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Global well-posedness and optimal decay rates for a transmission problem of viscoelastic
wave equations with degenerate nonlocal damping
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Abstract. This paper investigates a transmission problem of viscoelastic wave equations with degenerate nonlocal damping.
We prove the global well-posedness of the problem with the aid of Faedo—Galerkin technique and the multiplier method.
Meantime, by introducing a new Lyapunov functional, we establish the optimal explicit and general energy decay results.
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1. Introduction

We consider a transmission problem of viscoelastic wave equations with degenerate nonlocal internal
(frictional) damping

t

uge — Au + /g(t —s)Au(s)ds + ||Vu||?£ut + fi(u) =0, (z,t) € Q1 x (0, +00), (1.1)
0
v — Av + f2(v) =0, (x,t) € Qo x (0,400), (1.2)
subject to the boundary and transmission conditions
¢
ou ou(s) B
v /g(t - S)st +ur =0, (x,t) €Ty x (0,+00), (1.3)
0
v=0, (z,t) € Ty x (0,400), (1.4)
B ou Qu(s) ,  0Ov
U=v, oo /g(t— s) By ds = W (x,t) € Ty x (0,400), (1.5)
0
and initial conditions
u(x,O) = UQ(JT), ut(x70) = ul(x)7 RS Qh (16)
’U(I’,O) = Uo(l'), ’Ut(fE,O) = Ul(l'), T € 925 (17)

where 8> 1, Q ¢ RNY(N > 2) is a bounded domain with smooth boundary 992 = I'gUT's, ToNTy = ). I'g
is the boundary of small ball B(zg) containing xo in 2, s C Q is a subdomain with smooth boundary
['oUT in the outside of B(zg), and ; = Q\ (Q2U B(x)) is a subdomain with smooth boundary 'y UT';.
v denotes the unit outer normal vector pointing toward the exterior of €, and there exists § > 0, such
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Fic. 1. An example of Q

that m-v > 6 > 0 on I'y, where m := m(z) = z — ¢ (see Fig. 1 for an example). Moreover, the relaxation
function g and nonlinearities f; (i = 1,2) satisfy appropriate conditions.

The phenomenon that several kinds of materials with different elastic properties connect together
over the whole surface appears frequently in the applications of engineering technology, material science,
and so on. The wave propagations among different materials are called transmission problem. In view of
mathematics, the transmission problem for wave propagation is related to the problem of a hyperbolic
equation where the coefficient of the elliptic operator is discontinuous, which causes difficulties on the
studies of well-posedness, regularity and qualitative properties.

There have been fruitful results on the existence, regularity, controllability and decay estimates of
solutions for the transmission problem without delay and memory, see [1-3] and references therein. For
example, Marzocchi [1] proved that the solution for a semilinear transmission problem in one-dimensional
space between an elastic and thermoelastic material decays exponentially. This result was extended to
N-dimensional space by Marzocchi and Naso [2]. For the transmission problem with frictional damping,
Bastos and Raposo [3] proved the well-posedness and exponential stability of the total energy.

For the researches on transmission problems with viscoelastic dampings, Rivera and Oquendo [4]
considered the transmission problem between viscoelastic part and elastic part in one-dimensional space

prue(z,t) — auge(x,t) =0, (x,t) € (0,L1) x (0, +00),
t
pov (T, 1) — bug,(x,t) + /g(t — 8)Vge(x,8)ds =0, (z,t) € (L1, La) x (0,400),
0

and obtained that the energy decays exponentially provided g decays exponentially. Andrade et al. [5]
studied the following nonlinear transmission problem

prug(z,t) — 1 Au(x,t) + f(u) =0, (x,t) € Q1 x (0, +00),
pav(x,t) — Av(z,t) + f(v) =0, (x,t) € Qs x (0, +00),

with a memory condition on a part of the boundary

u(z,t) + /g(t - S)st =0, (x,t)€T; x(0,400).

0

They proved the global existence of solutions and showed that the solutions had the same decay rates pro-
vided the relaxation function decays exponentially or polynomially. Later, Alves et al. [6] investigated the
transmission problem for nonlinear Timoshenko beam system with internal memory in one-dimensional
space and derived some similar results to [5]. Moreover, the authors of this article investigated the wave
transmissions with boundary memory sources, the transmission problems of (weak) viscoelastic wave
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equations with linear or nonlinear delay terms and transmission problem of viscoelastic Timoshenko
systems and derived general and optimal decay estimates; one can see [7—11].

Recently, we are particularly concerned with the issue on optimal decay estimate for scalar viscoelastic
equations, and the advances on decay estimate on wave equations with nonlocal damping terms. For
example, Mustafa [12] considered the viscoelastic wave equation

t
uge — Au + /g(t —$)Au(s)ds =0, (x,t) € Qx (0,+00).
0

Under the homogeneous Dirichlet boundary condition, they presented the optimal decay estimate of the
energy with the general decay assumption on memory kernel, which is ¢'(t) < —£(¢)H (g(t)), Vt > 0.
Lange and Menzala [13] studied firstly the beam equation with nonlocal damping

uy + A%u+ M (|| Vul3)ue =0, (z,t) € RY x (0, +00),
where M : [0,+00) — [1,+00) is a function of Cl-class with M(s) > 1+ s, Vs > 0, in which the

nonlocal damping term M (||Vul[3) u; represented the friction mechanism depended on the average of
u. They pointed out that this model is closely related to a nonlinear Schrodinger equation with a time-
dependent dissipation and obtained the uniform decay estimate of the energy. Later, Cavalcanti et al.
[14] considered the equation with viscoelastic damping. Zhang et al. [15] investigated the Dirichlet initial

boundary problem of wave equation with degenerate nonlocal damping and nonlinear source
uy — Au+ M (|[Vul3) g (w) = f(u), (z,t) € Qx (0,+00).

By the theory of potential well, they showed the asymptotic stability of energy and derived some sufficient
conditions leading to finite time blowup. In addition, for the advances on long-time dynamic behavior
of Kirchhoff-type wave equation with nonlocal weak damping (including the cases of fourth and second
order) and the infinite blow-up phenomenon of Kirchhoff-type wave equation with strong damping, we
refer to [16-23] and the references therein.

In view of the works mentioned above, one can find that the studies on transmission problem of
viscoelastic wave equations with degenerate nonlocal internal (fractional) damping have not been started.
The main difficulties lie in seeking the influence caused by the competition between internal viscoelastic
dissipation, degenerate nonlocal internal damping and nonlinearities on the asymptotic behavior of the
solution. Motivated by these observations, we establish the global well-posedness of the solution by
Faedo—Galerkin technique and the multiplier method and derive the general and optimal decay rates of
the energy by introducing a new Lyapunov functional.

The remainder of this paper is organized as follows. In Sect. 2, we introduce some material needed in
the proof of our results and state the main results. In Sect. 3, we establish the global well-posedness of
the solution. Finally, we derive the general and optimal decay rates in Sect. 4.

2. Preliminaries and main results

Throughout this paper, we will use ¢ and C' to denote various constants. Define
HE(Q) :=={v e H(Q2) :v=00nT},
V= {(u,v) € H' () x H:(Q) :u=wvon T},
(u,v)q, == /u(a:)v(x)dx, i=1,2, (u,v)r,:= /u(m)v(m)dx, j=1,2.
Q; Fj

For a Banach space X, || - [|x represents the norm of X. For simplicity, we will use || - ||, and || - [|r, to
denote || - [|z2(q,) and || - [[2(r;), respectively. Moreover, Li(t) ~ La(t) means that there exist constants



51 Page 4 of 25 Z. Liu and Z. B. Fang ZAMP

c1,co > 0 such that
c1Li(t) < La(t) < caLy(t),

and we denote
(gou(®) = [ glt = )u(t) - us)[},ds.
0

Now, we present some reasonable assumptions.
(H1) g:R* — R is a nonincreasing differentiable C''-function satisfying
+o0

g(0)>0,1:=1— / g(s)ds > 0. (2.1)
0

Meantime, there exists a C-function H : (0, +00) — (0, +00) which is a linear function or a strictly
increasing and strictly convex C2-function on (0, 7], r < g(0) with H(0) = H’(0) = 0, such that

gl(t) < —f(t)H (g(t)), Vi 2 0) (2'2)

where £(t) > 0 is a nonincreasing and differentiable positive functions.
(H2) Nonlinearities f1, fo € C1(R) satisfy

fi(s)s >0, VseR, i=1,2.

Moreover, f; and fy are superlinear, that is
fi(s)s > (24 w;)Fi(s), Fi(s) := /fi(T)dT, VseR, i=1,2, (2.3)
0

for some p; > 0 with the following growth condition:

fi(@) = fip) < v A+ [l + [yl ™) [z —yl, Vz,y eR, (24)

where v > 0 and

N-2>

1<p< X N>3
=P= -7 (2.5)
1<p<+o0, N=1,2.
By virtue of the technique of Faedo—Galerkin approximation and some energy estimates, we obtain the

following result on the well-posedness of problem (1.1)—(1.7).

Theorem 2.1. Suppose that (H1) and (H2) hold and initial data (ug,ve) € (H?*(Q1) x H*(Q2)) NV,
(u1,v1) € V satisfy the compatibility conditions

0
el 4+u1 =0, on Ty, vg=0,0n Ty,
v
8“0 81}0 r
Uy = vV —_— = —, On
0 05 81/ 81/7 1

then there exists a unique solution (u,v) of problem (1.1)—(1.7) in the class
(u,v) € C ((0,+00); (H* () x H*(Q2)) N V),
(ut7vt) S L? ((0,+OO>,L2(91) X L2(Qg)) .
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In order to describe the estimate of energy, we define the energy functional as

t

1
B = |lulf, + (1~ [ a(s)ds | IVulf, + (9o V)0 | + [ Fu(wds
0 Qq
1

45 (ol + 1901,) + [ Fao)da, (26)
Qo

Then, taking the derivative directly to derive

dE(t)

1
2
S = IVl e, — el + 500 Vu)(e) -

N =

/ o(5)ds|| Vul,. (2.7)

We derive the following decay estimate of the energy:

Theorem 2.2. Let (u,v) be the solution of (1.1)—(1.7) given in Theorem 2.1 and assume (H1)-(H2) hold.
If the additional condition is imposed on I'y, that is,

m-v<0and F; < FyonT}q, (2.8)

then for t1 > 0 large enough, there exist constants c¢1, ca > 0 such that

t
B(t) <cH ! cQ/f(s)ds , Vit >t
ty

where H(t) := [ #,(S)ds.
¢

Remark 2.1. The decay rate of the energy in Theorem 2.2 is optimal. In fact, similar to [12], it follows
from (2.2) that

T t t

g0 < -e0ne0) =+ [ o= [ ph%asx [ esas

g(t) g=1(r) g=1(r)

T
Therefore, if we denote Ho(t) := [ -5, then Ho(t) is strictly increasing and strictly convex on (0, 7] and
t
satisfying lim; o+ Ho(t) = 400 and Ho (g(t)) > [ &(s)ds, which imply that
g~ 1(r)
t
a0 <" | [ esas| vz g0,
—1(r)
On the other hand, by the properties of H, H and Hg, we can see that

r

o= / SH%(s) ds = /ﬁds = Ho(t) = H (1) < Hy ' (1).

Thus, Theorem 2.2 presents an optimal decay estimate of the energy.
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Remark 2.2. We present some examples in the following to illustrate the result of Theorem 2.2:

(I) Let g(t) = a(l +¢t)"? with p > 1, and a > 0 is an appropriate constant such that (2.1) hold.
Computing directly we can see that the (2.2) holds by taking

&(t)=pa r, H(s)=s"7.
Then, it follows from Theorem 2.2 that
Et)<c(l+t)7P, Vt>t.

(IT) Let g(t) = aexp (—t?) with 0 < ¢ < 1, and @ > 0 is an appropriate constant such that (2.1)
hold. Computing directly we can see that (2.2) holds by taking

) =1, H(s)= —L .

[n ()]

2

Since

- n(¢ — In % 1
(s = 4 qull(s), and H"(s) = ! q){ ( )+q}

In (2)]° [in (2)] 7+

then H satisfies (H1) in (0,r] for VO < r < a. Moreover,

)

\ , - o
() = / sHl’(s)ds - / s[a —[ q)(j-);m O ()] =H0) < aem (-0,

Therefore, it follows from Theorem 2.2 that

E(t) <acyexp(—cat?), V> t.

III) Let g(t) = =72+ with p > 1, and a > 0 is an appropriate constant such that (2.1) hold.
(o) n{i+e)]
Computing directly we can see that (2.2) holds by taking
In(¢
o Mt +el gy el

ar (t+e)
Then, it follows from Theorem 2.2 that

t —p
In(s+e)+p c
Elt) < 1+/ﬁds < ,
av(s+e)™ v (t +e) [In(t +e)]”

for t > t; large enough.

3. Global well-posedness

In this section, we obtain some prior estimates of the energy and then establish the global well-posedness
of (1.1)—(1.7) by virtue of the technique of Faedo-Galerkin approximation and the method of multiplier.

Proof of Theorem 2.1. We divide the proof into 4 steps.
Step1. Approzimation problem. Let {(p;,1;)}jen be a basis in (H?(€21) x H?(£22))NV, which is orthogonal
in L2() x L*(Q2). For Vn > 1, denoting

Vn = Span{(@l#/’l)’ (902; 7;[}2)7 BN (@nawn)} .
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We define the approximations:
(w0, 8), 0™ (@,0)) = 3 bin (B3 (), v5()),

where (u(”), v(")) are solutions to the following Cauchy problem:

t
(i 05)q, + (Vu™, V), — / g(t = $)Vu™ (s)ds, Vip; |+ [Vul™ [ (), 0)) .
0 Q

+ (A1), 05) . + (™ 05)p, + (0 ) 6, + (Vo V) o+ (f2(00™),4) . =0, (3.1)

(u(") (0),0(")(0)) (Uon, Von) ijn (pj,05) — (uo,vo), in (H*(Q) x H*(Q2)) NV, (3.2)

n

(us™(0), 0" () = (w1, v1n) = P2 64(0) (95,5) = (wr,v1)., in V. (3:3)

Jj=1

According to the standard theory of ordinary differential equations, problem (3.1)—(3.3) has a unique
solution bj,(t) defined on [0,T),), T, > 0. The extension of these solutions to the whole interval [0, T7,
for all T' > 0, is a consequence of the first estimate which we are going to prove below.

Step 2. Energy estimates.

A prior estimate I: Multiplying (3.1) by b’,,(t) and summing on j, we can see

t

d 2 2 1 1
A g = _H (n) (n) _‘ (n) L o Tu™) () — ,/ q H (n) 34
T Vu N A Fz—|—2(g o Vul™)(t) 5 g(s)ds||Vu 0, (3.4)
0
where
, t
EM(t) ‘ o+ (1= /g HVU(”) + HVU(”)
1 92 QQ
0

1

+§(g<>Vu )()+/Fl(u(”))dx+/F2(v("))dm. (3.5)
Ql Q2
It follows from the nondecreasing property of g, Gronwall’s inequality and (3.2)—(3.3) that
, t
Huﬁn) —|—HVU ) +HW(" +/’u ds
0
t
2 2
+ / HVu(")(s) ul™ (s) o ds < Ly, Vn e N, (3.6)
) 1

where L > 0 is a constant independent of n.

A prior estimate 1I: Differentiating (3.1) with respect to ¢ and multiplying it by b7, (¢), and summing on
7, we have
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t

Ld | m]? ’ 2 / H (n) H (n)
- 1-—
2 dt ’ Uy a, + s + g VU + V’U o
0
+ 5 (goVu(n) )+ Hutt
< —ZﬁHVU(") /Vu(") Vu(n)dx/ut utt)dx ()/ug?)Aunodx
(951 [oF
—/f1( (n) (n) (n dx—/f (" vt vtt)dx (3.7)
Q

where we have used the nonincreasing property and the following equality

c(iit /g(t — 5)Vu(™ (s)ds = /g(t —5)Vu{™ (s)ds + g(t) Vino.

0

It follows from Young’s inequality that

2
0
— 900 [ St < ol + 2 el (38)
o '
—-2p HVu(”) /Vu(") Vu(n dx/ugn)ugl)da:
Q
28-1
<28 HVu(”) ‘uﬁ”) ugl) Vutn)
Q1 Q1 Q1 Q1
2 2
< pL? <( MRl Hwt”) ) : (3.9)
Ql Q1

— /f{ (u(”))ugn)ugf)dx
|95
< c/ <1+2‘u(") -

1

1
) ugn)ug)dx

N-—2 1
N 2N 2
=\ (n)| V=2 (n)|?
<c /(1+2‘u(") ) dx / Uy dx / uy | dz
Ql Ql Ql
N(p—1)]~
< cmax {1, 2N_1} {Ql + 2N Hvu(”) } Hvugn) ugl)
Q1 Q1 (931
(n) (n)
<c|||Vu, —|— Ugy . (3.10)
1
Similarly, we can obtain
—/fé(v(" () (")dx <c (HVU(") + H (n) ) . (3.11)
Qo
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Substituting (3.8)—(3.11) into (3.7) and combining (3.2)—(3.3) to derive

t

1d 112 n n
T )ugt) o + 1—/g(s)ds HVut ) ) + (goVug ))(t)
0
+ ‘ ”u,gt") + HVv(n) ] + H (n)
{Hutt + HVu(”) + H o ot vat } +Co.
2
By virtue of Gronwall’s inequality, we can see
t
(n) (n) (n) (n) (o’
‘ Uy + HVU + ’ Vyy + HVU o + ug (s)’ - ds < Lo, Vn € Ny, (3.12)
2 2
0

where Ly > 0 is a constant independent of n.

Step 3. Passing to the limit.

It follows from the first prior estimate (3.6) and second prior estimate (3.12) that there exist subsequences
of {(u("), v(")) }Zozl (we still denote the subsequences by {(u(”) v(”)) }n for convenience) such that

(u("), v(")) — (u,v) weakly star in L*>(0,7;V), (3.13)
(UE"), v,g )) — (ug,v¢) weakly star in L>°(0,T; V), (3.14)
(ug?), v,gf)) — (ugt, ver) weakly in L (0, T; L*() x L2(Qg)> , (3.15)
ui”) — uy weakly in L2 (0, T;Ty), (3.16)
ugl) — uy weakly in L2 (0,T;T5) . (3.17)

According to Arzela—Ascoli theorem and (3.13)—(3.14), we have
(u(”), v(”)) — (u,v) strongly in C(0,T;V), (3.18)

Moreover, by (3.7) and the continuity of trace operator 7 : H(€;) — Hz(I';), we can obtain
);

),
{u,(g?)} is bounded in L?(0,T; L*(T5)).

)
{ut} s bounded in L2(0, T; H* ()
{Ugn)} is bounded in L?(0, T’; H? (I'2)
)

Using Aubin—-Lions theorem, we can get
(u("), v(”)) — (u,v) a.e. on (Qq,Q) x (0,7,
which implies
f1 (u(")) — f1(u) a.e. on Qy x (0,7,
fa (UW) — fo(v) ae. on Qs x (0,T),
IVu™ [ uf™ — [ Vullu in € (0,75 L2(90)) .
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Since (u, v), (ug, vi) € L (0, +00; L*(€) x L*(92)), then we can pass the limit in (3.1) to obtain
t
uge — Au + /g(t — s)Au(s)ds + HVuH?{iut + fi(u) =0, in L, (0, +00; L*(21)),
0

Vit — Av + fg(’l)) = O, in LlQOC (0, +OO, LQ(Qg)) .

Returning to the approximating problem and using Green identity, we have

v =20, on Iy,
¢
B Ju Ju(s) ,  Ov
U=, 5—/9(1?—5) £y ds-a, onT};.
0

Since u,us € LE, (O, +00; H%(F2)>, we have

t
ou Ou(s 1
5 /g(t— s) a(y)ds+ut =0, on L}, (O,+oo;H§(F2)> .
0

This completes the proof of the existence of solutions for problem (1.1)—(1.7).

Step 4. Uniqueness. Let (u,v) and (w,v) be two solutions of problem (1.1)—(1.7). Then, (u,v) = (u —
u,v — ) verifies

t

(G 9o, + (V, Vi), — / ot — 9)Va(s)ds, Ve |+ (@),

2

0 Q1
+ (IVaE 7~ IV, o), + (@~ 5 @0,
+ (6&7 1/’)92 + (Vi)\v V/l/})Q? + (.f? (@) - f2 (’17) 7¢)Q2 = 07 (319)
u(z,0) =0, U(z,0)=0, =€y, (3.20)
0(z,0) =0, U(z,0) =0, x€ Q. (3.21)

Taking ¢ = Uy and ¢ = Uy in (3.19) to derive
¢

1d], .2 2 I ~ 2 2
s, + (1= [atas | 1918, + (0o 90 @)+ 15, + 1912,
0

~ 112 — 1120 — ~1123 ~ ~
< — a2, —/(||vu||gfut — Va5 ) e

Q
- / [ () — fo (@)] A — / [f2 (®) — fo (7)) Budz
Q1 Qo
=~ i, - 19w @, + [ (17eE - 197 ) s
Q
- / Uy (@) — f1 (@) Gz — / 2 (@) — fo ()] Bud. (3.22)

Ql QZ
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Applying Young’s inequality to the 3rd term on the right side of (3.22), we get

[ (1val ~ 19) s

Q
< 2e (|IValg, + IValls, ) * IVale, [Valle, 1o,
Similar to the procedure of (3.10)—(3.11), we can derive
~ [ 15 @ = @lande < e (IVl, + @R, (3:24)
1951
- [ (@) = R @de < e (IVolE, + [7l,)- (3.29
Qo

Substituting (3.23)—(3.25) into (3.22) to obtain
t

d |, . - ~ - N
G| 18, + (1= [ aeas) I3, + (00900 0 + 1, + 191,
0

< c(IValg, + alé, +1Volé, + [73,) - (3.26)
Now, by means of Gronwall’s inequality, we can deduce
IValg, + lalé, + 1Vola, + 1708, = o,

and uniqueness follows. Therefore, Theorem 2.1 is proved completely.

4. Optimal decay rates

In this section, we investigate the general and optimal decay of the energy to problem (1.1)—(1.7). In
order to prove our main result, we introduce some lemmas firstly.

Define
N N
O(t) := / [(m -Vw) + (2 - 9) u} udx —l—/ [(m - V) + <2 - 9) v] vde,
Ql QZ
t
where w(t fg (t — s)u(s)ds and0<9<mm{1, %}, 1 =1,2 is a constant which will be
0

determined later.

Lemma 4.1. Let (u,v) be the global solution of problem (1.1)~(1.7). If the additional condition (2.8) holds,
then there exist time t1 > 0 and constants Cy,Cy,C3 > 0 such that
dd(t) 0 (1—-0)
= —§||UtH?zl -

2
IVulld, + CrllVullg llueld, + Calludl?,

Niw_gioy m)] /Fl(u)das

+ C3(1 4 Cq)(ho Vu)(t) — [

N
~Ollully, - (1 )oll, - |22 - 2+u2}/F2 -
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for ¥t > t1, where R := max{|z — x¢| : x € Q} and
+oo

e [ TG e b = an(t) — o
Ca = / ag(s) *9'(s)d 7 h(t) - g(t) / (t)’ (4.1)

forYa € (0,1).

Proof. By (1.1) and Green’s formula, we obtain

c(litQ {(m -Vw) + <];[ - 9> u} updz
_ / (m - Vu)usda + / ” j g (t — s)m - [Vu(t) — Vu(s)] dsdz
(951 Q 0
e / (m - Vu)ude — / V(m - Vo) - Vadz
Q Q
+(5-0) bl - (5 -¢) (1 - / g(s)ds) Vul,
- (;V - 9) / Vau(t) /t gt — 8)[Vu(t) — Vu(s)|dsdz
Q1 0
+ / {(m-Vw)+ (270) u] g—fdl“
o192
- /f1(“) /tg(t —s)m - [Vu(t) — Vu(s)] dsdz
Q1 0
. (1 - /tg(s)ds) /(m~Vu)f1(u)dac — (J;f — 0> /ufl(u)dx
0 01 Qq
- ||Vu|\?f1 / [(m -Vw) + (Z;Z - 9) u] ugdr. (4.2)
Noting that "
[ Vuyuds = =S, + 5 [ (m- ), (43)
(971 121971
Q[V(m'Vw)~dex

0 ow \ Ow
— N . et Wdhed)
n /EL]Zl |:31‘1 <mJ 835]) 8$1:| dz
Q

Jw Ow Om; 1 0 ow\ 2
_ N 77" J _ = N = (X7 .
= /Em:l O, O, O, dx 5 /E = : ( ) mjidz

Q4 1951
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N 1
— (5 1) Ivult, - 5 [ mevivupar,

o

and

/(m Vu)fi(u )dx—N/Fl )da — /(m v)Fy(u)dl.
951 o
Substituting (4.3)—(4.5) into (4.2), we conclude that

% {(m -Vw) + <J;7 - 9> u] updw

1951
t
2 N 2
-/ g(s)ds) vall, + (5 ~1) Ivul?,
0
|

— ol - (5 ) (
~ ( - 9) /Vu /g (t — 8)[Vu(t) — Vau(s)|dsde

(951

- /fl(u) /g(t —s)m - [Vu(t) — Vu(s)] dsdx

Q1

+/ [(m.vw)+(];[9)u} g—fdr

o
+ /(m V) % (|w|2 - |Vw\2) — (1 — /g(s)ds) Fi(u)

o0

dr

+ / ” /t §(t = $)m - [Vu(t) — Vu(s)] dsdz — g(t) / (m - Vu)uydz
0

Ql Ql

LN (1 - /tg(s)ds) /Fl(u)dat - (;V - e) /ufl(u)dx

Ql Ql

vl Q/ [<m.vw>+ (;Ve) u} wadr.

1

Similarly, by virtue of (1.2) and Green’s formula, we get
d N
X {(m - V) + (2 - 9) v} vdx
Qo

= —0llull3, — (1 - 0)|Vel3, + N / Rz - (5 ~0) [ oo

o [ Jomwo+ (5 -0) }gzdn [ ) |3 (1l = 196) = Fa) ar,

2 2

where 7 denotes the normal vector pointing out of €2s.

(4.4)

(4.5)

(4.6)



51 Page 14 of 25 Z. Liu and Z. B. Fang

ZAMP

Adding (4.6) to (4.7) and using the boundary and transmission conditions (1.3)—(1.5), according to

the fact that and 7 = —v on I'y, we see that
t
do(t N N
0 — —otuutp, - (5 - 9) (1 -/ g(s)ds) Vel + (5 ~1) Ivul?,
0
- ( - 9) (t = 8)[Vu(t) — Vu(s)|dsdx

/fl /g (t —s)m - [Vu(t) — Vu(s)] dsdx

0

+/ [(m-Vw) + (g —9) u} udl

-l-/(m-l/) <|ut|2— |Vw|2) - (1 —O/g(s)ds) Fi(u)

Iy

dr

|~

t

+ / ” / gt — s)m - [Vu(t) — Vau(s)] dsdz — g(t) / (m - Vu)upda

Q4 0 Q1

N (1 _ /tg(s)ds) /Fl(u)dx _ (Z _ 9) /ufl(u)da:

Ql Q1

IVl / [<m-vw>+ (ga) u] wrds

1

ol — 1= 0V, + N [ Fate— (5 -0) [osaloaa

QQ Q2

_ /(m ]/) [(]_ — /g(s)ds) Fl(u) —FQ(U) dr
I 0

+ [ime v ear =3 [ 9)vop ar.
To To

¢
It follows from 1 — [ g(s)ds < 1 and (2.8) that
0

- [m-v) [(1 - / g(s)ds) Fi(u) - Fa(u)
I 0

For the last two terms on the right side of (4.8), we have

—%/(m-'ﬁ)WdeF—i—/(m W)g ar

1%
To To

Iy

dr < —/(m V) [F1(u) — Fa(u)]dl < 0.
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:_%/(m-D)|Vv|2d1"+/(m-Vv)(Vv-D)dF

Ty To
1 2 1 2
=— [ |m||Vv]*dl — [ —|m - Vo|*dT
2 Im|
To To
1
=-3 / |m||Vv|?dT < 0, (4.10)
where we have used the fact that I'g is the boundary of ball B(zg), which means v = — \i:§g| = —% on

T’y and the direction of Vv is consistent with —m on I'g. In addition, it follows from Young’s inequality
that

t

Vw3, :/ Vu(t)—/g(t—s)Vu(s)ds] dz

_ / _(1— /t g(s)ds) Vu(t) + /t g(t—s)[Vu(t)—Vu(s)]ds] dz

< (1—/tg(s)ds—|—7]1) ||Vu||?)1+< ) j t—s) = Vu(s)lds| ,  (4.11)
0

Q
- ( - 9) /Vu /g (t — $)[Vu(t) — Vu(s)|dsda

Qq
2

< || Vullg, + 47; <];] - 9) /g(t — 8)[Vu(t) — Vu(s)]ds|| (4.12)

0 (o)
t

- /fl(u) /g(t —s)m - [Vu(t) — Vu(s)] dsdz
o 0

<7;3/|f1 )| olx+T /g(t—s)[Vu(t)—Vu(s)]ds

0
2

(4.13)

< 2 Css|| Vull3, + / t— 8)[Va(t) — Vu(s)]ds

0 o1}

/ [(m V) + (;V - 9) u] updl

2

2 2 N ? 2 1 2
<RVl e (G =0) T, + 5,

N ? 1
<Vl +m (G ~0) CrlVulf, + 5 lul?, (1.14)
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t

/ut /g’(t —s)m - [Vu(t) — Vu(s)] dsdx

a0
- / » / lag(t — 5) — h(t — $)jm - [Vu(t) — Vau(s)] dsdz
Q1 0

2

t t
2 R2
< 775HUtH52)1 + o /h(s)ds(ho Vu)(t) + o /g(t — 5)[Vu(t) — Vu(s)ds|| (4.15)
Ub] J UB / o,
R (R
—gt) (- Fupude < Zojul, + 2ol (1.16)
Q4
N
_ ||Vu||?f1 / [(m -Vw) + (2 - 9) u} updz
Q
N ? 1
2 2
<ol Vullf] [RIVwll, + (5 ~6) Dl | + 5 I TulElul?,
UG
N ? 1
<ol Vullf] (262 + (5 - 0) Cs| IVul, + o ITulE ul?,

" 2
T 2R |Vl / ot — $)[Vu(t) — Vu(s)]ds
0

Q1

8 2
2E(0 N 1
<o (ZEOY arz o (X2 0) | IVul, + oo 9ulE el
l 2 2776
. 2
2E(0)\"
+ 2R, ( : ) / ot — $)[Vult) — Vu(s)lds|| (4.17)
0 (o)

where we have used (2.4) to derive (4.13), n;, 7 = 1,2, ...,6 are small positive constants to be determined

later, and C's and Cp are Sobolev embedding constant and trace embedding constant, respectively.
Now, we substitute (4.9)—(4.17) into (4.8) and utilize (2.3) to arrive at

A ()

R
L0 <~ Jo-m— Zoto)] huulp, +

1
216

- { (1—/g(s)ds) (1-0)— (J;[ —1> m —n2 —Csn3
0
o (E-0) o (B9 fore (Yo'

+ (1+1><N_1>+1<N_9>2+R2+RQ
M 2 dna \ 2 dns  2ms5

2
IVl g w3,

}IIWI?zl
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8 ¢
2R, <2Ez(0)> } ||/g(t— 8)[Vau(t) — Vu(s)]ds
0 Q
R? o 2 2
+ % h(s)ds(h o Vu)(t) — (2 —R 774) [Vwllf,

1 R N
¥ <2n 45 ) ol = [ = 0+ )| [ A~ ol
9 N
—(1=0)IVvlg, — 5 H2 ~ 02+ p2)| | Fo(v)da. (4.18)
Qo

Next, we deal with the 4th term on the right side of (4.18). It follows from Cauchy—Schwarz inequality

that

<

IN

Combining (4.1

/ gt — 8)[Vult) — Vu(s)|ds
0

2

Q1

t

/ ot - ) Vu(t) - W(S)IlnldS)

2
| v M o fagfa =)~ utr) - Vu<s>||alds)
ﬂs toz —5) = g'(t — 8)]|Vu(t) — Vu(s)||§, ds

0/a9<5>‘9’<3)d)0/[ ot =) = o (¢ = 9)|Vu(t) - Vu(),d

< Co(ho Vu)(b). (4.19)
8) and (4.19), we can see
B < [0 = o) Nl + 5 1Tl

t
N
— { (1—/g(s)d8) (1-0) - (2 —1> m —nz —vCsns
0
N 2 26(0)\” N ?
s (2_9) Cr — 116 (z( )) 2R2+(2—9) Cs }IIW&
1\ /N 1 /N > R R?
1+— ) (z-1)+— (5 -0) +—+—
( 771><2 ) 47)2(2 ) dns  2ns

+ 2R%ng (QEZ(O)Y

) 9 9 1 R 9
- (3 ®om) 17wl + (5 + 5 ) hul,

Co + Rz/h(s)ds} (hoVu)(t)
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N
- [Fm e [ A - o, - a-orv,

- |:];[[,L2 —0(2+ uz)} /Fg(v)dx. (4.20)
Qo
choosing 7;(i = 1,2,...,6) sufficiently such that
1-0)l 1-0)I 1-0)l
1(()(N —)2)’ m<! 20 Lo < (20702 ’
. (1-0)l 5 9
< mm{&’)(N T 90)2,Cr 232} S
(1-06)

B ’

2E(0 2

20( l( )) [QRQ + (5 -9 C’S}
Meantime, since lim;_, o g(t) = 0, then there exists a time ¢; > 0 such that

(6 (1-0)
g(t)<m1n{8R, SR },Vt>t1.

m <

Ne <

Therefore, (4.20) can be rewritten as

Ao (t)
— < —f|| uilld, — [Vull, + fHVUII el

2
DG G-
2 4ma \ 2 dns  2ns
8
+2R%nq <2El(0))

1 R N
+ (g + 5 ) Il — |G = 0+ )| [ Fitu)de - o,

(1-0)l

R? /
+ o /h(s)ds (hoVu)(t)

1

N
— =0Tl - [ G 02+ ) [ Fatwran (421)
Qo
Then, we can derive the conclusion of Lemma 4.1 by denoting
1 1 R

Or=—\ Cy=— 1+
1 2776’ 2 2774+2a

1\ /N 1 (N > R R?
Cy=max{ (1+— ) (= —-1)+—(=-0) +—+
° {( 771) (2 > 4na <2 ) dns 25

B 2
2E
+232n6( O) ,R /h
2ns

Therefore, Lemma 4.1 is proved completely. O

Let
L(t) := MoE(t) + M, 9(1),

where My and M, are positive constants to be determined later. Then, we have the following estimate:
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Lemma 4.2. Let (u,v) be the global solution of problem (1.1)~(1.7) and (H1)-(H2) hold, then there exists
time t1 > 0 such that

dL(t M6 1
EO Y003, a0 DIVulR, + oo Va)O)
N
_ 2/““ _9(2—|—,u1)] Ml/Fl(’U/)dJ)—M19”UtH%2
2 Npo
— (179)M1HV’UHQ2 — 5 *9(2+M2) My FQ(U)d.’E, Vt>t1, (422)

Qo

where My := %,

Proof. Combining (2.7), Lemma 4.1 and ¢’ = ag — h to deduce

L M 1—-60)IM
L) 200y, - L0000
My

(g0 Vu)(t) — {2 — MC5 (1 + ca)] (h o Vu)(t)

dt — 2
M()Oé

2
IVallg, + (Mo — MiCy)|Vullg) e,

+

N
+ (o = M CunlR, — |G = 02+ )| M1 [ Fayaa

1951

N
- MR, (1= Mol — | S = 6+ )] 21 [ Faohae. (029

Qo

2,
g~ (s) 5 < g(s), it is easy to show, by virtue of Lebesgue dominated convergence

Meanwhile, since ——5——4—
ag(s)—g'(s

theorem, that

+oo
ag®(s)

aCy = / ———ds — 0, asa — 0,
/ agls) =)

and there exists 0 < ag < 1 such that

1
< SMC5’
when o < ag. Now, we can choose My > 0 large enough such that

My > max{MlCl, Mng, 2M103}

aCl (4.24)

and take

o = T]\/[O < «p.
Then, it follows from (4.24) that
My

7—M103(1+Ca) >0,

which implies the result and Lemma 4.2 is proved completely. U

Next, we introduce the functional
t

At) = [ 66t - 9)Vus) [}, ds

0
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“+oo
where G(t) := tf g(s)ds.

Lemma 4.3. ([7]) Suppose that (H1) holds, then we have

dA(D) _

—5(go Vu)(t) +3(1 = D[ Vullg,.

l\:)\r—A

Now, we give the proof of Theorem 2.2 in detail.

Proof of Theorem 2.2. First of all, it follows from the continuity of g and £ that

{0 < g(t1) < g(t)

< (0),
0<€(t1)§g(t) vt € [0,t1].

g
£(0),

Moreover, by the fact that H is an positive continuous function, there exist constants a,a@ > 0 such that

ININA

a <EWH (g(t) <a Vee(on]

Thus,

which implies

/ /|Vu — Vu(t — s)]* dads

< — / /\Vu — Vu(t — s)[> dads < —cE'(t). (4.25)
Combining (4.22) and (4.25), we can see
i@ < —0i B — @B / /|Vu V- )P dads, V>t
that is,
d
&Ll( ) < —Q:2E(1) / /|Vu — Vu(t — s)]*dads, Vit > t, (4.26)

where L1 (t) := L(t) + Q1 E(t) ~ E(t) and Q1, @2, Q3 > 0 are constants.
Now, we consider the following two cases:

(i) H is a linear function: Multiplying (4.26) by £(¢) and using the nonincreasing property of &, we can
obtain
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d

SO0 < ~ Qa0 B(D) - Qstlt / / Vu(t) — Vult — ) dds

—Q()E(t) + Qg/ / IVu(t) — Vu(t — s)|* dads

—Q2£(t)E(t) — 2Q3E' (1), Vt > 1.
Define the Lyapunov functional as
Ly(t) = E@#)L1(t) +2QsE(t), t> 1.
It is clear that £(t) ~ E(t) and

&ﬁﬂ ) < — QuE(W)E(t), >t

Integrating the inequality above over (¢1,t), we find that there exist ¢1,ce > 0 such that

t
L1(t) <cqexp —cQ/g(s)ds
i

t
=cH ! 02/§(s)ds , YVt >t

Then, we can obtain the result by £1(t) ~ E(t).
(ii) H is a nonlinear function: We define a functional

Lo(t) := L(t) + A(t)
and utilize Lemma 4.2 and Lemma 4.3 to get

dLo(t M0 1
%g “ Ll — (1= DIVully, - 4(g0 Vu)(@)

N
M1 9(2+ILL1):| Ml/ ( )dx*MlonthQg

Q1

~ (L= OV}, - | P52 o2 )| s [ s

Qo

<bE(t), Vt>t,

where b is a positive constant. Integrating the inequality above over (¢1,t), we see that

+oo
b/E dS < Lz(tl) LQ( ) < Lz(tl and / E dS < +00.
ty

Thus, we can choose 0 < g < 1 such that
/HVU Vut—s)HQ ds<C/E Yds < 1, Vt > t.

Without loss of generality, we assume t; > 0 large enough so that

I(t) >0, Vt > t,.

51

(4.27)
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Next, we introduce the functional

t

A(t) = —/g/(s)/wu(t) — Vu(t — s)|* dads,

t1 Ql
It is easy to see that A(t) < —2FE’(t). Meantime, we can know from H, strictly convex on (0, ], that
H(kz) < kH(z), Yz € (0,1], (4.28)

for 0 < k < 1, from which we can use Jensen’s inequality to obtain
t
2
/ DallTult) - Va(t - 5)[, ds

9(5) [ Vu(t) ~ Vu(t - )|[3, ds

> 50 / H (I(t)g(s)) g [ Vu(t) - Vu(t - s)|3, ds

Dy gwt/j(t)g(s)qnvw)—Vu(t—S)II?zl ds

t

0P / o(5) [Vu(t) — Vu(t — )3, ds

gg’L)H q/g(s)HVu(t)—Vu(t—s)H?h ds| . (4.29)

t1 _

<]
~

where H is the extension of H, which is a strictly increasing and strictly convex C?-function on (0, +00).
This implies

t

1—1 qA(t))
s) [[Vu(t) — Vu(t — s ds< -H — ], 4.30
[ 19 = Tute - ), as < T (4 (1.30)
t1
and (4.26) can be rewritten as
d Q3——1 [ g\(t)
—L —QFE(t)— —H —_— 4.31
0 <- Qim0 - LE (B s n, (4.31)
For £ < r, multiplying (4.31) by g (5%) and using the fact that £’ < 0, " > 0, 7 > 0, we can

obtain

3 ()] o (58) - S (ED) ().
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In order to deal with the last term on the right side of (4.32), we utilize the argument of Legendre
transform in [24]. Denote B* as the conjugate function of B, i.e., B* = sup [st — B(t)]. Then, B* is the

teR+
Legendre transform of B given by
B'(s):=s(B) ' (s5) = B(B) ' (5)], (4.33)
and satisfying
ab < B*(a) + B(b), Ya,b > 0. (4.34)
We set a = H (a%) and b=H (%&?) in (4.34), and then, (4.32) becomes

d |— E(t) (@FY p— E(t) E(t) )\(t)

3 |7 (5w 0] < - @m0 - 2|7 (5 ) gy + @y om0 69)
Meantime, it follows from e’:‘E(O)) <e<rthat H (EE((t))> ( %) Multiplying (4.35) by £(¢) and
using the nonincreasing property of £ to derive

d [ LEQ®)
& e (53 o)
Qsel .., [ E(t)\ E()
< —=£() [QQE(O) - q] H (6 (0>> B0) + Q3A(t)
< —¢(t) [QQE(O) _ Qq?’g] ek <g gé?)) g((é)) L 9QuE (1), ¥t > . (4.36)

Choosing € < min {r, W;TE;O)} and setting

£2(t> = f(t)H/ (82?((8))) L1(t> + 2Q3E(t), YVt > tq.

It is clear that Lo(t) ~ E(t); that is, there exist constants c1,cy > 0 such that
Clﬁg(t) S E(t) S Cgﬁz(t% (437)

and

%52@) < —ct()H' (%7(%))) g((é)) — () Ho (%7(%))) VS 4,

where Hy(t) = tH'(et) and by H{(t) = H'(et) + etH" (et) and the fact that H is strictly convex on (0, r],
we can see that Ho(t) > 0 and Hy(¢) > 0. Let

Clﬁg (t)

50 (4.38)

R(t) :=
Then, it is easy to show R(t) ~ E(t) and
d
&R( ) < —c&(t)Ho (R(t)), Vt > t,

Integrating the inequality above over (¢1,t), we can deduce
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eR(t1) t

j%dsZcif(s)dsé /() sHl’(s)dSthl/g(sﬁS

t1 ty eR(t

t
= R(t) < %H‘l c/f(s)ds , V>t (4.39)
t1

where H(t) = tfsT}(s)ds; then, we can derive the result by R(t) ~ E(t) and Theorem 2.2 is proved
completely.
O
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