0. This proves (iii). �
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5.1. Proof of Theorem 3.1

We prove the existence of the invasion curve q = q∗
u (d) in this subsection.

Lemma 5.2. Suppose that (H) holds, r � 0, and d1, q1 > 0. Then, the following statements hold about
the semitrivial equilibrium (u∗,0) of (1.4):

(i) If
∑3

i=1 ri (1 − u∗
i /ki) ≥ 0, then for any d > 0 there exists q∗

u (d) > 0 such that λ1 (d, q∗
u (d),1 − u∗/k)

= 0, λ1 (d, q,1 − u∗/k) < 0 for all q > q∗
u (d), and λ1 (d, q,1 − u∗/k) > 0 for all q < q∗

u (d);
(ii) If

∑3
i=1 ri (1 − u∗

i /ki) < 0, then there exists d0 > 0 such that λ1(d0, 0,1 − u∗/k) = 0, λ1(d, 0,1 −
u∗/k) < 0 for all d > d0, and λ1(d, 0,1 − u∗/k) > 0 for all d < d0. Moreover, the following results
hold:

(ii1) For any d ∈ (0, d0), there exists q∗
u (d) > 0 such that the statement in (i) holds;

(ii2) For any d ∈ [d0,∞), we have λ1(d, q,1 − u∗/k) < 0 for all q > 0.

Proof. For simplicity, we denote λ1(d, q) := λ1 (d, q,1 − u∗/k). An essential step of the proof is to show
the following claim.

Claim 1: Fixing d > 0, equation λ1(d, q) = 0 has at most one root for q ∈ [0,∞).
Proof of Claim: Let ψ be the positive eigenvector corresponding to λ1(d, q) with

∑3
i=1 ψi = 1. Then, we

have

λ1(d, q)ψi = d
3∑

j=1

Dijψj + q
3∑

j=1

Qijψj + ri

(

1 − u∗
i

ki

)

ψi, i = 1, 2, 3. (5.5)

Differentiating (5.5) with respect to q and denoting ′ = ∂/∂q, we obtain

λ′
1ψi + λ1ψ

′
i = d

3∑

j=1

Dijψ
′
j +

3∑

j=1

Qijψj + q

3∑

j=1

Qijψ
′
j + ri

(

1 − u∗
i

ki

)

ψ′
i, i = 1, 2, 3. (5.6)

Multiplying (5.5) by ψ′
i and (5.6) by ψi and taking the difference of them, we have

λ′
1ψ

2
i =

3∑

j=1

(dDij + qQij)(ψiψ
′
j − ψ′

iψj) +
3∑

j=1

Qijψiψj , i = 1, 2, 3. (5.7)

Motivated by [7, Eq. (3.7)], we introduce (β1, β2, β3) =
(
1, d/(d + q), d2/(d + q)2

)
. Multiplying (5.7)

by βi and summing up in i, we obtain

λ′
1

3∑

i=1

βiψ
2
i =

2∑

i=1

(
d

d + q

)i−1 (

−ψi +
d

d + q
ψi+1

)

ψi. (5.8)

Suppose λ1 (d, q̃) = 0 for some q̃ ≥ 0. By Lemma 5.1 (ii), we see that

dψ2 − (d + q̃)ψ1 = −ψ1r1

(

1 − u∗
1

k1

)

< 0,

dψ3 − (d + q̃)ψ2 = ψ3r1

(

1 − u∗
3

k3

)

< 0.

Therefore, by (5.8), we have λ′(d, q̃) < 0. This proves the claim.
According to the claim, whether the equation λ1(d, q) = 0 has a root in q is determined by the sign

of λ1(d, 0) and limq→∞ λ1(d, q).
Claim 2: limq→∞ λ1(d, q) < 0.

Proof of claim: Adding up all the equations of (5.5), we have

λ1(d, q) =
3∑

i=1

ri

(

1 − u∗
i

ki

)

ψi, (5.9)
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which implies that λ1(d, q) is bounded for d, q > 0. So up to a subsequence, we may assume limq→∞ ψ = ψ̃.
Dividing (5.5) by q and taking q → ∞, we obtain

3∑

i=1

Qijψ̃j = 0, i = 1, 2, 3,

which yields ψ̃ = (0, 0, 1)T . Then, taking q → ∞ in (5.9), we have

lim
q→∞ λ1(d, q) = r3

(

1 − u∗
3

k3

)

< 0,

where we have used Lemma 5.1 (ii) in the last step. This proves the claim.
By Lemma 2.1, λ1(d, 0) is strictly decreasing in d with

lim
d→0

λ(d, 0) = max
1≤i≤3

ri

(

1 − u∗
i

ki

)

> 0 and lim
d→∞

λ(d, 0) =
1
3

3∑

i=1

ri

(

1 − u∗
i

ki

)

,

where we have used Lemma 5.1 (ii) again to see that 1 − u∗
1/k1 > 0. Now, the desired results follow from

this and Claims 1 and 2. �

We are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let d0 be defined in Lemma 5.2, d∗ be defined by (3.2), and q = q∗
u (d) : (0, d∗) →

R+ be defined in Lemma 5.2. Then, Theorem 3.1 (i)–(ii) follows from Lemmas 5.1–5.2 and the fact
that the stability/instability of (u∗,0) is determined by the sign of λ1 (d, q,1 − u∗/k). The continuity of
q = q∗

u (d) follows from ∂qλ1 (d, q∗
u (d),1 − u∗/k) < 0 (Claim 1 of Lemma 5.2) and the implicit function

theorem. �

5.2. Proof of Propositions 3.3 and 3.4

First, we prove the following useful result:

Lemma 5.3. Suppose that (H) holds, r � 0, and d1, q1 > 0. Then, we have

λ1

(

d2, q2,1 − u∗

k

)

�= 0,

if one of the following conditions holds:
(i) (d2, q2) ∈ G11 ∪ G21;
(ii) q1 > q and (d2, q2) ∈ G12 ∪ G22;
(iii) q1 < q and (d2, q2) ∈ G13 ∪ G23.

Proof. Suppose to the contrary that λ1 (d2, q2,1 − u∗/k) = 0, and let φ � 0 be a corresponding eigen-
vector. Note that λ1 (d1, q1,1 − u∗/k) = 0 with a corresponding eigenvector u∗. Let

f̃0 = f̃3 = 0, g̃0 = g̃3 = 0,

and

f̃j = d1u
∗
j+1 − (d1 + q1)u∗

j , g̃j = d2φj+1 − (d2 + q2)φj , j = 1, 2. (5.10)

Then, we have

f̃j − f̃j−1 = −rju
∗
j

(

1 − u∗
j

kj

)

, j = 1, 2, 3, (5.11a)

g̃j − g̃j−1 = −rjφj

(

1 − u∗
j

kj

)

, j = 1, 2, 3. (5.11b)
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Using similar arguments as in [7, Lemma 5.7], we can show

2∑

j=1

[(d1 − d2)(φj+1 − φj) − (q1 − q2)φj ] f̃j
dj1

(d1 + q1)
j+1

= 0, (5.12)

and
2∑

k=1

[
(d2 − d1)(u∗

j+1 − u∗
j ) − (q2 − q1)u∗

j

]
g̃j

dj2

(d2 + q2)
j+1

= 0. (5.13)

Indeed, multiplying (5.11a) by
(

d1
d1 + q1

)j

φj , and summing up from j = 1 to j = 3, we have

−
3∑

j=1

rju
∗
jφj

(

1 − u∗
j

kj

)(
d1

d1 + q1

)j

=
3∑

j=1

(
f̃j − f̃j−1

)
φj

(
d1

d1 + q1

)j

= f̃3φ3

(
d1

d1 + q1

)3

− f̃0φ1

(
d1

d1 + q1

)

+
2∑

j=1

f̃j

(
d1

d1 + q1

)j (

φj − d1
d1 + q1

φj+1

)

= −
2∑

j=1

(d1φj+1 − (d1 + q1)φj)f̃j
dj1

(d1 + q1)
j+1

,

(5.14)

where we have used f̃3 = f̃0 = 0 in the last step. Similarly, multiplying (5.11b) by
(

d1
d1 + q1

)j

u∗
j and

summing up from j = 1 to j = 3, we obtain

−
3∑

j=1

rju
∗
jφj

(

1 − u∗
j

kj

)(
d1

d1 + q1

)j

= −
2∑

j=1

g̃j f̃j
dj1

(d1 + q1)
j+1

. (5.15)

Taking the difference of (5.14) and (5.15), we obtain (5.12). Similarly, we can prove (5.13).
By Lemma 5.1 (i)–(ii) and (5.11b), we have f̃j , g̃j < 0 for j = 1, 2. Now we obtain a contradiction for

each of (i)–(iii).
(i) We only consider the case (d2, q2) ∈ G21, since the case (d2, q2) ∈ G11 can be studied similarly.

Suppose (d2, q2) ∈ G21. Then, we have d2 ≤ d1, q2 ≤ q1d2/d1, and (d1, q1) �= (d2, q2). If d1 �= d2, then it
is easy to check that

q1 − q2
d1 − d2

≥ q2
d2

.

(This inequality can be found in [53, Lemma 2.4].) This, together with g̃1, g̃2 < 0, yields

(d1 − d2)(φj+1 − φj) − (q1 − q2)φj < 0, j = 1, 2. (5.16)

If d1 = d2, then q1 > q2 and (5.16) also holds. Then, by f̃1, f̃2 < 0 and (5.12), we have

0 <

2∑

j=1

[(d1 − d2)(φj+1 − φj) − (q1 − q2)φj ] f̃j
dj1

(d1 + q1)
j+1

= 0,

which is a contradiction.
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(ii) We only need to obtain a contradiction for the case (d2, q2) ∈ G22, since the case (d2, q2) ∈ G12

can be studied similarly. Suppose (d2, q2) ∈ G22. Then, we have d2 > d1 and q2 ≤ q1. By Lemma 5.1 (i),
we have u∗

1 < u∗
2 < u∗

3, which implies that

(d2 − d1)(u∗
j+1 − u∗

j ) − (q2 − q1)u∗
j > 0, j = 1, 2.

This, combined with g̃1, g̃2 < 0 and (5.13), gives a contradiction.
(iii) We only obtain a contradiction for the case (d2, q2) ∈ G23, since the case (d2, q2) ∈ G13 can be

studied similarly. Suppose (d2, q2) ∈ G23. Then, we have d2 ≤ d1, q2 ≤ q1, and (d1, q1) �= (d2, q2). By
Lemma 5.1 (ii), we have u∗

1 > u∗
2 > u∗

3, which implies that

(d2 − d1)(u∗
j+1 − u∗

j ) − (q2 − q1)u∗
j > 0, j = 1, 2.

This combined with g̃1, g̃2 < 0 and (5.13) gives a contradiction. �

We are ready to prove Propositions 3.3 and 3.4.

Proof of Proposition 3.3. (i) We only prove the case G21 ⊂ S2, (i.e., (u∗,0) is unstable for (d2, q2) ∈ G21),
since the case G11 ⊂ S1 can be proved similarly. To avoid confusion, we denote u∗ by u∗

k . It is easy to
see that u∗

k depends continuously on k.
Suppose (d2, q2) ∈ G21. We need to prove that λ1 (d2, q2,1 − u∗

k/k) > 0. Suppose to the contrary that
λ1 (d2, q2,1 − u∗

k/k) ≤ 0. By Lemma 5.3, we must have λ1 (d2, q2,1 − u∗
k/k) < 0. By [7, Theorem 4.2],

we have λ1

(
d2, q2,1 − u∗

k′/k′) > 0, where k′ = (k3, k3, k3).

Let Λ(s) := λ1

(
d2, q2,1 − u∗

k1(s)
/k1(s)

)
, where k1(s) = sk + (1 − s)k′ satisfies (H) for any s ∈ [0, 1].

Since

Λ(1) = λ1

(

d2, q2,1 − u∗
k

k

)

< 0 and Λ(0) = λ1

(

d2, q2,1 − u∗
k′

k′

)

> 0,

there exists s0 ∈ (0, 1) such that Λ(s0) = 0, which contradicts Lemma 5.3.
(ii) By [7, Theorem 4.2], if (d2, q2) ∈ G22, then λ1

(
d2, q2,1 − u∗

k′/k′) > 0; and if (d2, q2) ∈ G12, then
λ1

(
d2, q2,1 − u∗

k′/k′) < 0, where k′ = (k3, k3, k3). Then, using similar arguments as (i), we can prove
(ii).

(iii) Let ψ be the positive eigenvector corresponding to λ1 := λ1 (d2, q1,1 − u∗/k) with
∑3

i=1 ψi = 1.
Then, we have

λ1ψi = d2

3∑

j=1

Dijψj + q1

3∑

j=1

Qijψj + ri

(

1 − u∗
i

ki

)

ψi, i = 1, 2, 3. (5.17)

Differentiating (5.5) with respect to d2 and denoting ′ = ∂/∂d2, we obtain

λ′
1ψi + λ1ψ

′
i = d2

3∑

j=1

Dijψ
′
j +

3∑

j=1

Dijψj + q1

3∑

j=1

Qijψ
′
j + ri

(

1 − u∗
i

ki

)

ψ′
i, i = 1, 2, 3. (5.18)

Multiplying (5.17) by ψ′
i and (5.18) by ψi and taking the difference of them, we have

λ′
1ψ

2
i =

3∑

j=1

(d2Dij + q1Qij)(ψiψ
′
j − ψ′

iψj) +
3∑

j=1

Dijψiψj , i = 1, 2, 3. (5.19)

Similar to the proof of Lemma 5.2, let (β1, β2, β3) =
(
1, d2/(d2 + q1), d22/(d2 + q1)2

)
. Multiplying (5.19)

by βi and adding up them in i, we obtain

λ′
1

3∑

i=1

βiψ
2
i =

2∑

i=1

(
d2

d2 + q1

)i−1 (

−ψi +
d2

d2 + q1
ψi+1

)

(ψi − ψi+1). (5.20)
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Note that λ1 (d1, q1,1 − u∗/k) = 0 with a corresponding eigenvector (u∗
1, u

∗
2, u

∗
3)

T . Moreover, by Lemma
5.1, we have d1u

∗
i+1 − (d1 + q1)u∗

i < 0 for i = 1, 2 and u∗
1 > u∗

2 > u∗
3. Then, it follows from (5.20) that

∂λ1 (d2, q1,1 − u∗/k)
∂d2

∣
∣
∣
∣
d2=d1

< 0. (5.21)

This implies that λ1 (d2, q1,1 − u∗/k) > 0 if 0 < d1−d2 � 1 and λ1

(
d2, q1,1 − u∗

k

)
< 0 if 0 < d2−d1 �

1. Then, by Lemma 5.3, we have G13 ⊂ S1 and G23 ⊂ S2. �

Remark 5.4. A similar inequality of (5.21) is proved in [23], and we include the proof for completeness
here.

Proof of Proposition 3.4. For any 0 < d < d∗, let ψ be the eigenvector corresponding to λ1 (d, q∗
u (d),

1 − u∗/k) = 0 with ψ � 0 and
∑3

i=1 ψi = 1. Then,

d

3∑

j=1

Dijψj + q∗
u (d)

3∑

j=1

Qijψj + ri

(

1 − u∗
i

ki

)

ψi = 0, i = 1, 2, 3. (5.22)

(i) Up to a subsequence, we may assume limd→0 ψ = ψ̃ for some ψ̃ ≥ 0 and
∑3

i=1 ψ̃i = 1. We first
claim that q∗

u (d) is bounded for d ∈ (0, δ) with δ � 1. If it is not true, then dividing (5.22) by q∗
u (d) and

taking d → 0, we have
3∑

j=1

Qijψ̃j = 0, i = 1, 2, 3, (5.23)

which yields ψ̃ = (0, 0, 1)T . Adding up all the equations of (5.22) and taking d → 0 in (5.24), we have

3∑

i=1

ri

(

1 − u∗
i

ki

)

ψ̃i = 0, (5.24)

and consequently, k3 −u∗
3 = 0, which contradicts Lemma 5.1 (ii). This proves the claim. By the claim, up

to a subsequence, we may assume limd→0 q∗(θ) = q̃0 ∈ [0,∞). Consequently, for sufficiently small ε > 0,
there exists d̄ > 0 such that q∗

u (d) < q̃0 + ε for all 0 < d < d̄. It follows from Lemma 5.2 that

λ1

(

d, q̃0 + ε,1 − u∗

k

)

< 0 (5.25)

for all 0 < d < d̄. Hence,

lim
d→0

λ1

(

d, q̃0 + ε,1 − u∗

k

)

= max
{

r1

(

1 − u∗
1

k1

)

− (q̃0 + ε), r2

(

1 − u∗
2

k2

)

− (q̃0 + ε), r3

(

1 − u∗
3

k3

)}

≤ 0.

Since k3 − u∗
3 = 0 and ε > 0 was arbitrary,

max
{

r1

(

1 − u∗
1

k1

)

− q̃0, r2

(

1 − u∗
2

k2

)

− q̃0

}

≤ 0. (5.26)

Therefore, we have q̃0 ≥ q0 > 0. Similarly, we can prove q̃0 ≤ q0. This proves (i).
Now we prove (ii)–(iv). If we show that (3.7) holds when

∑3
i=1 ri (1 − u∗

i /ki) < 0, (3.8) holds with
θ ∈ (0, q1/d1) when

∑3
i=1 ri (1 − u∗

i /ki) > 0, and (3.8) holds with θ = 0 when
∑3

i=1 ri (1 − u∗
i /ki) = 0.

Then, (iv) holds and (ii)–(iii) follow from Theorem 5.1 (iii)–(iv).
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By Lemma 5.2 (i), the function q = q∗
u (d) is defined for d ∈ (0,∞) when

∑3
i=1 ri (1 − u∗

i /ki) ≥ 0. We
claim that q∗

u (d)/d is bounded for d ∈ (δ,∞) for any fixed δ > 1. If it is not true, up to a subsequence,
we may assume

lim
d→∞

q∗
u (d)
d

= ∞ and lim
d→∞

ψ = ψ̂

for some ψ̂ ≥ 0 and
∑3

i=1 ψ̂i = 1. Then, dividing (5.22) by q∗
u (d) and taking d → ∞, we can obtain a

contradiction using similar arguments as in the proof of (i). Therefore, q∗
u (d)/d is bounded for d ∈ (δ,∞).

Then, using similar arguments as in the proof of [7, Proposition 4.4], we can show that (3.8) holds with
θ ∈ (0, q1/d1) when

∑3
i=1 ri (1 − u∗

i /ki) > 0, and (3.8) holds with θ = 0 when
∑3

i=1 ri (1 − u∗
i /ki) = 0.

By Lemma 5.2 (ii), the function q = q∗
u (d) is defined for d ∈ (0, d0) when

∑3
i=1 ri (1 − u∗

i /ki) < 0. Using similar arguments as in (i), we can show that q∗
u (d) is bounded for

d ∈ (d0 − δ, d0) for some δ � 1. Then, up to a subsequence, we may assume

lim
d→d0

q∗
u (d) = η and lim

d→d0
ψ = ψ∗

for some ψ∗ ≥ 0 and
∑3

i=1 ψ∗
i = 1. Taking d → d0 in (5.22), we see that

d0

3∑

j=1

Dijψ
∗
j + η

3∑

j=1

Qijψ
∗
j + ri

(

1 − u∗
i

ki

)

ψ∗
i = 0, i = 1, 2, 3, (5.27)

which yields λ1 (d0, η,1 − u∗/k) = 0. By the proof of Lemma 5.2, λ1 (d0, q,1 − u∗/k) = 0 has at most
one root for q ∈ [0,∞). Since λ1 (d0, 0,1 − u∗/k) = 0, we must have η = 0. This proves (3.7). �

6. Proofs for the competitive exclusion results

Let (u,v) be a positive equilibrium of model (1.4). Define

f0 = f3 = 0, g0 = g3 = 0,

fj = d1uj+1 − (d1 + q1)uj , gj = d2vj+1 − (d2 + q2)vj , j = 1, 2.
(6.1)

Clearly, we have

fj − fj−1 = −rjuj

(

1 − uj + vj
kj

)

, j = 1, 2, 3, (6.2)

and

gj − gj−1 = −rjvj

(

1 − uj + vj
kj

)

, j = 1, 2, 3. (6.3)

Then, we have the following result about the sign of fj , gj , j = 1, 2.

Lemma 6.1. Suppose that (H) holds, r � 0, and d1, q1, d2, q2 > 0. If (u,v) is a positive equilibrium of
model (1.4), then we have f1, g1, f2, g2 < 0.

Proof. First we prove f1 < 0. Suppose to the contrary that f1 ≥ 0. By (6.2) and (6.3), we have k1 − u1 −
v1 ≤ 0 and g1 ≥ 0. Since f1, g1 ≥ 0, we have u2 > u1 and v2 > v1. This combined with (H) implies that
k2 − u2 − v2 < 0. Then, by (6.2) and (6.3) again, we obtain that f2, g2 > 0 and k3 − u3 − v3 < 0, which
contradicts (6.2) with j = 3. Therefore, we have f1 < 0. Consequently, by (6.2) and (6.3) with j = 1, we
have g1 < 0. Using similar arguments, we can prove f2, g2 < 0. �

The following result is similar to [7, Lemma 5.7] with j = 1 and j = n = 3 (see also the proof of
Lemma 5.3). Thus, we omit the proof.
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Lemma 6.2. Suppose that (H) holds, r � 0, and d1, q1, d2, q2 > 0. If (u,v) is a positive equilibrium of
model (1.4), then the following equations hold:

2∑

j=1

[(d1 − d2)(vj+1 − vj) − (q1 − q2)vj ] fj
dj1

(d1 + q1)
j+1

= 0, (6.4)

and

2∑

j=1

[(d2 − d1)(uj+1 − uj) − (q2 − q1)uj ] gk
dj2

(d2 + q2)
j+1

= 0. (6.5)

An essential step to prove the competitive exclusion results for model (1.4) is to show the nonexistence
of positive equilibrium:

Lemma 6.3. Suppose that (H) holds, r � 0, and d1, q1 > 0. Let G∗
12 and G∗

23 be defined by (3.9) and
(3.10), respectively. Then, model (1.4) admits no positive equilibrium, if one of the following conditions
holds:

(i) (d2, q2) ∈ G11 ∪ G21;
(ii) q1 > q and (d2, q2) ∈ G12 ∪ G22 ∪ G∗

23;
(iii) q1 < q and (d2, q2) ∈ G13 ∪ G23 ∪ G∗

12.
(iv) q ≤ q1 ≤ q and (d2, q2) ∈ G∗

12 ∪ G∗
23;

Proof. Suppose to the contrary that model (1.4) admits a positive equilibrium (u,v). Then, we will obtain
a contradiction for each of the cases (i)–(iv).

(i) We only consider the case (d2, q2) ∈ G21. Since the nonlinear terms of (1.4) are symmetric, the
case (d2, q2) ∈ G11 can be proved similarly. Suppose (d2, q2) ∈ G21. Then, we have d2 ≤ d1, q2 ≤ q1d2/d1
and (d1, q1) �= (d2, q2). First, we claim that

(d1 − d2)(vj+1 − vj) − (q1 − q2)vj < 0 for j = 1, 2. (6.6)

Indeed if d1 = d2, then q1 > q2 and (6.6) holds. If d1 > d2, then it is easy to check that

q1 − q2
d1 − d2

≥ q2
d2

.

(This inequality is in [53, Lemma 2.4]). This, combined with g1, g2 < 0, proves (6.6). Then, by f1, f2 < 0
and (6.4), we have

0 <

2∑

j=1

[(d1 − d2)(vj+1 − vj) − (q1 − q2)vj ] fj
dj1

(d1 + q1)
j+1

= 0,

which is a contradiction.
(ii) We first consider the case (d2, q2) ∈ G22. Since the nonlinear terms of (1.4) are symmetric, the

case (d2, q2) ∈ G12 can be proved similarly. Suppose (d2, q2) ∈ G22. Then, d2 > d1 and q2 ≤ q1. By (1.4),
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we have

d1(u2 − u1) = −r1u1

(

1 − q1
r1

− u1 + v1
k1

)

, (6.7a)

d2(v2 − v1) = −r1v1

(

1 − q2
r1

− u1 + v1
k1

)

, (6.7b)

(d1 + q1)(u1 − u2) − d1(u2 − u3) = −r2u2

(

1 − u2 + v2
k2

)

, (6.7c)

(d2 + q2)(v1 − v2) − d2(v2 − v3) = −r2v2

(

1 − u2 + v2
k2

)

, (6.7d)

(d1 + q1)(u2 − u3) = −r3u3

(

1 +
q1
r3

− u3 + v3
k3

)

, (6.7e)

(d2 + q2)(v2 − v3) = −r3u3

(

1 +
q2
r3

− u3 + v3
k3

)

. (6.7f)

Then, we show that u1 < u2 < u3. Suppose to the contrary that u1 ≥ u2. Then, by (6.7a), we see that

u1 + v1 ≤ k1 − q1k1
r1

≤ k1 − q2k1
r1

,

where we have used q2 ≤ q1 in the last inequality. This, combined with (6.7b), implies that v1 ≥ v2.
Noticing that

q1 > q ≥ r1
k1

(k1 − k2),

we have

u2 + v2 ≤ u1 + v1 ≤ k1 − q1k1
r1

< k2,

and consequently u3 < u2 and v3 < v2 by (6.7c) and (6.7d). This, combined with q1 > q, implies that

u3 + v3 < u2 + v2 < k2 < k3 +
k3q1
r3

,

which contradicts (6.7e). Similarly, we can show that u2 < u3. So, u1 < u2 < u3, which leads to

(d2 − d1)(uj+1 − uj) − (q2 − q1)uj > 0, j = 1, 2.

Then, by Lemma 6.1 and (6.5), we have

0 >
2∑

j=1

[(d2 − d1)(uj+1 − uj) − (q2 − q1)uj ] gj
dj2

(d2 + q2)
j+1

= 0,

which is a contradiction.
Now suppose that (d2, q2) ∈ G∗

23. Then, q2 < q and (d1, q1) ∈ Ĝ13, where

Ĝ13 := {(d, q) : d ≥ d2, q2 ≤ q <
q2
d2

d, (d, q) �= (d2, q2)}. (6.8)

Since the nonlinear terms of (1.4) are symmetric, this case can be proved similarly as the case (d2, q2) ∈
G13 (the proof is immediately below).

(iii) Suppose that (d2, q2) ∈ G13. Then, we have d2 ≥ d1, q1 ≤ q2 ≤ q1d2/d1, and (d1, q1) �= (d2, q2).
We show that u1 > u2 > u3. Suppose to the contrary that u1 ≤ u2. Then, by (6.7a) and q2 ≥ q1, we have

u1 + v1 ≥ k1 − q1k1
r1

> k1 − q2k1
r1

.
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This, combined with (6.7b), yields v1 ≤ v2. Noting that

q1 < q <
r1
k1

(k1 − k2),

we have

k2 < k1 − q1k1
r1

≤ u1 + v1 ≤ u2 + v2.

Then, by (6.7c) and (6.7d), we have u3 > u2 and v3 > v2. Since q1 < q, we have

k3 +
k3q1
r3

< k2 < u2 + v2 < u3 + v3,

which contradicts (6.7e). Similarly, we can show u2 > u3. Therefore, we have u1 > u2 > u3 and

(d2 − d1)(uj+1 − uj) − (q2 − q1)uj < 0, j = 1, 2.

Then, it follows from Lemma 6.1 and (6.5) that

0 <
2∑

j=1

[(d2 − d1)(uj+1 − uj) − (q2 − q1)uj ] gj
dj2

(d2 + q2)
j+1

= 0,

which is a contradiction.
For the case (d2, q2) ∈ G23, using similar arguments as above, we can obtain v1 > v2 > v3, which leads

to

(d1 − d2)(vj+1 − vj) − (q1 − q2)vj < 0, j = 1, 2.

This, combined with Lemma 6.1 and (6.4), implies that

0 <

2∑

j=1

[(d1 − d2)(vj+1 − vj) − (q1 − q2)vj ] fj
dj1

(d1 + q1)
j+1

= 0,

which is a contradiction.
Next suppose that (d2, q2) ∈ G∗

12. Then, q2 > q and (d1, q1) ∈ Ĝ22, where

Ĝ22 := {(d, q) : d > d2, 0 < q ≤ q2}.

Since the nonlinear terms of (1.4) are symmetric, this case can be proved similarly the case (d2, q2) ∈ G22

in (ii).
(iv) If (d2, q2) ∈ G∗

23, the proof is similar to the corresponding case in (ii). If (d2, q2) ∈ G∗
12, the proof

is similar to the corresponding case in (iii). �

We are ready to prove Theorems 3.6, 3.8 and 3.10.

Proof of Theorem 3.6. (i) Suppose that q1 < q and (d2, q2) ∈ G21 ∪ G23. By Lemma 6.3 (i) and (iii),
model (1.4) admits no positive equilibrium. By Theorem 3.3 (i) and (iii), (u∗,0) is unstable. Then, it
follows from the monotone dynamical system theory [20,21,29,46] that (u∗,0) is globally asymptotically
stable.

(ii) Suppose that q1 < q and (d2, q2) ∈ G11 ∪ G∗
12. By Lemma 6.3 (i) and (iii), model (1.4) admits no

positive equilibrium. By the monotone dynamical system theory [20,21,29,46], it suffices to show that
(0,v∗) is unstable. If (d1, q1) ∈ G∗

12, then q2 > q and (d1, q1) ∈ G̃22 := {(d, q) : d > d2, 0 < q ≤ q2}.
Since the nonlinear terms of model (1.4) are symmetric, it follows from Proposition 3.3 (ii) that (0,v∗)
is unstable. If (d2, q2) ∈ G11, then (d1, q1) ∈ G̃21, where

G̃21 :=
{

(d, q) : 0 < d ≤ d2, 0 < q ≤ q2
d2

d, (d, q) �= (d2, q2)
}

.

Similarly, it follows from Proposition 3.3 (i) that (0,v∗) is unstable.
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Finally, suppose that q1 < q and (d2, q2) ∈ G13. By Proposition 3.3 (iii), (u∗,0) is locally asymp-
totically stable. By Lemma 6.3 (iv), model (1.4) admits no positive equilibrium. If (0,v∗) is locally
asymptotically stable, then model (1.4) admits one unstable positive steady state, which is a contradic-
tion. If (0,v∗) is unstable, then the monotone dynamical system theory [20,21,29,46] implies that (u∗,0)
is globally asymptotically stable. If (0,v∗) is neutrally stable, by [29, Theorem 1.4], (u∗,0) is globally
asymptotically stable. This proves (ii). �

Proof of Theorems 3.8 and 3.10. We only need to prove the case (d2, q2) ∈ G∗
23, since the other cases

can be proved using similar arguments in the proof of Theorem 3.6. If (d2, q2) ∈ G∗
23, then q2 < q and

(d1, q1) ∈ Ĝ13, where

Ĝ13 := {(d, q) : d ≥ d2, q2 ≤ q <
q2
d2

d, (d, q) �= (d2, q2)}.

Since the nonlinear terms of model (1.4) are symmetric, it follows from Theorem 3.6 (ii) that (0,v∗) is
globally asymptotically stable. �
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Appendix

In the Appendix, we study the relations of q, q and q0. For convenience, we recall the definition of q, q
and q0:

q = max
{

r1
k1

(k1 − k2),
r3
k3

(k2 − k3)
}

, (6.9a)

q = min
{

r1
k1

(k1 − k2),
r3
k3

(k2 − k3)
}

, (6.9b)

q0 = max
{

r1

(

1 − u∗
1

k1

)

, r2

(

1 − u∗
2

k2

)}

. (6.9c)

Lemma 6.4. Suppose that (H) holds, r � 0, and d1, q1 > 0. Then, the following statements hold:
(i) If q1 < q, then q0 > q1;
(ii) If q1 > q, then q0 < q1;
(iii) If q1 > q, then q0 > q;
(iv) If q1 < q, then q0 < q.

Proof. By (5.10) and (5.11) and Lemma 5.1 (i), we have

f̃1 = d1u
∗
2 − (d1 + q1)u∗

1 = −r1u
∗
1

(

1 − u∗
1

k1

)

< 0, (6.10a)

f̃2 = d1u
∗
3 − (d2 + q2)u∗

2 = r3

(

1 − u∗
3

k3

)

< 0, (6.10b)

f̃2 − f̃1 = −r2u
∗
2

(

1 − u∗
2

k2

)

, (6.10c)
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which will be used in the proof below.
(i) By Lemma 5.1 (iv), we have u∗

1 > u∗
2 > u∗

3. This, together with (6.9c) and (6.10a), implies that

q0 ≥ r1

(

1 − u∗
1

k1

)

=
(d1 + q1)u∗

1 − d1u
∗
2

u∗
1

= d1

(

1 − u∗
2

u∗
1

)

+ q1 > q1. (6.11)

(ii) By Lemma 5.1 (iii), we have u∗
1 < u∗

2 < u∗
3. Then, by (6.10a) again, we obtain

r1

(

1 − u∗
1

k1

)

= d1

(

1 − u∗
2

u∗
1

)

+ q1 < q1. (6.12)

By (6.10c), we obtain that

r2

(

1 − u∗
2

k2

)

=
((d1 + q1)u∗

2 − d1u
∗
3) + f̃1

u∗
2

=d1

(

1 − u∗
3

u∗
2

)

+
f̃1
u∗
2

+ q1 < q1,

(6.13)

where we have used (6.10c) and u∗
2 < u∗

3 in the last step. It follows from (6.9c), (6.12) and (6.13) that
q0 < q1.

(iii) We divide the proof into three cases:

(A1) u∗
1 < k2, (A2) u∗

1 ≥ u∗
2, (A3) k2 ≤ u∗

1 < u∗
2.

For case (A1), we see from (6.9b) and (6.9c) that

q0 ≥ r1

(

1 − u∗
1

k1

)

>
r1
k1

(k1 − k2) ≥ q.

For case (A2), we see from (6.9c) and (6.10a) that

q0 ≥ r1

(

1 − u∗
1

k1

)

= d1

(

1 − u∗
2

u∗
1

)

+ q1 ≥ q1 > q.

Now we consider (A3). Suppose to the contrary that q0 ≤ q. This, combined with (6.9b) and (6.9c),
yields

r1

(

1 − u∗
1

k1

)

≤ q0 ≤ q ≤ r3
k3

(k2 − k3) . (6.14)

Noticing that u∗
2 > k2, we see from (6.10c) that

f̃2 − f̃1 = d1(u∗
3 − u∗

2) − (d1 + q1)(u∗
2 − u∗

1) = −r2u
∗
2

(

1 − u∗
2

k2

)

> 0. (6.15)

Since u∗
1 < u∗

2, we see from (6.15) that u∗
2 < u∗

3. Then, we have

0 > f̃2 > f̃1 and k2 ≤ u∗
1 < u∗

2 < u∗
3, (6.16)

which yields

− f̃2
u∗
3

< − f̃1
u∗
1

. (6.17)

This, together with (6.16), (6.10a) and (6.10b), implies that

r1

(

1 − u∗
1

k1

)

= − f̃1
u∗
1

> − f̃2
u∗
3

=
r3
k3

(u∗
3 − k3) >

r3
k3

(k2 − k3) ,

which contradicts (6.14). Therefore, q0 > q for case (A3).



ZAMP On the impact of spatial heterogeneity Page 29 of 32 117

(iv) We first show that

r1

(

1 − u∗
1

k1

)

< q, (6.18)

and the proof is divided into three cases:

(B1) u∗
1 > k2, (B2) u∗

1 ≤ u∗
2, (B3) k2 ≥ u∗

1 > u∗
2.

For case (B1), we have

r1

(

1 − u∗
1

k1

)

<
r1
k1

(k1 − k2) ≤ q.

For case (B2), we see from (6.10a) that

r1

(

1 − u∗
1

k1

)

= d1

(

1 − u∗
2

u∗
1

)

+ q1 ≤ q1 < q. (6.19)

For case (B3), using similar arguments as the above case (A3), we have

0 > f̃1 > f̃2 and k2 ≥ u∗
1 > u∗

2 > u∗
3.

This, combined with (6.10a) and (6.10b), implies that

r1

(

1 − u∗
1

k1

)

= − f̃1
u∗
1

< − f̃2
u∗
1

< − f̃2
u∗
3

= r3

(
u∗
3

k3
− 1

)

<
r3
k3

(k2 − k3) ≤ q.

Then, we show that

r2

(

1 − u∗
2

k2

)

< q, (6.20)

and the proof is also divided into three cases:

(C1) u∗
2 ≤ u∗

3, (C2) u∗
2 > u∗

3 ≥ k2, (C3) u∗
2 > u∗

3 and k2 > u∗
3.

For case (C1), we see from (6.13) that

r2

(

1 − u∗
2

k2

)

< q1 < q.

For case (C2), we have

r2

(

1 − u∗
2

k2

)

< 0 < q.

For case (C3), we see from (6.10) that

r2

(

1 − u∗
2

k2

)

=
f̃1 − f̃2

u∗
2

< − f̃2
u∗
2

< − f̃2
u∗
3

=
r3
k3

(u∗
3 − k3) <

r3
k3

(k2 − k3) ≤ q.

By (6.18) and (6.20), we see that (iv) holds. �

Remark 6.5. By q ≤ q and Lemma 6.4, we see that if q1 < q, then q1 < q0 < q; if q1 > q, then q < q0 < q1;
and if q < q1 < q, then q < q0 < q.
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