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Abstract. In this paper, we give a new construction of u0 ∈ Bσ
p,∞ such that the corresponding solution to the hyperbolic

Keller-Segel model starting from u0 is discontinuous at t = 0 in the metric of Bσ
p,∞(Rd) with d ≥ 1 and 1 ≤ p ≤ ∞, which

implies the ill-posedness for this equation in Bσ
p,∞. Our result generalizes the recent work in Zhang et al. (J Differ Equ

334:451-489, 2022) where the case d = 1 and p = 2 was considered.
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1. Introduction

Chemotaxis is the active motion of organisms influenced by chemical gradients. The most prominent
model for this process goes back to Patlak, Keller and Segel [6–8,16] which takes the form of{

∂tu + ∇ · (D1(u, S)∇u − χ(u, S)∇S) = 0,
τSt = D2ΔS + k(u, S),

(1.1)

here u(x, t) represents the cell density at position x ∈ R
d, time t > 0, and S(x, t) is the concentration of

a chemical signal. The motility D1(u, S) and the chemotactic sensitivity χ(u, S) rely on the cell density
and on the signal concentration. The term k(u, S) depicts production and decay or consumption of the
signal and D2 is the diffusion constant for S. The parameter τ illustrates that movement of the species
and dynamics of the signal have different characteristic time scales. The Keller-Segel model has been
applied to many different problems, ranging from bacteria chemotaxis to cancer growth or the immune
response.

Dolak and Schmeiser [5] derived a convection equation with a small diffusion term as higher order
correction from a kinetic model for chemotaxis. Inspired by this, Dolak and Schmeiser proposed the
following parabolic-type Keller-Segel equations with small diffusivity:{

∂tu = −∇ · (u(1 − u)∇S − ε∇u), in R
+ × R

d,

−ΔS = u − S, in R
+ × R

d.
(1.2)

Burger, Dolak and Schmeiser [3] studied the asymptotic behavior of solutions of the chemotaxis model
(1.2) in multiple spatial dimensions. Of particular interest is the practically relevant case of small diffu-
sivity, where (as in the one-dimensional case) the cell densities form plateau-like solutions for large time.
Some other results related to (1.2) can be found in [18–20].

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-023-01952-8&domain=pdf
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Nie and Yuan [14] considered the Cauchy problem for multidimensional chemotaxis system⎧⎪⎨
⎪⎩

∂tu − Δu = ∇ · (uv), in R
+ × R

d,

∂tv − ∇u = 0, in R
+ × R

d,

(u, v)|t=0 = (u0, v0), in R
d,

(1.3)

they proved that (1.3) is well-posed in Ḃ
d
p −2
p,σ × (Ḃ

d
p −1
p,σ )d when p < 2d and is ill-posed when p > 2d.

Later, Nie and Yuan [15] also obtaind that (1.3) is ill-posed in Ḃ
d
p −2

p,1 × (Ḃ
d
p −1

p,1 )d when p = 2d. Almost in

the same time, Xiao and Fei [21] proved that (1.3) is ill-posed in Ḃ
d
p −2
p,σ × (Ḃ

d
p −1
p,σ )d when p = 2d, σ > 2.

Recently, Li, Yu and Zhu [13] proved that (1.3) is ill-posed in Ḃ
d
p −2
p,r × (Ḃ

d
p −1
p,r )d when 1 ≤ r < d.

In this paper, we consider the Cauchy problem for following hyperbolic Keller-Segel equation:⎧⎪⎨
⎪⎩

∂tu = −∇ · (u(1 − u)∇S), in R
+ × R

d,

−ΔS = u − S, in R
+ × R

d,

u(x, 0) = u0(x), in R
d.

(1.4)

The unknown scale functions u(x, t) and S(x, t) denote the cell density and the concentration of chemical
substance, respectively. Dolak and Schmeiser [4] firstly established the existence and unique of global
smooth solution to one dimensional version of (1.2) with suitable conditions on the initial data. On a
time scale characteristic for the convective effects, they also proved that the corresponding sequence of
solutions uε converges to the weak entropy solution u to (1.4) as ε → 0. Laterly, Burger, Difrancesco
and Dolak [2] obtained the unique local-in-time solution to (1.2) with the initial data belonging to
L1(Rd) ∩ L∞(Rd). Perthame and Dalibard [17] proved the existence of an entropy solution to (1.4) by
passing to the limit in a sequence of solutions to the parabolic approximation. Lee and Liu [9] proved the
sub-threshold for finite time shock formation to solutions of (1.4) in one-dimension.

Recently, Zhou, Zhang and Mu [23] obtained the existence and uniqueness of solution of (1.4) in
Bs

p,r(R
d) when 1 ≤ p, r ≤ ∞, s > 1 + d

p . Later, Zhang, Mu and Zhou [22] proved that (1.4) is ill-posed
in Bs

2,∞(R) with s > 3
2 and (1.4) is local well-posed in Bs

p,1(R
d) when 1 ≤ p < ∞, s = 1 + d

p . However,
their initial data seems to be valid only for p = 2 when proving the ill-posedness in Bs

p,∞. Motivated by
the recent works in [11,12], we aim to extend the ill-posedness result in [22] to more general case, i.e,
1 ≤ p ≤ ∞ and d ≥ 1. The main result of the paper is the following theorem:

Theorem 1.1. Let d ≥ 1. Assume that

s > 1 +
d

p
with 1 ≤ p ≤ ∞,

then there exists u0 ∈ Bs
p,∞(Rd) and a positive constant ε0 such that the data-to-solution map u0 	→ u of

the Cauchy problem (1.4) satisfies

lim sup
t→0+

‖u(t) − u0‖Bs
p,∞ ≥ ε0.

Remark 1.1. Theorem 1.1 demonstrates the ill-posedness of (1.4) in Bs
p,∞(Rd). Precisely speaking, we

can construct u0 ∈ Bs
p,∞(Rd) such that the corresponding solutions of the Keller-Segel equation do not

converge to u0 in the metric of Bs
p,∞(Rd) as t → 0+.

Remark 1.2. We should mention that the key decomposition technique and the special initial data used
in [22] can not be applied to the present case p �= 2 any more. To overcome these difficulties, we construct
a new initial data which is completely different from [22]. In particular, by utilizing the commutator
estimate and some basic analysis, we make the proof more simple.

The rest of the paper is organized as follows. In Sect. 2, we introduce some basic definitions and key
lemmas. In Sect. 3, we present the proof of Theorem 1.1.
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2. Preliminaries

Notation The notation A � B (resp., A � B) means that there exists a harmless positive constant c
such that A ≤ cB (resp., A ≥ cB). Given a Banach space X, we denote its norm by ‖ · ‖X . For a Banach
space X and for any 0 < T ≤ ∞, we use standard notation Lp(0, T ;X) to denote the quasi-Banach space
of Bochner measurable functions f from (0, T ) to X endowed with the norm

‖f‖Lp
T X :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎝ T∫

0

‖f(·, t)‖p
X dt

⎞
⎠

1
p

, if 1 ≤ p < ∞,

sup0≤t≤T ‖f(·, t)‖X , if p = ∞.

Let us recall that for all f ∈ S ′, the Fourier transform f̂ , is defined by

(Ff)(ξ) = f̂(ξ) =
∫
Rd

e−ix·ξf(x)dx for any ξ ∈ R
d.

The inverse Fourier transform of any g is given by

(F−1g)(x) =
1

(2π)d

∫
Rd

eix·ξg(ξ)dξ.

Next, we recall some facts on the Littlewood-Paley theory which can be found in [1].
Let ϕ ∈ C∞

c (Rd) and χ ∈ C∞
c (Rd) be a radial positive function such that

supp ϕ ⊂ {ξ ∈ R
d :

3
4

≤ |ξ| ≤ 8
3
}, supp χ ⊂ {ξ ∈ R

d : |ξ| ≤ 4
3
},

χ(ξ) +
∑
j≥0

ϕ(2−jξ) = 1 for any ξ ∈ R
d,

|i − j| ≥ 2 ⇒ supp ϕ(2−i·) ∩ supp ϕ(2−j ·) = ∅,

j ≥ 1 ⇒ supp ϕ(2−j ·) ∩ supp χ(x) = ∅,

ϕ(ξ) ≡ 1 for
4
3

≤ |ξ| ≤ 3
2
.

We can define the nonhomogeneous localization operators as follows.

Δju = 0, j ≤ −1; Δju = χ(D)u, j = −1; Δju = ϕ(2−jD)u, j ≥ 0,

where the pseudo-differential operator f(D) : u → F−1(fFu).
Let us now define the Besov spaces as follows.

Definition 2.1. ( [1]) Let s ∈ R and (p, r) ∈ [1,∞]2. The nonhomogeneous Besov space Bs
p,r(R

d) is defined
by

Bs
p,r(R) :=

{
f ∈ S ′(Rd) : ‖f‖Bs

p,r(R
d) < ∞

}
,

where

‖f‖Bs
p,r(R

d) =

⎧⎨
⎩

(∑
j≥−1 2sjr‖Δjf‖r

Lp(Rd)

) 1
r

, if 1 ≤ r < ∞,

supj≥−1 2sj‖Δjf‖Lp(Rd), if r = ∞.

Remark 2.1. It should be emphasized that Bs
p,∞(Rd) with s > d

p is a Banach algebra and Bs
p,∞(Rd) ↪→

Bt
p,∞(Rd) with s > t. These facts will be often used implicity.

Finally, we recall some lemmas which be used later.
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Lemma 2.1. (Bernstein’s inequality, [1]) Let C be an annulus and B be a ball. There exists a constant C
such that for any nonnegative integer k, any couple (p, q) ∈ [1,∞]2 with 1 ≤ p ≤ q, and any Lp function
u we have

sup
|α|=k

‖∂αu‖Lq(Rd) ≤ Ck+1λk+d( 1
p − 1

q )‖u‖Lp(Rd), suppû ⊂ λB,

C−(k+1)λk‖u‖Lp(Rd) ≤ sup
|α|=k

‖∂αu‖Lp(Rd) ≤ C(k+1)λk‖u‖Lp(Rd), suppû ⊂ λC.

Lemma 2.2. ( [1]) A smooth function f : R
d → R is said to be an Sm-multiplier: if ∀α ∈ N

d, there exists
a constant Cα > 0 such that

|∂αf(ξ)| ≤ Cα(1 + |ξ|)m−α, ξ ∈ R
d.

If f is a Sm-multiplier, then the operator f(D) is continuous from Bs
p,r to Bs−m

p,r for all s ∈ R and
1 ≤ p, r ≤ ∞.

Lemma 2.3. ( [1]) For 1 ≤ p ≤ ∞ and s > 0, there exists a constant C,depending continuously on p and
s, we have ∥∥2js‖[Δj , v] · ∇f‖Lp

∥∥
�∞ ≤ C(‖∇v‖L∞‖f‖Bs

p,∞ + ‖∇f‖L∞‖∇v‖Bs−1
p,∞),

where [Δj , v] · ∇f = Δj(v · ∇f) − v · Δj∇f .

3. Proof of Theorem 1.1

For convenience of computation, we rewrite (1.4) as follows⎧⎪⎨
⎪⎩

∂tu + (1 − 2u)∇S · ∇u + u(1 − u)ΔS = 0, in R
+ × R

d,

S = (1 − Δ)−1u, in R
+ × R

d,

u(x, 0) = u0(x), in R
d.

(3.1)

Let φ̂ ∈ C∞
0 (R) be an even, real-valued and nonnegative function which satisfies

φ̂(ξ) =

{
1, if |ξ| ≤ 1

4d ,

0, if |ξ| ≥ 1
2d .

Remark 3.1. By the Fourier-Plancherel formula, we have φ(x) = F−1(φ̂(ξ)). It is easy to check that

φ(0) =
1
2π

∫
R

φ̂(ξ)dξ > 0 and φ′(0) =
1
2π

∫
R

φ̂′(ξ)dξ = 0.

Lemma 3.1. Define the function fn(x) by

fn(x) = φ(x1) sin
(

17
12

2nx1

)
φ(x2) · · · φ(xd), n ≥ 3.

Then

Δj(fn) =

{
fj , if j = n,

0, if j �= n.

Proof. Notice that

supp f̂n ⊂
{

ξ ∈ R
d :

17
12

2n − 1
2

≤ |ξ| ≤ 17
12

2n +
1
2

}
,

using the definition of Δj enables us to get the desired result. For more details see [10]. �
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Proposition 3.1. Define the initial data u0(x) as

S0(x) :=
∞∑

n=3

2−n(s+2)fn(x),

u0(x) := (1 − Δ)S0(x).

If s > 1 + d
p , we have

‖u0‖Bs
p,∞ ≤ C.

Proof. By Lemma 3.1, we have

ΔjS0 = 2−j(s+2)fj(x). (3.2)

Combining Lemma 2.2 and (3.2) yields

‖u0‖Bs
p,∞ ≤ C‖S0‖Bs+2

p,∞ = sup
j≥0

2(s+2)j‖ΔjS0‖Lp ≤ C.

We complete the proof of Proposition 3.1. �
Using Proposition 3.1 and Theorem 1.1 in [23], we can obtain that there exists a short time T > 0

that (3.1) has a unique solution u ∈ L∞([0, T );Bs
p,∞)∩Lip([0, T );Bs−1

p,∞) for s > 1+ d
p . Moreover, it holds

‖u(t)‖L∞
T (Bs

p,∞) ≤ C‖u0‖Bs
p,∞ . (3.3)

Proposition 3.2. Let s − 1 > d
p and ‖u0‖Bs

p,∞ � 1. Assume that u ∈ L∞(0, T ;Bs
p,∞(Rd)) be the solution

of (1.4), then we have

‖u(t) − u0‖Bs−1
p,∞ � t.

Proof. Using the Newton-Leibniz formula, Minkowski’s inequality, Remark 2.1, Lemma 2.2 and Proposi-
tion 3.1, we have

‖u(t) − u0‖Bs−1
p,∞ ≤

t∫
0

‖(1 − 2u)∇S · ∇u‖Bs−1
p,∞dτ +

t∫
0

‖u(1 − u)ΔS‖Bs−1
p,∞dτ

� t‖u‖L∞
t Bs−2

p,∞‖u‖L∞
t Bs

p,∞ + t‖u‖L∞
t Bs−2

p,∞‖u‖L∞
t Bs−1

p,∞‖u‖L∞
t Bs

p,∞

+ t‖u‖3
L∞

t Bs−1
p,∞

+ t‖u‖2
L∞

t Bs−1
p,∞

� t
(
‖u‖3L∞

t Bs
p,∞

+ ‖u‖2L∞
t Bs

p,∞

)
� t

(
‖u0‖3Bs

p,∞
+ ‖u0‖2Bs

p,∞

)
� t,

where we have used (3.3).
We complete the proof of Proposition 3.2. �

Proposition 3.3. Let s − 1 > d
p and ‖u0‖Bs

p,∞ � 1. Assume that u ∈ L∞(0, T ;Bs
p,∞(Rd)) be the solution

of (1.4), then we have

‖h(t, u0)‖Bs−2
p,∞ � t2,

where we denote

h(t, u0) := u − u0 + tv0

and

v0 := ∇ · (u0(1 − u0)∇S0) = (1 − 2u0)∇S0 · ∇u0 + u0(1 − u0)ΔS0.
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Proof. Using the Newton-Leibniz formula, Minkowski’s inequality, Remark 2.1, Lemma 2.2 and (3.3), we
have

‖h(t, u0)‖Bs−2
p,∞ ≤

t∫
0

‖∂τu + v0‖Bs−2
p,∞dτ

≤
t∫

0

‖∇ · (u0(1 − u0)∇S0) − ∇ · (u(1 − u)∇S)‖Bs−2
p,∞dτ

�
t∫

0

‖u0(1 − u0)∇S0 − u(1 − u)∇S‖Bs−1
p,∞dτ

�
t∫

0

‖u(τ) − u0‖Bs−1
p,∞dτ

� t2,

where we have used Proposition 3.2 in the last step.
We complete the proof of Proposition 3.3. �

Now we present the proof of Theorem 1.1.

Proof of Theorem 1.1.. Notice that u(t) − u0 = h(t, u0) − tv0, then

‖u(t) − u0‖Bs
p,∞ ≥ 2js‖Δj(h(t, u0) − tv0)‖Lp

≥ 2jst‖Δjv0‖Lp − 2js‖Δjh(t, u0)‖Lp

≥ 2jst‖Δj((1 − 2u0)∇S0 · ∇u0)‖Lp − 2jst‖Δj(u2
0ΔS0)‖Lp

− 2jst‖Δj(u0∂
2
xS0)‖Lp − 2js‖Δjh(t, u0)‖Lp . (3.4)

It is not difficult to deduce that

2jst‖Δj(u2
0ΔS0)‖Lp � t‖u2

0ΔS0‖Bs
p,∞ � t‖u0‖3Bs

p,∞
� t,

2jst‖Δj(u0ΔS0)‖Lp � t‖u0ΔS0‖Bs
p,∞ � t‖u0‖2Bs

p,∞
� t,

2js‖Δjh(t, u0)‖Lp ≤ 22j‖h(t, u0)‖Bs−2
p,∞ � t222j .

Gathering the above estimates together with (3.4) yields

‖u(t) − u0‖Bs
p,∞ ≥ 2js‖Δj(h + tv0)‖L2

≥ 2jst‖Δj((1 − 2u0)∇S0 · ∇u0)‖Lp − Ct − Ct222j

≥ 2jst‖(1 − 2u0)∇S0 · Δj∇u0‖Lp

− 2jst‖[Δj , (1 − 2u0)∇S0] · ∇u0‖Lp − Ct − Ct222j . (3.5)

On the one hand, by Lemma 2.3, we deduce

2js‖[Δj , (1 − 2u0)∇S0] · ∇u0‖Lp ≤ C. (3.6)

On the other hand, we have

2js‖(1 − 2u0)(∇S0 · Δj∇u0)‖Lp = 2js

∥∥∥∥∥(1 − 2u0)
d∑

i=1

∂xi
S0Δj∂xi

u0

∥∥∥∥∥
Lp

≥ J − K, (3.7)
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where

J := 2js ‖(1 − 2u0)∂x1S0Δj∂x1u0‖Lp ,

K := 2js
d∑

i=2

‖(1 − 2u0)∂xi
S0Δj∂xi

u0‖Lp .

By Lemma 3.1, we infer

J = 2−2j ‖(1 − 2u0)∂x1S0∂x1(1 − Δ)fj‖Lp ≥ 2−2j (J1 − J2 − J3) , (3.8)

where

J1 :=
∥∥(1 − 2u0)∂x1S0∂

3
x1

fj

∥∥
Lp ,

J2 :=
d∑

i=2

∥∥(1 − 2u0)∂x1S0∂x1∂
2
xi

fj

∥∥
Lp ,

J3 := ‖(1 − 2u0)∂x1S0∂x1fj‖Lp .

We have

∂3
x1

fj(x) = −
(

17
12

)3

23jφ(x1) cos
(

17
12

2jx1

)
φ(x2) · · · φ(xd) + R,

where

R =
17
4

2jφ′′(x1) cos
(

17
12

2jx1

)
φ(x2) · · · φ(xd)

− 3
(

17
12

)2

22jφ′(x1) sin
(

17
12

2jx1

)
φ(x2) · · · φ(xd)

+ φ′′′(x1) sin
(

17
12

2jx1

)
φ(x2) · · · φ(xd).

Obviously, ‖(1 − 2u0)∂x1S0R‖Lp ≤ C22j , then

J1 ≥
(

17
12

)3

23j

∥∥∥∥(1 − 2u0)∂x1S0φ(x1) cos
(

17
12

2jx1

)
φ(x2) · · · φ(xd)

∥∥∥∥
Lp

− C22j .

By the construction of fn, it is not difficult to deduce that

S0(0) =
∞∑

n=3

2−n(s+2)fn(0) = 0.

By easy computations, we have

ΔS0(x) = ∂2
x1

S0(x) +
d∑

i=2

∂2
xi

S0(x)

=
∞∑

n=3

2−n(s+2)∂2
x1

fn +
d∑

i=2

∞∑
n=3

2−n(s+2)∂2
xi

fn.

Noticing that the construction of fn again and using the fact φ′(0) = 0 from Remark 3.1, then we obtain

ΔS0(0) = 0,

which implies that

u0(0) = S0(0) − ΔS0(0) = 0.
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Since (1 − 2u0)∂x1S0φ(x1)φ(x2) · · · φ(xd) is a real-valued and continuous function on R, then there
exists some δ > 0 such that for any x ∈ Bδ(0) := {x ∈ R

d : |x| ≤ δ}
|[(1 − 2u0)∂x1S0φ(x1)φ(x2) · · · φ(xd)](x)|

≥ 1
2

|[(1 − 2u0)∂x1S0φ(x1)φ(x2) · · · φ(xd)](0)|

=
1
2
φd(0)|∂x1S0(0)|

=
17
24

φ2d(0)
∞∑

n=3

2−n(s+1) =: c0 > 0.

Thus we have for j large enough

J1 ≥ c023j

∥∥∥∥cos
(

17
12

2jx1

)∥∥∥∥
Lp(Bδ(0))

− C22j ≥ c̃023j .

By direct computations, we can verify that

J2 + J3 ≤ C2j .

Thus, we have

J ≥ C2j . (3.9)

Similarly, we also have

K ≤ C. (3.10)

Combining (3.9) and (3.10), we have

2jst‖(1 − 2u0)∇S0 · Δj∇u0‖Lp ≥ C2jt. (3.11)

Inserting (3.11) and (3.6) into (3.5), we deduce that for large j

‖u(t) − u0‖Bs
p,∞ ≥ C2jt − Ct − C22jt2 ≥ C2jt − C22jt2.

Thus, picking t2j ≈ ε0 with small ε0, we have

‖u(t) − u0‖Bs
p,∞ ≥ Cε0 − Cε20 ≥ c1ε0.

This completes the proof of Theorem 1.1. �
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− 1
2

2d,1)
d. J. Math. Anal. Appl. 505, 125539 (2022)

[16] Patlak, C.: Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338 (1953)
[17] Perthame, B., Dalibard, A.L.: Existence of solutions of the hyperbolic Keller-Segel model. Trans. Amer. Math. Soc.

361, 2319–2335 (2009)
[18] Tello, J.I., Winkler, M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equ. 32, 849–877 (2007)
[19] Winkler, M.: How strong singularities can be regularized by logistic degradation in the Keller-Segel system? Ann. Mat.

Pura Appl. 198, 1615–1637 (2019)
[20] Winkler, M.: Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation.

Z. Angew. Math. Phys. 69, 25 (2018)
[21] Xiao, W., Fei, X.: Ill-posedness of a multidimensional chemotaxis system in the critical Besov spaces. J. Math. Anal.

Appl. 514, 126302 (2022)
[22] Zhang, L., Mu, C., Zhou, S.: On the initial value problem for the hyperbolic Keller-Segel equations in Besov spaces. J.

Differ. Equ. 334, 451–489 (2022)
[23] Zhou, S., Zhang, S., Mu, C.: Well-posedness and non-uniform dependence for the hyperbolic Keller-Segel equation in

the Besov framework. J. Differ. Equ. 302, 662–679 (2021)

https://doi.org/10.1007/s12220-022-01140-6


58 Page 10 of 10 X. Fei et al. ZAMP

Xiang Fei, Yanghai Yu and Mingwen Fei
School of Mathematics and Statistics
Anhui Normal University
Wuhu 241002
China
e-mail: mwfei@ahnu.edu.cn

Xiang Fei
e-mail: fx19970912@163.com

Yanghai Yu
e-mail: yuyanghai214@sina.com

(Received: October 20, 2022; revised: January 6, 2023; accepted: January 21, 2023)


	Ill-posedness of the hyperbolic Keller-Segel model in Besov spaces
	Abstract
	1. Introduction
	2. Preliminaries
	3. Proof of Theorem 1.1
	Acknowledgements
	References




