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Abstract. Distinct Tuberculosis models with one features of age structure and spatial diffusion have been put forward;
however, few Tuberculosis models take all two into account. The main objective of this work is to analyse the recent result
(the transmission dynamics) on the long-time behaviour of solutions to the model arising from the spreading of Tuberculosis
with the fast and slow progression. Such model is traditionally given by ordinary differential equation system. Here, the local
diffusion term, which is used to represent the random walk of the population in a connected domain, and age-since-infection,
which is employed to describe the contamination process, are introduced. First, one obtains the well-posedness of the model.
Second, one denotes the basic reproduction number through the spectral radius of a compact positive linear operator, which
determines the dichotomy of disease persistence and extinction. Third, one proves the global dynamics of the model.
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1. Introduction

1.1. Research background and current situation

Tuberculosis is a bacterial disease caused by Mycobacterium tuberculosis and is usually acquired through
airborne infection from active Tuberculosis cases [1–3]. In [3,4], Blower et al. formulate and analyse
mathematical models describing the transmission dynamics of untreated tuberculosis epidemics. It was
assumed in [3,4] that infected individuals remain non-infectious until they develop disease by one of

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-022-01872-z&domain=pdf


227 Page 2 of 32 P. Yang ZAMP

two pathogenic mechanisms: direct progression or endogenous reactivation. Two types of tuberculosis
contribute to the incidence rate of tuberculosis disease: one type of tuberculosis develops through direct
progression soon after infection which is named fast progression and the other type of tuberculosis develops
through endogenous reactivation in the latently infected individuals which is named slow progression.

As everyone knows, Tuberculosis is a familiar and deadly infectious disease, which has developed into
a chronic infectious disease threatening human health all over the world. In 2016, an estimated 10 million
400 thousand cases of Tuberculosis were equivalent to 140 cases per 100 thousand population. At the
same time, the proportion of people suffering from Tuberculosis and dying of the disease (fatality rate)
is 16%. Hence, Tuberculosis has become a social and public health issue of global concern [5].

Overall, half of those affected by Tuberculosis face catastrophic costs (more than 20% of household
income) due to Tuberculosis and are distributed in 16 countries, ranging from 19 to 83%. For drug-
resistant Tuberculosis patients, this proportion rose to 80%. In most of the countries surveyed, the
poorest households are more than 20% more likely to face catastrophic costs. Tuberculosis is a poor
disease. The most at risk are often those who have the most problems with access to health services and
are most adversely affected by the high out of pocket costs of health care. If there are no strong mitigation
measures, including social protection, a higher proportion of Tuberculosis patients and their families will
face a risk of catastrophic costs [6].

Many mathematical models have been become the helpful tools attempting to obtain a better under-
standing of the spread and control of Tuberculosis. For the past few years, many scholars have done a lot
of research on the transmission mechanism and prevention strategy of Tuberculosis, such as [7–13].

Now, age is one of the most significant and fashionable variables constituting a population. In short, at
the individual level, many internal variables inevitably account on age, since different ages mean different
reproductive and survival abilities, as well as different behaviours. Therefore, with a deeper understanding
of age, some age-dependent Tuberculosis models have been proposed, analysed and studied, such as [14–
17]. Besides, at different age stages, the effects of Tuberculosis transmission are various, which is another
important and key factor that needs necessarily to be included in modelling this Tuberculosis transmission
process.

Because the population distribute heterogeneously in diverse spatial location in the real life and they
will move or diffuse for many reasons, there is increasing testimony that environmental heterogeneity and
individual motility have momentous influence on the spread of Tuberculosis.

Owing to the uneven distribution of people in different spatial locations in real life, and the migration
or spread of people due to a variety of reasons, more and more evidence in epidemiology shows that
environmental heterogeneity and individual initiative have an significant impact on the spread of infectious
diseases [18,19]. In recent years, the global behaviour of the spatial diffusion system for Tuberculosis and
other diseases has attracted extensive attention and become one of the research hotspots. Spatial diffusion
is an intrinsic properties for studying the roles of spatial heterogeneity on Tuberculosis mechanisms and
transmission routes and can lead to rich dynamics. Based on this reality, one generalizes (1.1)–(1.7) by
taking account of the case that individuals move or diffuse around on the spatial habitat x ∈ Ω ⊂ R

n

with smooth boundary ∂Ω. However, there are relatively few works on Tuberculosis models with both of
the infection age and spatial diffusion.

1.2. Mathematical model

Inspired by the above discussions, in this article, one will do with the following spatially diffusive Tu-
berculosis model version possessing age-since-infection which is generalization of the model investigated
in [5] for the first time to allow for individuals moving around on the spatial habitat x ∈ Ω ⊂ R

n with
smooth boundary ∂Ω, and is very necessary and reasonable. In order to consider the dynamical struc-
ture of Tuberculosis model, the total population is decomposed into four compartments: the susceptible
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Fig. 1. The transfer diagram of system (1.1)–(1.7)

compartment (S) (individuals not infected but capable of infection), the exposed compartment (E) (indi-
viduals infected but not yet infectious, i.e. undetected non-symptomatic (latent) carriers), the infectious
compartment (I) (individuals capable of transmitting the disease to susceptibles, i.e. symptomatic infec-
tious individuals), and the removed compartment (R) (individuals who have died or who have recovered
with permanent immunity). One assumes that the total population is constant and confined to a bounded
spatial domain Ω in Rn with smooth boundary ∂Ω.

Let i(x, t, a) be the density function of the infected population, where x is a point of space in Ω, t is the
time elapsed since the beginning of the Tuberculosis, and a is the infective age (i.e. the time elapsed since
acquiring the infection), S(x, t), E(x, t), I(x, t), and R(x, t) be the density functions of the compartment
(S), (E), (I), and (R), individually, τ be the length of the incubation period and τ̂ the length of the
disease duration. Evidently,

E(x, t) =

τ∫

0

i(x, t, a)da, I(x, t) =

τ+τ̂∫

τ

i(x, t, a)da.

Remark 1.1. These formulas are applicable only to the case where the incubation period is constant.
Moreover, the age a in (1.3) is different from that in the above formulas, that is the age a in (1.3) stands
for the age from which the individual became infected and the incubation period is not included in a.

If one takes time frames that are comparable with the life span of the infectious individuals into
consideration, then one can hypothesize that the length of the disease duration will be infinite. Namely,

I(x, t) =

+∞∫

0

i(x, t, a)da,

and the total population N(x, t) is given by

N(x, t) = S(x, t) + E(x, t) +

+∞∫

0

i(x, t, a)da + R(x, t).

Obviously , the travel of latent individuals demonstrating no symptoms can spread the Tuberculosis
geographically which makes Tuberculosis harder to control.

The transfer diagram of the model is shown in Fig. 1. The transfer diagram leads to the following
system of reaction–diffusion equations.

∂

∂t
S(x, t) = D1

∂2

∂x2
S(x, t) + δ − S(x, t)

+∞∫

0

β(a)i(x, t, a)da − μS(x, t), (1.1)
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∂

∂t
E(x, t) = D2

∂2

∂x2
E(x, t) +

slow progression︷ ︸︸ ︷
(1 − q)S(x, t)

+∞∫

0

β(a)i(x, t, a)da −(μ + ε)E(x, t), (1.2)

(
∂

∂t
+

∂

∂a

)
i(x, t, a) = D3

∂2

∂x2
i(x, t, a) − [γ(a) + μ1(a) + d(a)] i(x, t, a), (1.3)

i(x, t, 0) = qS(x, t)

+∞∫

0

β(a)i(x, t, a)da

︸ ︷︷ ︸
fast progression

+εE(x, t), (1.4)

∂

∂t
R(x, t) = D4

∂2

∂x2
R(x, t) +

+∞∫

0

γ(a)i(x, t, a)da − μR(x, t), (1.5)

corresponding to initial data

[S(x, 0), E(x, 0), i(x, 0, a), R(x, 0)]

= [ϕ1(x), ϕ2(x), ϕ3(x, a), ϕ4(x)] , a ≥ 0, x ∈ Ω, (1.6)

and the homogeneous Neumann boundary condition
∂

∂n
S(x, t) =

∂

∂n
E(x, t) =

∂

∂n
i(x, t, a) =

∂

∂n
R(x, t) = 0, x ∈ ∂Ω. (1.7)

All the parameters of system (1.1)–(1.7) are positive constants.
� D1 is the diffusion coefficient of susceptible individuals.
� δ is the constant recruitment rate of the population (comprising the birth and immigration).
� β(a) is the transmission coefficient of Tuberculosis which relies upon age-since-infection a, and
β(·) ∈ L∞(0,+∞).
� μ is the natural death rate independent of age-since-infection a of population.
� D2 is the diffusion coefficient of undetected non-symptomatic (latent) carriers.
� q is the proportion of disease by fast progression.
� ε is the progression rate from the exposed individuals to the infected individuals.
� D3 is the diffusion coefficient of symptomatic infectious individuals with age-since-infection a.
� γ(a) is the recovery rate which depends on age-since-infection a, and γ(·) ∈ L∞(0,+∞).
� μ1(a) is the natural death rate which accounts upon age-since-infection a, and μ(·) ∈ L∞(0,+∞).
� d(a) is the additional death rate induced by the Tuberculosis which relies on age-since-infection
a, and d(·) ∈ L∞(0,+∞).
� i(x, t, 0) is used to reflect the resources fluxing into compartment, because the infection occurs at
age 0.
� Ω ∈ R

n is a spatial habitat with smooth boundary ∂Ω.
� n is the outward normal to ∂Ω, where Ω is bounded and connected.
� ∂

∂n is the differentiation along the outward unit normal n.
The homogeneous Neumann boundary conditions indicate that there is no population flux across the

boundary ∂Ω.
Since the first four equations of system (1.1)–(1.7) are independent of R(x, t), one only needs to

consider the following system:

∂

∂t
S(x, t) = D1

∂2

∂x2
S(x, t) + δ − S(x, t)

+∞∫

0

β(a)i(x, t, a)da − μS(x, t), (1.8)
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∂

∂t
E(x, t) = D2

∂2

∂x2
E(x, t) +

slow progression︷ ︸︸ ︷
(1 − q)S(x, t)

+∞∫

0

β(a)i(x, t, a)da −(μ + ε)E(x, t), (1.9)

(
∂

∂t
+

∂

∂a

)
i(x, t, a) = D3

∂2

∂x2
i(x, t, a) − [γ(a) + μ1(a) + d(a)] i(x, t, a), (1.10)

i(x, t, 0) = qS(x, t)

+∞∫

0

β(a)i(x, t, a)da

︸ ︷︷ ︸
fast progression

+εE(x, t), (1.11)

associating with initial data

[S(x, 0), E(x, 0), i(x, 0, a)]

= [ϕ1(x), ϕ2(x), ϕ3(x, a)] , a ≥ 0, x ∈ Ω, (1.12)

and the homogeneous Neumann boundary condition
∂

∂n
S(x, t) =

∂

∂n
E(x, t) =

∂

∂n
i(x, t, a) = 0, x ∈ ∂Ω. (1.13)

For systems (1.8)–(1.13), there are two main reduction forms as below:
(1) Spatially diffusive Tuberculosis model.
If i(x, t, a) = i(x, t) which is not relying upon the age parameter, then systems (1.8)–(1.13) will reduce

to the spatially diffusive Tuberculosis model as follows:

∂

∂t
S(x, t) = D1

∂2

∂x2
S(x, t) + δ − βS(x, t)i(x, t) − μS(x, t), (1.14)

∂

∂t
E(x, t) = D2

∂2

∂x2
E(x, t) + (1 − q)βS(x, t)i(x, t) − (μ + ε)E(x, t), (1.15)

∂

∂t
i(x, t) = D3

∂2

∂x2
i(x, t) + qβS(x, t)i(x, t) + εE(x, t) − (γ + μ + d) i(x, t), (1.16)

relating to initial data

[S(x, 0), E(x, 0), i(x, 0)]

= [ϕ1(x), ϕ2(x), ϕ3(x)] , x ∈ Ω, (1.17)

and the homogeneous Neumann boundary condition
∂

∂n
S(x, t) =

∂

∂n
E(x, t) =

∂

∂n
i(x, t) = 0, x ∈ ∂Ω. (1.18)

(2) Age-dependent Tuberculosis model.
If i(x, t, a) = i(t, a) which is not depending upon the spatial variable, then systems (1.8)–(1.13) will

reduce to the age-dependent Tuberculosis model as follows:

∂

∂t
S(t) = δ − S(t)

+∞∫

0

β(a)i(t, a)da − μS(t), (1.19)

∂

∂t
E(t) = (1 − q)S(t)

+∞∫

0

β(a)i(t, a)da − (μ + ε)E(t), (1.20)

(
∂

∂t
+

∂

∂a

)
i(t, a) = − [γ(a) + μ1(a) + d(a)] i(t, a), (1.21)



227 Page 6 of 32 P. Yang ZAMP

i(t, 0) = qS(t)

+∞∫

0

β(a)i(t)da + εE(t), (1.22)

S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, i(t, ·) = i0 ∈ L1((0,+∞),R). (1.23)

For systems (1.14)–(1.18) and (1.19)–(1.23), nowdays, there have some good results. Namely, in [20],
authors obtain that there exist a traveling wave solutions (TWS) for the model if the threshold number
�0 > 1 and c > c∗, where c∗ is the minimum wave speed by using sub-super solution method, Schauders
fixed point theorem and Lyapunov functional. In [3], authors show that the transmission dynamics of
the disease is fully determined by the basic reproduction number. Besides, authors establish the local
stability of a disease-free steady state and an endemic steady state of the model by analysing corre-
sponding characteristic equations. Meanwhile, authors prove the system is uniformly persistent when the
basic reproduction number is greater than unity by using the persistence theory for infinite dimensional
system. Finally, authors verify that the global dynamics of the system is completely determined by the
basic reproduction number by constructing suitable Lyapunov functionals and using LaSalles invariance
principle. The major task of this article is to explore the transmission dynamics of system (1.8)–(1.13).

One organizes this manuscript below.

� One gives the well-posedness of system (1.8)–(1.13) in part 2.
� One denotes the basic reproduction number of system (1.8)–(1.13) in part 3.
� One discusses the local dynamics of system (1.8)–(1.13) in part 4.
� One considers the disease persistence of system (1.8)–(1.13) in part 5.
� One studies the global dynamics of system (1.8)–(1.13) in part 6.
� One provides some discussions in part 7.

2. Well-posedness

Consider Banach spaces

X1
def=== C

(
Ω,R

)
,X2

def=== L1 (R+,X1) ,

which are equipped with the norm

|ξ|
X1

= sup
x∈Ω

|ξ(x)| , ||η||
X2

def===

+∞∫

0

|η(·, a)|
X1

da, ∀ξ ∈ X1, η ∈ X2.

Next, the positive cones of X1, X2 are defined by X
+
1 , X+

2 . Let

χ(a) = e
−

a∫
0
[γ(s)+μ1(s)+d(s)]ds

,

G : X1 → X1 be the C0 semigroup generated by D3
∂2

∂x2 subject to the homogeneous Neumann boundary
condition. According to [21], one has

(G(t)[ξ])(x) =
∫

Ω

G(y, x, t)ξ(y)dy, ∀t > 0, ξ ∈ X1,

where G(y, x, t) is the Green function. Due to [22], one knows that G is compact and strongly positive
for ∀t > 0. Via directly solving the equations (1.10) by the way of the characteristic line t − a = c (as
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Fig. 2. The characteristic line

shown in Fig. 2), where c is a constant, we have

i(x, t, a) =

⎧⎪⎨
⎪⎩

χ(a)
∫
Ω

G(y, a, x)i(y, t − a, 0)dy, t − a > 0, x ∈ Ω,

χ(a)
χ(a−t)

∫
Ω

G(y, t, x)ϕ3(y, a − t)dy, a − t ≥ 0, x ∈ Ω.
(2.1)

Set

j(x, t) def=== i(x, t, 0),

then substituting (2.1) into systems (1.8)–(1.13) derives

∂

∂t
S(x, t) = D1

∂2

∂x2
S(x, t) + δ − 1

q
j(x, t) +

1
q
εE(x, t) − μS(x, t), (2.2)

∂

∂t
E(x, t) = D2

∂2

∂x2
E(x, t) +

1 − q

q
j(x, t) −

(
μ +

1
q
ε

)
E(x, t), (2.3)

j(x, t) = qS(x, t) [h1(x, t) + h2(x, t)] + εE(x, t), (2.4)

associating with initial data

[S(x, 0), E(x, 0), j(x, 0)]

=

⎡
⎣ϕ1(x), ϕ2(x), qϕ1(x)

+∞∫

0

β(a)ϕ3(x, a)da + εϕ2(x)

⎤
⎦ , a ≥ 0, x ∈ Ω, (2.5)

and the homogeneous Neumann boundary condition

∂

∂n
S(x, t) =

∂

∂n
E(x, t) =

∂

∂n
j(x, t) = 0, x ∈ ∂Ω (2.6)

with

h1(x, t) =

t∫

0

β(a)χ(a)
∫

Ω

G(y, x, a)j(y, t − a)dyda,

h2(x, t) =

+∞∫

t

β(a)
χ(a)

χ(a − t)

∫

Ω

G(y, x, t)ϕ3(y, a − t)dyda.

Next, one concentrates on the well-posedness of system (2.2)–(2.6).
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Theorem 2.1. For ∀(ϕ1, ϕ2, ϕ3) ∈ X
+
1 × X

+
2 × X

+
2 , system (2.2)–(2.6) exists an only solution (S,E, j) on

Ω × [0, tmax), tmax ≤ +∞.

Proof. Set

X3
def=== C (X1, [0, tmax)) , tmax ≤ +∞,

which is taken the norm

||η||
X3

def=== sup
0≤t≤tmax

|η(·, t)|
X1

, tmax ≤ +∞,∀η ∈ X3.

Solving Eqs. (2.2), (2.3) in (x, t) ∈ Ω × [0, tmax), tmax ≤ +∞, one gets

S(x, t) = h3(x, t) +

t∫

0

e−μ(t−a)

∫

Ω

Ĝ(y, x, t − a)
[
δ − 1

q
j(y, a) +

1
q
εE(y, a)

]
dyda, (2.7)

E(x, t) = h4(x, t) +
1 − q

q

t∫

0

e−μ(t−a)

∫

Ω

G̃(y, x, t − a)j(a, y)dyda, (2.8)

j(x, t) = qS(x, t) [h1(x, t) + h2(x, t)] + εE(x, t), (2.9)

where

h3(x, t) = e−μt

π∫

0

Ĝ(y, x, t)ϕ1(y)dy,

h4(x, t) = e−(μ+ 1
q ε)t

π∫

0

G̃(y, x, t)ϕ2(y)dy

with Ĝ, G̃ are the Green function concerning D1
∂2

∂x2 , D2
∂2

∂x2 subject to the homogeneous Neumann
boundary condition. Substituting Eqs. (2.7), (2.8) into (2.9) allows us to denote H : X3 → X3 as:

H[j(x, t)](x, t)
def=== qh3(x, t) [h1(x, t) + h2(x, t)]

+

t∫

0

e−μ(t−a)

∫

Ω

Ĝ(y, x, t − a)
[
δ − 1

q
j(y, a) +

1
q
εE(y, a)

]
dyda [h1(x, t) + h2(x, t)]

+ ε

⎡
⎣h4(x, t) +

1 − q

q

t∫

0

e−μ(t−a)

∫

Ω

G̃(y, x, t − a)j(y, a)dyda

⎤
⎦ . (2.10)

For convenience, one lets

h5(x, t) =

t∫

0

e−μ(t−a)

∫

Ω

Ĝ(y, x, t − a)
[
δ − 1

q
j(y, a) +

1
q
εE(y, a)

]
dyda,

h6(x, t) =
1 − q

q

t∫

0

e−μ(t−a)

∫

Ω

G̃(y, x, t − a)j(y, a)dyda,

then (2.10) becomes

H[j(x, t)](x, t) def===q [h3(x, t) + h5(x, t)] [h1(x, t) + h2(x, t)]
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+ ε [h4(x, t) + h6(x, t)] .

Via standard procedures, so as to yield a strict contraction mapping H in X3, one puts

j1, j2 ∈ X3, ĵ
def=== j1 − j2.

Then one has

|H[j1] − H[j2]| =
∣∣∣qh3h1

(
ĵ
)

+ h̃5

(
ĵ
)

h1(j2) + h5(j1)h1

(
ĵ
)

+ εh6

(
ĵ
)∣∣∣

≤
∣∣∣(qh3 + h5)h̃1 + ˜̃

h5h1 + εh̃6

∣∣∣ · sup
0≤s≤t

∣∣∣ĵ(s, ·)
∣∣∣
X1

,

where

h̃5(x, t) = −1
q

t∫

0

e−μ(t−a)

∫

Ω

Ĝ(y, x, t − a)ĵ(y, a)dyda,

h̃1(x, t) =

t∫

0

β(a)χ(a)
∫

Ω

G(y, x, a)dyda,

˜̃
h5(x, t) = −1

q

t∫

0

e−μ(t−a)

∫

Ω

Ĝ(y, x, t − a)dyda,

h̃6(x, t) =
1 − q

q

t∫

0

e−μ(t−a)

∫

Ω

G̃(y, x, t − a)dyda.

Let

C(tmax)
def=== sup

0≤t≤tmax

∣∣∣(qh3 + h5)h̃1 + ˜̃
h5h1 + εh̃6

∣∣∣
X1

, tmax ≤ +∞,

then

|H[j1] − H[j2]|X3
≤ C(tmax) |j1 − j2|X3

, tmax ≤ +∞.

Select 0 < tmax ≤ 1 small enough such that C(tmax) < 1. Thus, H is a strict contraction in X3. According
to the theorem 9.23 (i.e. contraction mapping theorem) of [23], one finishes the proof of this theorem.

�

Theorem 2.2. For ∀(ϕ1, ϕ2, ϕ3) ∈ X
+
1 × X

+
2 × X

+
2 , the solution (S,E, j) of system (2.2)–(2.6) meets

S > 0, E ≥ 0, j ≥ 0 on Ω × [0, tmax), tmax ≤ +∞.

Proof. For ∀η ∈ X2, define

A(η)(x, t) def===

t∫

0

β(a)χ(a)
∫

Ω

G(y, x, a)α(y, t − a)dyda.

And then, A : X2 → X2 is the positive linear operator in the sense that A
(
X

+
2

) ⊂ X
+
2 . Noting that

h1(x, t) can be expressed by A(η). Then for (x, t) ∈ Ω × [0, tmax), tmax ≤ +∞, one gains

∂

∂t
S(x, t) >D1

∂2

∂x2
S(x, t) − S(x, t) [A(η) + h2(x, t) + μ] ,

∂

∂t
E(x, t) = D2

∂2

∂x2
E(x, t) + (1 − q)S(x, t) [A(η) + h2(x, t)] − (ε + μ)E(x, t),

j(x, t) = qS(x, t) [A(η) + h2(x, t)] + εE(x, t),
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relating with initial data

[S(x, 0), E(x, 0), j(x, 0)]

=

⎡
⎣ϕ1(x), ϕ2(x), qϕ1(x)

+∞∫

0

β(a)ϕ3(x, a)da + εϕ2(x)

⎤
⎦ , a ≥ 0, x ∈ Ω,

and the homogeneous Neumann boundary condition

∂

∂n
S(x, t) =

∂

∂n
E(x, t) =

∂

∂n
j(x, t) = 0, x ∈ ∂Ω.

Owing to the continuity and boundedness of A(η) + h2(x, t) + μ, one attains

S(x, t) > 0 on Ω × [0, tmax), tmax ≤ +∞.

Proceed to the next step, for (x, t) ∈ Ω × [0, tmax), tmax ≤ +∞, one obtains

∂

∂t
S(x, t) > D1

∂2

∂x2
S(x, t) − S(x, t) [A(η) + h2(x, t) + μ] ,

∂

∂t
E(x, t) > D2

∂2

∂x2
E(x, t) − (ε + μ)E(x, t),

j(x, t) = qS(x, t) [A(η) + h2(x, t)] + εE(x, t),

associating with initial data

[S(x, 0), E(x, 0), j(x, 0)]

=

⎡
⎣ϕ1(x), ϕ2(x), qϕ1(x)

+∞∫

0

β(a)ϕ3(x, a)da + εϕ2(x)

⎤
⎦ , a ≥ 0, x ∈ Ω,

and the homogeneous Neumann boundary condition

∂

∂n
S(x, t) =

∂

∂n
E(x, t) =

∂

∂n
j(x, t) = 0, x ∈ ∂Ω.

Consequently,

E(x, t) ≥ 0, J(x, t) ≥ 0 on Ω × [0, tmax), tmax ≤ +∞.

One finishes the proof of this theorem. �

Theorem 2.3. For ∀(ϕ1, ϕ2, ϕ3) ∈ X
+
1 × X

+
2 × X

+
2 , the solution (S,E, j) of system (2.2)–(2.6) is bounded

in Ω × [0, tmax), tmax ≤ +∞.

Proof. According to system (1.8)–(1.13), one obtains

∂

∂t
S(x, t) +

∂

∂t
E(x, t) +

+∞∫

0

∂

∂t
i(x, t, a)da

= D1
∂2

∂x2
S(x, t) + δ − S(x, t)

+∞∫

0

β(a)i(x, t, a)da

− μS(x, t) + D2
∂2

∂x2
E(x, t) + (1 − q)S(x, t)

+∞∫

0

β(a)i(x, t, a)da
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− (μ + ε)E(x, t) + D3

+∞∫

0

∂2

∂x2
i(x, t, a)da

−
+∞∫

0

[γ(a) + μ1(a) + d(a)] i(x, t, a)da −
+∞∫

0

∂

∂a
i(x, t, a)da

= D1
∂2

∂x2
S(x, t) + D2

∂2

∂x2
E(x, t) + D3

+∞∫

0

∂2

∂x2
i(x, t, a)da

− qS(x, t)

+∞∫

0

β(a)i(x, t, a)da + δ − μS(x, t) − (μ + ε)E(x, t)

−
+∞∫

0

[γ(a) + μ1(a) + d(a)] i(x, t, a)da −
+∞∫

0

∂

∂a
i(x, t, a)da

< D1
∂2

∂x2
S(x, t) + D2

∂2

∂x2
E(x, t) + D3

+∞∫

0

∂2

∂x2
i(x, t, a)da

+ δ − μ

⎡
⎣S(x, t) + E(x, t) +

+∞∫

0

i(x, t, a)da

⎤
⎦ .

Noting the homogeneous Neumann boundary conditions of system (1.8)–(1.13) and employing the Gauss
formula, one derives

∫

Ω

D1
∂2

∂x2
S(x, t)dx =

∫

Ω

D2
∂2

∂x2
E(x, t)dx =

∫

Ω

D3

+∞∫

0

∂2

∂x2
i(x, t, a)dadx = 0.

It follows that

dÑ(t)
dt

=
∫

Ω

⎡
⎣ ∂

∂t
S(x, t) +

∂

∂t
E(x, t) +

+∞∫

0

∂

∂t
i(x, t, a)da

⎤
⎦ dx

<

∫

Ω

⎧⎨
⎩δ − μ

⎡
⎣S(x, t) + E(x, t) +

+∞∫

0

i(x, t, a)da

⎤
⎦
⎫⎬
⎭dx

= δ |Ω| − μÑ(t).

Hence, if

Ñ(t) >
δ

μ
|Ω| ,

then

dÑ(t)
dt

< 0.

In addition, one finds the ODE

dÑ(t)
dt

= δ |Ω| − μÑ(t)
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with general solution

Ñ(t) =
δ

μ
|Ω| +

[
Ñ(0) − δ

μ
|Ω|

]
e−μt,

where Ñ(0) shows the initial value of total population in region Ω. Via utilizing the standard comparison
theorem, one finds out for all t ≥ 0,

Ñ(t) ≤ δ

μ
|Ω| ,

if

Ñ(0) ≤ δ

μ
|Ω| .

Therefore,

Φ =
{

(S,E, i)|Ñ ≤ δ

μ
|Ω|

}

is positive invariant for system (2.2)–(2.6), where |Ω| is the volume of Ω. One finishes the proof of this
theorem. �

3. Basic reproduction number

Apparently, systems (1.8)–(1.13) admit the disease-free equilibrium P0 = (S0, 0, 0) with S0 = δ
μ . Lin-

earizing system (1.8)–(1.13) near such equilibrium in disease invasion phase, one has

∂

∂t
E(x, t) = D2

∂2

∂x2
E(x, t) + (1 − q)S(x, t)

+∞∫

0

β(a)i(x, t, a)da − (μ + ε)E(x, t), (3.1)

(
∂

∂t
+

∂

∂a

)
i(x, t, a) = D3

∂2

∂x2
i(x, t, a) − [γ(a) + μ1(a) + d(a)] i(x, t, a), (3.2)

i(x, t, 0) = q
δ

μ

+∞∫

0

β(a)i(x, t, a)da + εE(x, t), (3.3)

coresponding with initial data

[E(x, 0), i(x, 0, a)]

= [ϕ2(x), ϕ3(x, 0)] , a ≥ 0, x ∈ Ω, (3.4)

and the homogeneous Neumann boundary condition
∂

∂n
E(x, t) =

∂

∂n
i(x, t, a) = 0, x ∈ ∂Ω. (3.5)

According to the above results, one finds

j(x, t) =
qδ

μ

t∫

0

β(a)χ(a)
∫

Ω

G(y, x, a)j(y, t − a)dyda

+
ε (1 − q)

q

t∫

0

e−μ(t−a)

∫

Ω

G̃(y, x, t − a)j(y, a)dyda. (3.6)
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Making the Laplace transformation to (3.6), one gets

L[j] def===

+∞∫

0

e−λtjdt

=
qδ

μ

+∞∫

0

e−λt

t∫

0

β(a)χ(a)
∫

Ω

G(y, x, a)j(y, t − a)dydadt

+
ε (1 − q)

q

+∞∫

0

e−λt

t∫

0

e−μ(t−a)

∫

Ω

G̃(y, x, t − a)j(y, a)dydadt.

Hence, after multiple interchanging the order of integration, one derives

L[j] =
qδ

μ

+∞∫

0

β(a)χ(a)e−λa

∫

Ω

G(y, x, a)

t∫

0

j(y, t)dtdyda

+
ε (1 − q)

q

+∞∫

0

eμaj(y, a)
∫

Ω

G̃(y, x, t − a)

t∫

0

e−(λ+μ)tdtdyda.

Setting λ = 0, one figures out

+∞∫

0

j(t, x)dt =
qδ

μ

+∞∫

0

β(a)χ(a)
∫

Ω

G(a, x, y)

t∫

0

j(t, y)dtdyda

+
ε (1 − q)

q

+∞∫

0

eμaj(a, y)
∫

Ω

G̃(t − a, x, y)

t∫

0

e−μtdtdyda.

So, due to the discussions of [24], the operator Q : X1 → X1 can be regarded as the next-generation
operator,

Q[η](x) def===
qδ

μ

+∞∫

0

β(a)χ(a)
∫

Ω

G(y, x, a)η(y)dyda

+
ε (1 − q)

q

+∞∫

0

eμaj(y, a)
∫

Ω

G̃(y, x, t − a)

t∫

0

e−μtdtdyda

=
qδ

μ

+∞∫

0

β(a)χ(a)
∫

Ω

G(y, x, a)η(y)dyda

+
ε (1 − q)

q

+∞∫

0

+∞∫

a

e−μa

∫

Ω

G̃(y, x, a)η(y)dydtda

=
qδ

μ

+∞∫

0

β(a)χ(a)
∫

Ω

G(y, x, a)η(y)dyda
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+
ε (1 − q)

q

+∞∫

0

e−μa

∫

Ω

G̃(y, x, a)η(y)dyda. (3.7)

For operator Q, one obtains the following result.

Theorem 3.1. The operator Q is strictly positive and compact.

Proof. The positivity of the operator Q is apparent. In order to yield the compactness of the operator
Q, one needs the two steps as below.

First step The operator Q is uniformly bounded.
Choosing a bounded sequence {ηn}n∈N

in X1 with {ηn}
X1

≤ K for some K > 0. Denoting a sequence
{ζn}n∈N

by

ζn
def=== Kηn.

Thus, for all n ∈ N and x ∈ Ω, one has

ζn(x) ≤ qδK

μ

+∞∫

0

β(a)χ(a)
∫

Ω

G(y, x, a)dyda

+
ε (1 − q)K

q

+∞∫

0

e−μa

∫

Ω

G̃(y, x, a)dyda.

Go a step further, one finds out that {ζn}n∈N
is uniformly bounded.

Second step The sequence {ζn}n∈N
is equi-continuous.

For ∀x, x̂ ∈ Ω, one yields

|ζn(x) − ζn (x̂)| = |Qηn(x) − Qηn (x̂)|

≤ qδ

μ

+∞∫

0

β(a)χ(a)
∫

Ω

|G(y, x, a) − G(y, x̂, a)| ηn(y)dyda

+
ε (1 − q)

q

+∞∫

0

e−μa

∫

Ω

∣∣∣G̃(y, x, a) − G̃(y, x̂, a)
∣∣∣ ηn(y)dyda

≤ qδK

μ
ess.supa≥0β(a)

+∞∫

0

χ(a)
∫

Ω

|G(y, x, a) − G(y, x̂, a)| dyda

+
ε (1 − q)K

q

+∞∫

0

e−μa

∫

Ω

∣∣∣G̃(y, x, a) − G̃(y, x̂, a)
∣∣∣ dyda.

Owing to the compactness of the operator ∂2

∂x2 and the uniform continuity of G(y, x, a) and G̃(y, x, a),
there exists δ̂ > 0 such that

|G(y, x, a) − G(y, x̂, a)| ≤ με̂

2δess.supa≥0β(a)K
+∞∫
0

χ(a)da |Ω|
,

∣∣∣G̃(y, x, a) − G̃(y, x̂, a)
∣∣∣ ≤ με̂

2δK
+∞∫
0

e−μada

,
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∀ε̂ > 0, |x − x̂| < δ̂, y ∈ Ω. For this δ̂, ε̂,

|ζn(x) − ζn (x̂)| < ε̂, for all |x − x̂| < δ̂,

namely, the sequence {ζn}n∈N
is equi-continuous. One finishes the proof of this theorem. �

According to [24], one denotes that the basic reproduction number of (2.2)–(2.6) is

R0 = r (Q) ,

where r (Q) is the spectral radius of Q. Theorem 3.1 together with Krein–Rutman theorem [25] indicates
that the basic reproduction number R0 is the unique positive eigenvalue of Q associating with a positive
eigenvector. Without losing generality, substituting η(x) ≡ 1 > 0 into (3.7) and applying

∫

Ω

G(y, x, ·)dy = 1,

∫

Ω

G̃(y, x, ·)dy = 1,

one has

Q[1] =
qδ[1]

μ

+∞∫

0

β(a)χ(a)
∫

Ω

G(y, x, a)dyda

+
ε (1 − q) [1]

q

+∞∫

0

e−μa

∫

Ω

G̃(y, x, a)η(y)dyda

=
qδ[1]

μ

+∞∫

0

β(a)χ(a)da +
ε (1 − q) [1]

q

+∞∫

0

e−μada. (3.8)

Thereby, R0 = r (Q) can be explicitly expressed by:

R0 =
qδ

μ

+∞∫

0

β(a)χ(a)da +
ε (1 − q)

μq
.

Nowadays, one can easily figures out that R0 is a threshold value for the existence of a positive space
independent endemic steady state P∗ = [S∗, E∗, i∗(a)] of the original system (1.8)–(1.13), which is a
solution of the following equations:

0 = δ − S∗

+∞∫

0

β(a)i∗(a)da − μS∗, (3.9)

0 = (1 − q)S∗

+∞∫

0

β(a)i∗(a)da − (μ + ε)E∗, (3.10)

di∗(a)
da

= − [γ(a) + μ1(a) + d(a)] i∗(a), (3.11)

i∗(0) = qS∗

+∞∫

0

β(a)i∗(a)da + εE∗. (3.12)
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Theorem 3.2. Assume that R0 > 1, then the original system (1.8)–(1.13) has a space independent endemic
steady state P∗ = [S∗, E∗, i∗(a)], which is a solution of (3.9)–(3.12), where

S∗ =
μ + ε

(ε + qμ)
+∞∫
0

β(a)χ(a)da

,

E∗ =
δ(ε + qμ)

+∞∫
0

β(a)χ(a)da − μ(μ + ε)

ε(μ + ε)

−
qδ(ε + qμ)

+∞∫
0

β(a)χ(a)da − μ(μ + ε)

ε(ε + qμ)
,

i∗(a) =
χ(a)

[
δ(ε + qμ)

+∞∫
0

β(a)χ(a)da − μ(μ + ε)
]

μ + ε
.

4. Local dynamics

This part will prove that P0 is locally asymptotically stable if R0 < 1 and P∗ are locally asymptotically
stable if R0 > 1.

Theorem 4.1. (1) The disease-free equilibrium P0 = (S0, 0, 0) with S0 = δ
μ is locally asymptotically stable

if R0 < 1;
(2) The space independent endemic steady state P∗ = [S∗, E∗, i∗(a)] is locally asymptotically stable if

R0 > 1.

Proof. First step One proves (1). Set

S̃(x, t) = S(x, t) − S0, Ẽ(x, t) = E(x, t), ĩ(x, t, a) = i(x, t, a),

then the linearized equation of system (1.8)–(1.13) near P0 = (S0, 0, 0) reads as:

∂

∂t
S̃(x, t) = D1

∂2

∂x2
S̃(x, t) − S0

+∞∫

0

β(a)̃i(x, t, a)da − μS̃(x, t), (4.1)

∂

∂t
Ẽ(x, t) = D2

∂2

∂x2
Ẽ(x, t) + (1 − q)S0

+∞∫

0

β(a)̃i(x, t, a)da − (μ + ε)Ẽ(x, t), (4.2)

(
∂

∂t
+

∂

∂a

)
ĩ(x, t, a) = D3

∂2

∂x2
ĩ(x, t, a) − [γ(a) + μ1(a) + d(a)] ĩ(x, t, a), (4.3)

ĩ(x, t, 0) = qS0

+∞∫

0

β(a)̃i(x, t, a)da + εẼ(x, t), (4.4)

relating with initial data [
S̃(x, 0), Ẽ(x, 0), ĩ(x, 0, a)

]

= [ϕ1(x) − S0, ϕ2(x), ϕ3(x, a)] , a ≥ 0, x ∈ Ω, (4.5)
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and the homogeneous Neumann boundary condition
∂

∂n
S̃(x, t) =

∂

∂n
Ẽ(x, t) =

∂

∂n
ĩ(x, t, a) = 0, x ∈ ∂Ω. (4.6)

Because the linear system contains ∂2

∂x2 , one introduces the related theory from [19]. Define θk, k = 1, 2, · · ·
be the eigenvalues of operator − ∂2

∂x2 on a bounded set Ω with boundary condition (1.13), that is to say,

∂2

∂x2
ν(x) = −θkν(x), k = 1, 2, · · · .

Thus,

0 = θ0 < θ1 < θ2 < · · · ,

associating to which, there is the space of eigenfunctions in C1(Ω), defined by E (θk) , k = 1, 2, · · · . Define

{ωkm|m = 1, 2, · · · ,dimE (θk) , k = 1, 2, · · · }
be the orthogonal basis of E (θk) , k = 1, 2, · · · . Make further efforts, put

Ykm =
{
cωkm|c ∈ R

3,m = 1, 2, · · · ,dimE (θk) , k = 1, 2, · · ·} ,

then

Ỹ =
+∞⊕
k=0

Yk,Yk =
dimE(θk)⊕

m=1

Ykm,m = 1, 2, · · · ,dimE (θk) , k = 1, 2, · · · .

Note that the parabolic equation

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t),

∂

∂n
u(x, t) = 0

exists the exponential solution

u(x, t) = eςtν(x), ν(x) ∈ Yk, k = 1, 2, · · · .

Substituting [
S̃(x, t), Ẽ(x, t), ĩ(x, t, a)

]
= eςt

[
ρ0
1(x), ρ0

2(x), ρ0
3(x, a)

]

into system (4.1)–(4.6), one has

ςρ0
1(x) = −D1θkρ0

1(x) − S0

+∞∫

0

β(a)ρ0
3(x, a)da − μρ0

1(x), (4.7)

ςρ0
2(x) = −D2θkρ0

2(x) + (1 − q)S0

+∞∫

0

β(a)ρ0
3(x, a)da − (μ + ε)ρ0

2(x), (4.8)

ςρ0
3(x, a) +

∂ρ0
3(x, a)
∂a

= −D3θkρ0
3(x, a) − [γ(a) + μ1(a) + d(a)] ρ0

3(x, a), (4.9)

ρ0
3(x, 0) = qS0

+∞∫

0

β(a)ρ0
3(x, a)da + ερ0

2(x), (4.10)

associating with initial data [
S̃(x, 0), Ẽ(x, 0), ĩ(x, 0, a)

]



227 Page 18 of 32 P. Yang ZAMP

= [ϕ1(x) − S0, ϕ2(x), ϕ3(x, a)] , a ≥ 0, x ∈ Ω, (4.11)

and the homogeneous Neumann boundary condition
∂

∂n
S̃(x, t) =

∂

∂n
Ẽ(x, t) =

∂

∂n
ĩ(x, t, a) = 0, x ∈ ∂Ω. (4.12)

Solving equation (4.9), one yields

ρ0
3(x, a) = ρ0

3(x, 0)χ̃(a)e−ςa, χ̃(a) = χ(a)e−D3θka, k = 1, 2, · · · . (4.13)

Substituting (4.13), (4.8) into (4.10), one derives

ρ0
3(x, 0) = qS0

+∞∫

0

β(a)ρ0
3(x, 0)χ̃(a)e−ςada − D2θkρ0

2(x)

+ (1 − q)S0

+∞∫

0

β(a)ρ0
3(x, 0)χ̃(a)e−ςada − (μ + ς)ρ0

2(x)

= S0

+∞∫

0

β(a)ρ0
3(x, 0)χ̃(a)e−ςada − D2θkρ0

2(x) − (μ + ς)ρ0
2(x)

<S0

+∞∫

0

β(a)ρ0
3(x, 0)χ̃(a)e−ςada

def===A(ς). (4.14)

Clearly,

A′(ς) = −ςS0

+∞∫

0

β(a)ρ0
3(x, 0)χ̃(a)e−ςada

<0.

If (4.14) has a unique real positive root ς, one gets

1 =
δ

μ

+∞∫

0

β(a)χ̃(a)e−ςada

<
qδ

μ

+∞∫

0

β(a)χ(a)da +
ε (1 − q)

μq

= R0,

which leads to a contradiction. Thus, all roots of (4.14) are negative. If (4.14) has complex roots in the
form of ς = x′ ± y′i with x′ > 0, one obtains

1 =
δ

μ

+∞∫

0

β(a)χ̃(a)e−x′a cos(y′a)da

≤ R0,

which creats a contradiction. Thereform, the disease-free equilibrium P0 = (S0, 0, 0) with S0 = δ
μ is locally

asymptotically stable if R0 < 1.
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Second step One proves (2). Let

Ŝ(x, t) = S(x, t) − S∗, Ê(x, t) = E(x, t) − E∗, î(x, t, a) = i(x, t, a) − i∗(a),

then the linearized equation of system (1.8)–(1.13) around P∗ = [S∗, E∗, i∗(a)] reads as:

∂

∂t
Ŝ(x, t) = D1

∂2

∂x2
Ŝ(x, t) − S∗

+∞∫

0

β(a)̂i(x, t, a)da − μŜ(x, t), (4.15)

∂

∂t
Ê(x, t) = D2

∂2

∂x2
Ê(x, t) + (1 − q)S∗

+∞∫

0

β(a)̂i(x, t, a)da − (μ + ε)Ê(x, t), (4.16)

(
∂

∂t
+

∂

∂a

)
î(x, t, a) = D3

∂2

∂x2
î(x, t, a) − [γ(a) + μ1(a) + d(a)] î(x, t, a), (4.17)

î(x, t, 0) = qS∗

+∞∫

0

β(a)̂i(x, t, a)da + εÊ(x, t), (4.18)

conresponding with initial data[
Ŝ(x, 0), Ê(x, 0), î(x, 0, a)

]

= [ϕ1(x) − S∗, ϕ2(x) − E∗, ϕ3(x, a) − i∗(a)] , a ≥ 0, x ∈ Ω, (4.19)

and the homogeneous Neumann boundary condition
∂

∂n
Ŝ(x, t) =

∂

∂n
Ê(x, t) =

∂

∂n
î(x, t, a) = 0, x ∈ ∂Ω. (4.20)

Homoplastically, substituting[
Ŝ(x, t), Ê(x, t), î(x, t, a)

]
= eςt [ρ1(x), ρ2(x), ρ3(x, a)]

into system (4.15)–(4.20), one gets

ςρ1(x) = −D1θkρ1(x) − S∗

+∞∫

0

β(a)ρ3(x, a)da − μρ1(x), (4.21)

ςρ2(x) = −D2θkρ2(x) + (1 − q)S∗

+∞∫

0

β(a)ρ3(x, a)da − (μ + ε)ρ2(x), (4.22)

ςρ3(x, a) +
∂ρ3(x, a)

∂a
= −D3θkρ3(x, a) − [γ(a) + μ1(a) + d(a)] ρ0

3(x, a), (4.23)

ρ3(x, 0) = qS∗

+∞∫

0

β(a)ρ3(x, a)da + ερ2(x), (4.24)

associating with initial data[
Ŝ(x, 0), Ê(x, 0), î(x, 0, a)

]

= [ϕ1(x) − S∗, ϕ2(x) − E∗, ϕ3(x, a) − i∗(a)] , a ≥ 0, x ∈ Ω, (4.25)

and the homogeneous Neumann boundary condition
∂

∂n
Ŝ(x, t) =

∂

∂n
Ê(x, t) =

∂

∂n
î(x, t, a) = 0, x ∈ ∂Ω. (4.26)
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Solving the equation (4.23), one yields

ρ3(x, a) = ρ3(x, 0)χ̃(a)e−ςa, χ̃(a) = χ(a)e−D3θka, k = 1, 2, · · · . (4.27)

Plugging (4.27) into systems (4.21)–(4.26), one gets that the characteristic equation of system (1.8)–(1.13)
at P∗ = [S∗, E∗, i∗(a)] is

μ (R0 − 1) Ξ(ς) − (D1θk + μR0 + ς) [Ξ(ς) − 1] = 0, k = 1, 2, · · · ,

where

Ξ(ς) = S∗

+∞∫

0

β(a)χ̃(a)e−ςada.

Hence,

(ς + D1θk + μ) Ξ(ς) − (ς + D1θk + μR0) = 0, k = 1, 2, · · · . (4.28)

Assume that (4.28) has a positive real root ς, due to R0 > 1, then one yields

Ξ(ς) =
ς + D1θk + μR0

ς + D1θk + μ

>1, k = 1, 2, · · · . (4.29)

Evidently, Ξ′(ς) < 0. This manifests

Ξ(ς) <Ξ(0)

= S∗

+∞∫

0

β(a)χ̃(a)e−ςada

= 1,

which creates a contradiction with (4.29). Therefore, the total real roots of (4.28) are negative.
Suppose that (4.28) has complex roots ς = x′′ ± y′′i with x′′ > 0, then

(x′′ ± y′′i + D1θk + μ) Ξ (x′′ ± y′′i) − (x′′ ± y′′i + D1θk + μR0) = 0, k = 1, 2, · · · .

Furthermore, one obtains

Re [Ξ (x′′ ± y′′i)] =
(x′′ + D1θk + μR0) (x′′ + D1θk + μ) + y′′2

(x′′ + D1θk + μ)2 + y′′2

>1, k = 1, 2, · · · . (4.30)

On the other side,

Re [Ξ (x′′ ± y′′i)] ≤ Ξ(0)
<1,

which leads to a contradiction with (4.30). Consequently, the space independent endemic steady state
P∗ = [S∗, E∗, i∗(a)] is locally asymptotically stable if R0 > 1. One finishes the proof of this theorem. �
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5. Disease persistence

In this part, one will demonstrate the disease persistence when R0 > 1. First, one rewrites

i(x, t, a) =

⎧⎪⎨
⎪⎩

χ(a)
χ(a−t)

∫
Ω

G(y, t, x)ϕ3(y, a − t)dy, a − t ≥ 0, x ∈ Ω,

χ(a)
∫
Ω

G(y, a, x)j(y, t − a, 0)dy, t − a > 0, x ∈ Ω.
(5.1)

Next, one gives the first result of this portion.

Theorem 5.1. For ∀(ϕ1, ϕ2, ϕ3) ∈ X
+
1 × X

+
2 × X

+
2 , system (2.2)–(2.6) denotes a continuous semiflow

Φ(ϕ, t)
def

=== [S (ϕ1, ·, t) , E (ϕ2, ·, t) , i (ϕ3, ·, t)] ∈ X
+
1 × X

+
2 × X

+
2 ,∀t ≥ 0.

Proof. For ∀π ≥ 0, t ≥ 0, a ≥ 0, x ∈ Ω, set

Sπ(x, t) = S(x, π + t), jπ(x, t) = j(x, π + t), iπ(x, t, a) = i(x, π + t, a),

then
∂

∂t
Sπ(x, t) = D1

∂2

∂x2
Sπ(x, t) + δ − 1

q
jπ(x, t) +

1
q
εEπ(x, t) − μSπ(x, t), (5.2)

∂

∂t
Eπ(x, t) = D2

∂2

∂x2
Eπ(x, t) +

1 − q

q
jπ(x, t) −

(
μ +

1
q
ε

)
Eπ(x, t), (5.3)

jπ(x, t) = qSπ(x, t)

+∞∫

0

β(a)iπ(x, t, a)da + εEπ(x, t), (5.4)

associating with initial data

[Sπ(x, 0), Eπ(x, 0), jπ(x, 0)]

=

⎡
⎣ϕ1π(x), ϕ2π(x), qϕ1π(x)

+∞∫

0

β(a)ϕ3π(x, a)da + εϕ2π(x)

⎤
⎦ , a ≥ 0, x ∈ Ω, (5.5)

and the homogeneous Neumann boundary condition

∂

∂n
Sπ(x, t) =

∂

∂n
Eπ(x, t) =

∂

∂n
jπ(x, t) = 0, x ∈ ∂Ω. (5.6)

And then, (5.1) becomes

iπ(x, t, a) =

⎧⎪⎨
⎪⎩

χ(a)
χ(a−t−π)

∫
Ω

G(y, π + t, x)ϕ3(y, a − t − π)dy, a − t ≥ π, x ∈ Ω,

χ(a)
∫
Ω

G(y, a, x)jπ(y, t − a, 0)dy, t − a > π, x ∈ Ω.
(5.7)

In addition, for ∀π ≥ 0, a > t ≥ 0, x ∈ Ω, one gets

iπ(x, 0, a − t) =

⎧⎪⎨
⎪⎩

χ(a−t)
χ(a−t−π)

∫
Ω

G(y, π, x)ϕ3(y, a − t − π)dy, a − t ≥ π, x ∈ Ω,

χ(a − t)
∫
Ω

G(y, a − t, x)jπ(y, t − a, 0)dy, π > a − t ≥ 0, x ∈ Ω.
(5.8)

According to the property of G, one derives

χ(a)
χ(a − t)

∫

Ω

G(y, t, x)iπ(y, a − t, 0)dy
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=

⎧⎪⎨
⎪⎩

χ(a)
χ(a−t−π)

∫
Ω

G(y, π + t, x)ϕ3(y, a − t − π)dy, a − t ≥ π, x ∈ Ω,

χ(a)
∫
Ω

G(y, a, x)jπ(y, t − a, 0)dy, π > a − t ≥ 0, x ∈ Ω.
(5.9)

Combining with (5.7) and (5.9), one can yield

iπ(x, t, a) =

⎧⎪⎨
⎪⎩

χ(a)
χ(a−t)

∫
Ω

G(y, t, x)ϕ3(y, a − t, 0)dy, a − t ≥ 0, x ∈ Ω,

χ(a)
∫
Ω

G(y, a, x)jπ(y, t − a)dy, t − a > 0, x ∈ Ω.
(5.10)

Thus, from (5.2)–(5.6) and (5.10), one has

Φ [S(·, π), E(·, π), i(·, ·, π), t] = [Sπ(t), Eπ(t), iπ(·, ·, t)]
= Φ (ϕ1, ϕ2, ϕ3, π + t) ,∀π ≥ 0, t ≥ 0.

Therefore, the time continuity of Φ follows from theorem 2.1–2.3. One finishes the proof of this theorem.
�

Theorem 5.2. If ϕ ∈ Ψ, R0 > 1, then there exists ω > 0, such that

lim sup
t→+∞

|j(·, t)|X1 > ω,

where

Ψ
def

===

⎧⎨
⎩(ϕ1, ϕ2, ϕ3) ∈ X

+
1 × X

+
2 × X

+
2

∣∣qϕ1(·)
+∞∫

0

β(·)ϕ2(·, a)da + εϕ3(·) > 0 for some x ∈ Ω

⎫⎬
⎭ .

Proof. According to the expression of R0, opting ω > 0, such that

qδ − ω

μ

+∞∫

0

β(a)χ(a)da +
ε (1 − q)

μq
> 1. (5.11)

Presume

j(x, t) ≤ ω,∀x ∈ Ω, t ≥ t1 > 0,

then due to (5.11), one obtains that there exist enough small λ > 0 and sufficiently large t2 > t1, such
that

R̃
def===

qδ − ω

μ

[
1 − e−μ(t2−t1)

] +∞∫

0

β(a)χ(a)e−λada +
ε (1 − q)

μq

> 1. (5.12)

Therefore, one has

∂

∂t
[S(x, t) + E(x, t)]

≥ D1
∂2

∂x2
[S(x, t) + E(x, t)] + qδ − ω − μ [S(x, t) + E(x, t)] on [t2,+∞) × Ω. (5.13)

Solving (5.13) and employing comparison principle, one obtains

[S(x, t) + E(x, t)] ≥ qδ − ω

μ

[
1 − e−μ(t2−t1)

]
on [t2,+∞) × Ω. (5.14)
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Combining theorem 5.1 and (5.14), and letting S(x, t2), E(x, t2), j(x, t2) with t2 = 0 be initial conditions,
we have

j(x, t)

≥ qδ − ω

μ

[
1 − e−μ(t2−t1)

] t∫

0

β(a)χ(a)
∫

Ω

G(y, x, a)j(y, t − a)dyda on [t2,+∞) × Ω. (5.15)

Clearly,

L[j] def===

+∞∫

0

e−λtj(x, t)dt

< +∞,∀x ∈ Ω.

Denote

L[j] (x̂) def=== min
x∈Ω

L[j].

According to (5.15), one gets

L[j] (x̂)

≥ qδ − ω

μ

[
1 − e−μ(t2−t1)

] +∞∫

0

e−λt

t∫

0

β(a)χ(a)
∫

Ω

G(y, x, a)j(y, t − a)dydadt on [t2,+∞) × Ω.

Thus, after multiple interchanging the order of integration, one obtains

L[j] (x̂) ≥qδ − ω

μ

[
1 − e−μ(t2−t1)

] +∞∫

0

β(a)χ(a)e−λa

∫

Ω

G(y, x, a)

+∞∫

0

e−λtj(y, t)dtdyda

≥ R̃L[j] (x̂) on [t2,+∞) × Ω,

which creates a contradiction with (5.12). The second claim directly follows from (5.14). One finishes the
proof of this theorem. �

According to theorem 5.2, one will prove the strong | · |X1-persistence.

Theorem 5.3. If ϕ ∈ Ψ, R0 > 1, then there exists ω′ > 0, such that

lim sup
t→+∞

|j(·, t)|X1 > ω′,

where

Ψ
def

===

⎧⎨
⎩(ϕ1, ϕ2, ϕ3) ∈ X

+
1 × X

+
2 × X

+
2

∣∣qϕ1(·)
+∞∫

0

β(·)ϕ2(·, a)da + εϕ3(·) > 0, for some x ∈ Ω

⎫⎬
⎭ .

Proof. Hypothesize that

lim sup
t→+∞

|j(·, t)|X1 ≤ ω′, for some ω′ > 0.

And then, owing to theorem 5.2, one indicates that there exist increasing sequences {t1l}+∞
l=1 , {t2l}+∞

l=1 ,
{t3l}+∞

l=1 with t1l > t12 > t13, l = 1, 2, · · · ,+∞ and decreasing sequence {t4l}+∞
l=1 with lim

l→+∞
t4l = 0. And

they also meet

|j (·, t3l)|X1
> ω, t = t3l, l = 1, 2, · · · ,+∞, (5.16)
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|j (·, t2l)|X1
= ω, t = t2l, l = 1, 2, · · · ,+∞, (5.17)

|j (·, t1l)|X1
< t4l < ω, t = t2l, l = 1, 2, · · · ,+∞, (5.18)

|j (·, t)|
X1

< ω, t ∈ (t2l, t1l) , l = 1, 2, · · · ,+∞, (5.19)

and set {Sl}+∞
l=1 , {El}+∞

l=1 , {jl}+∞
l=1 denote

Sl
def=== S (·, t2l) ∈ X1, El

def=== E (·, t2l) ∈ X1, jl
def=== j (·, t2l) ∈ X1, l = 1, 2, · · · ,+∞.

Due to (2.7)–(2.9), (2.10) and using the Arzela–Ascoli theorem, one gets that there exists (S∗, E∗, j∗) ∈
X

+
1 × X

+
1 × X

+
1 , such that

lim inf
l→+∞

Sl = S∗, lim inf
l→+∞

El = E∗, lim inf
l→+∞

jl = j∗.

Put
(
Ŝ, Ê, ĵ

)
be a solution of (2.2)–(2.6) with

ϕ1(x) = S∗(x), ϕ2(x) = E∗(x), ϕ3(x, a) = χ(a)
∫

Ω

G(y, x, a)j∗(y)dy,∀a ≥ 0, x ∈ Ω.

Because ϕ3 accounts upon (5.1) and due to theorem 5.2, one gets that there exists t′ > 0, ω′′ > 0, such
that ∣∣∣ĵ (·, t′)

∣∣∣
X1

>ω, t = t′, (5.20)
∣∣∣ĵ (·, t)

∣∣∣
X1

>ω′′, 0 < t < t′. (5.21)

Set

ĵ1l (·, t) def=== ĵ (·, t2l + t) , l = 1, 2, · · · ,+∞,

then it follows from the semiflow property that∣∣∣ĵ1l (·, t′)
∣∣∣
X1

>ω, t = t′, (5.22)
∣∣∣ĵ1l (·, t)

∣∣∣
X1

>ω′′ > t4l, 0 < t < t′, (5.23)

for enough large l. In contrast, for

t̂l
def=== t1l − t2l, l = 1, 2, · · · ,+∞,

it follows from (5.16)–(5.19) that∣∣∣ĵ1l (·, t′)
∣∣∣
X1

>ω, t = t′, (5.24)
∣∣∣ĵ1l (·, t)

∣∣∣
X1

>ω′′ > t4l, 0 < t < t′, l = 1, 2, · · · ,+∞. (5.25)

Obviously, it leads to a contradiction between (5.22)–(5.23) and (5.24)–(5.25). Here, one completes the
proof of lim sup

t→+∞
|j(·, t)|X1 > ω′, for some constant ω′ > 0. One finishes the proof of this theorem. �

6. Global dynamics

The main aim of this portion is to prove that P0 is globally asymptotically stable if R0 ≤ 1 and P∗ is
globally asymptotically stable if R0 > 1.
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Theorem 6.1. (1) The disease-free equilibrium P0 = (S0, 0, 0) with S0 = δ
μ is globally asymptotically stable

if R0 ≤ 1;
(2) The space-independent endemic steady state P∗ = [S∗, E∗, i∗(a)] is globally asymptotically stable if

R0 > 1.

Proof. First step One proves (1). Denote the following Lyapunov functional

VP0(t)
def===

∫

Ω

[VS(x, t) + Vi(x, t)] dx

with

VS(x, t) def=== Δ [S(x, t), S0] (x, t)

= S(x, t) − S0 − S0 ln
S(x, t)

S0

≥ 0,

∀S(x, t), S0 ∈ X
+
1 ,Δ[S(x, t), S(x, t)] (x, t) = 0,

Vi(x, t) def===

+∞∫

0

Γ(a)i(x, t, a)da,

Γ(a) =
1

χ(a)

+∞∫

a

S0β(π)χ(π)dπ,

clearly, Γ(a) meets

S0β(a) +
dΓ(a)

da
− [γ(a) + μ1(a) + d(a)] Γ(a) = 0,

Γ(0) = R0,

then

∂

∂t
VS(x, t) = D1

S(x, t) − S0

S(x, t)
∂2

∂x2
S(x, t) − μ [S(x, t) − S0]

2

S(x, t)

− 1
q
j(x, t) +

1
q
ε
S(x, t) − S0

S(x, t)
E(x, t) +

1
q
S0

+∞∫

0

β(a)i(x, t, a)da.

Moreover,

Vi(x, t) =

+∞∫

0

Γ(t + a)
χ(t + a)

χ(a)

∫

Ω

G(y, t, x)ϕ3(y, a)dyda

+

t∫

0

Γ(t − a)χ(t − a)
∫

Ω

G(y, t − a, x)j(y, a)dyda. (6.1)

Thus,

∂

∂t
Vi(x, t) = Γ(0)

∫

Ω

G(y, 0, x)j(y, t)dy
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+

t∫

0

dΓ(t − a)
dt

χ(t − a)
∫

Ω

G(y, t − a, x)j(y, a)dyda

+

t∫

0

Γ(t − a)χ(t − a)
∫

Ω

∂G(y, t − a, x)
∂t

j(y, a)dyda

−
t∫

0

[γ(t − a) + μ1(t − a) + d(t − a)] Γ(t − a)χ(t − a)
∫

Ω

G(y, t − a, x)j(y, a)dyda

+

+∞∫

0

dΓ(t + a)
dt

χ(t + a)
χ(a)

∫

Ω

G(y, t, x)ϕ3(y, a)dyda

+

+∞∫

0

Γ(t + a)
χ(t + a)

χ(a)

∫

Ω

∂G(y, t, x)
∂t

ϕ3(y, a)dyda

−
+∞∫

0

[γ(t + a) + μ1(t + a) + d(t + a)] Γ(t + a)
χ(t + a)

χ(a)

∫

Ω

G(y, t, x)ϕ3(y, a)dyda

= Γ(0)j(x, t) +

+∞∫

0

{
dΓ(a)

da
−
[
γ(a) + μ1(a) + d(a) − D3

∂2

∂x2

]
Γ(a)

}
i(x, t, a)da.

Therefore,

dVP0(t)
dt

= −D1

∫

Ω

|∇S(x, t)|2
S(x, t)2

dx −
∫

Ω

μ

S(x, t)
[S(x, t) − S0]

2 dx −
∫

Ω

[1 − Γ(0)] j(x, t)dx

+
∫

Ω

+∞∫

0

{
S0β(a) +

dΓ(a)
da

−
[
γ(a) + μ1(a) + d(a) − D3

∂2

∂x2

]
Γ(a)

}
i(x, t, a)dadx. (6.2)

Accordingly, one has

dVP0(t)
dt

= −D1

∫

Ω

|∇S(x, t)|2
S(x, t)2

dx −
∫

Ω

μ

S(x, t)
[S(x, t) − S0]

2 dx −
∫

Ω

(1 − R0) j(x, t)dx

≤ 0,

if R0 ≤ 1. In summary, {P0} is the largest invariant set such that dVP0 (t)

dt = 0, and according to the
invariance principle in [26], one knows that P0 is globally attractive.

Second step One proves (2). Define the Lyapunov functional as follows

VP∗(t) def===
∫

Ω

[
ṼS(x, t) + Ṽi(x, t)

]
dx

with

ṼS(x, t) def=== Δ [S(x, t), S∗] (x, t)

= S(x, t) − S∗ − S∗ ln
S(x, t)

S∗
≥ 0,
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∀S(x, t), S∗ ∈ X
+
1 ,Δ[S(x, t), S(x, t)] (x, t) = 0,

Ṽi(x, t) def===

+∞∫

0

Ξ(a)Δ [i(x, t, a), i∗(a)] (x, t)da,

Ξ(a) =
1

χ(a)

+∞∫

a

S∗β(π)χ(π)dπ,

then

∂

∂t
ṼS(x, t) = D1

S(x, t) − S∗
S(x, t)

∂2

∂x2
S(x, t) − μ [S(x, t) − S∗]

2

S(x, t)

+
1
q
ε
S(x, t) − S∗

S(x, t)
E(x, t) +

i(x, t, 0)S∗
qS(x, t)

+
i∗(0)

q
− i(x, t, 0)

q
− i∗(0)S∗

qS(x, t)
. (6.3)

Besides,

Ṽi(x, t) =

t∫

0

Ξ(t − a)Δ [u1, v1] dyda +

+∞∫

0

Ξ(t + a)Δ [u2, v2] dyda

with

u1 = χ(t − a)
∫

Ω

G(y, t − a, x)i(y, a, 0)dy, v1 = i∗(t − a),

u2 =
χ(t + a)

χ(a)

∫

Ω

G(y, t, x)ϕ3(y, a)dy, v2 = i∗(t + a).

Thus,

∂

∂t
Ṽi(x, t) = Ξ(0)Δ

⎡
⎣
∫

Ω

G(y, 0, x)i(y, a, 0)dy, i∗(0)

⎤
⎦+

t∫

0

dΞ(t − a)
dt

Δ[u1, v1] da

+

+∞∫

0

dΞ(t + a)
dt

Δ[u2, v2] da

+

t∫

0

Ξ(t − a)χ(t − a)
∫

Ω

∂G(y, t − a, x)
∂t

i(y, a, 0)dy
∂Δ[u1, v1]

∂u1
da

−
t∫

0

Ξ(t − a) [γ(t − a) + μ1(t − a) + d(t − a)] u1
∂Δ[u1, v1]

∂u1
da

−
t∫

0

Ξ(t − a) [γ(t − a) + μ1(t − a) + d(t − a)] i∗(t − a)
∂Δ[u1, v1]

∂v1
da

+

+∞∫

0

Ξ(t + a)
χ(t + a)

χ(a)

∫

Ω

∂G(y, t, x)
∂t

ϕ3(y, a)dy
∂Δ[u2, v2]

∂u2
da
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−
+∞∫

0

Ξ(t + a) [γ(t − a) + μ1(t − a) + d(t − a)] u2
∂Δ[u2, v2]

∂u2
da

−
+∞∫

0

Ξ(t + a) [γ(t − a) + μ1(t − a) + d(t − a)] i∗(t + a)
∂Δ[u2, v2]

∂v2
da.

Owing to

u
∂Δ[u, v]

∂u
+ v

∂Δ[u, v]
∂v

= Δ [u, v] ,

one has

∂

∂t
Ṽi(x, t) = Ξ(0)Δ

⎡
⎣
∫

Ω

G(y, 0, x)i(y, a, 0)dy, i∗(0)

⎤
⎦

+

+∞∫

0

{
dΞ(a)

da
− [γ(t − a) + μ1(t − a) + d(t − a)] Ξ(a)

}
Δ[i(x, t, a), i∗(a)] da

+

t∫

0

Ξ(t − a)χ(t − a)
∫

Ω

∂G(y, t − a, x)
∂t

i(y, a, 0)dy
∂Δ[u1, v1]

∂u1
da

+

+∞∫

0

Ξ(t + a)
χ(t + a)

χ(a)

∫

Ω

∂G(y, t, x)
∂t

ϕ3(y, a)dy
∂Δ[u2, v2]

∂v2
da.

Denote the unit semigroup

(T (0)[ϕ])(x) def===
∫

Ω

G(y, 0, x)ϕ3(y)dy,

then
∂G

∂t
= D2

∂2

∂x2
G,

∂Δ[u, v]
∂u

= 1 − v

u
.

Furthermore, one gets

∂

∂t
Ṽi(x, t) = Ξ(0)Δ [i(x, t, 0), i∗(0)] +

+∞∫

0

Ξ(a)D2
∂2

∂x2
i(x, t, a)

[
1 − i∗(a)

i(x, t, a)

]
da

+

+∞∫

0

{
dΞ(a)

da
− [γ(a) + μ1(a) + d(a)] Ξ(a)

}
Δ[i(x, t, a), i∗(a)] da.

Then, it follows that

[γ(a) + μ1(a) + d(a)] Ξ(a) − dΞ(a)
da

= S∗β(a),

Ξ(0) =

+∞∫

0

S∗β(π)χ(π)dπ



ZAMP Transmission dynamics to a spatially diffusive Tuberculosis Page 29 of 32 227

= S∗

+∞∫

0

β(π)χ(π)dπ.

Consequently, one derives

∂

∂t
Ṽi(x, t) = S∗

+∞∫

0

β(π)χ(π)dπΔ[i(x, t, 0), i∗(0)]

+

+∞∫

0

Ξ(a)D2
∂2

∂x2
i(x, t, a)

[
1 − i∗(a)

i(x, t, a)

]
da

−
+∞∫

0

S∗β(a)Δ [i(x, t, a), i∗(a)] da. (6.4)

Put

Ṽ (x, t) = ṼS(x, t) + Ṽi(x, t),

then uniting with (6.3) and (6.4), one yields

∂

∂t
Ṽ (x, t) = D1

S(x, t) − S∗
S(x, t)

∂2

∂x2
S(x, t) − μ [S(x, t) − S∗]

2

S(x, t)

+
i(x, t, 0)S∗
qS(x, t)

− i∗(0)S∗
qS(x, t)

+ i∗(0) − i(x, t, 0)

+ S∗

+∞∫

0

β(π)χ(π)dπΔ[i(x, t, 0), i∗(0)]

+

+∞∫

0

Ξ(a)D2
∂2

∂x2
i(x, t, a)

[
1 − i∗(a)

i(x, t, a)

]
da

−
+∞∫

0

S∗β(a)Δ [i(x, t, a), i∗(a)] da.

Proceed to the next step, one has

∂

∂t
Ṽ (x, t) = D1

S(x, t) − S∗
S(x, t)

∂2

∂x2
S(x, t) − μ [S(x, t) − S∗]

2

S(x, t)
+

i(x, t, 0)S∗
qS(x, t)

− i∗(0)S∗
qS(x, t)

+ i∗(0) − i(x, t, 0)

+ S∗

+∞∫

0

β(π)χ(π)dπ

[
i(x, t, 0) − i∗(0) − i∗(0) ln

i(x, t, 0)
i∗(0)

]

+

+∞∫

0

Ξ(a)D2
∂2

∂x2
i(x, t, a)

[
1 − i∗(a)

i(x, t, a)

]
da
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−
+∞∫

0

S∗β(a)
[
i(x, t, a) − i∗(a) − i∗(a) ln

i(x, t, a)
i∗(a)

]
da. (6.5)

By computations, one can get

S∗

+∞∫

0

β(a)i∗(a)
[
1 − Si∗(0)i(x, t, a)

S∗i(x, t, 0)i∗(a)

]
da = 0.

And then, (6.5) can be transformed into

∂

∂t
Ṽ (x, t) = D1

S(x, t) − S∗
S(x, t)

∂2

∂x2
S(x, t) − μ [S(x, t) − S∗]

2

S(x, t)

+
i(x, t, 0)S∗
qS(x, t)

− i∗(0)S∗
qS(x, t)

+ i∗(0) − i(x, t, 0)

+ S∗

+∞∫

0

β(π)χ(π)dπ

[
i(x, t, 0) − i∗(0) − i∗(0) ln

i(x, t, 0)
i∗(0)

]

+

+∞∫

0

Ξ(a)D2
∂2

∂x2
i(x, t, a)

[
1 − i∗(a)

i(x, t, a)

]
da

−
+∞∫

0

S∗β(a)
[
2 − S∗

S(x, t)
+ ln

S∗
S(x, t)

+
Si∗(0)i(x, t, a)
S∗i(x, t, 0)i∗(a)

+ ln
Si∗(0)i(x, t, a)
S∗i(x, t, 0)i∗(a)

]
da. (6.6)

Therefore, integrating (6.6) over Ω, one has

dVP∗(t)
dt

= −D1S∗
∫

Ω

|∇S(x, t)|2
S2(x, t)

dx − D3

∫

Ω

+∞∫

0

Ξ(a)i∗(a)
|∇i(x, t, a)|2

i2(x, t, a)
dadx

−
∫

Ω

μ

S(x, t)
[S(x, t) − S∗]

2 dx

+ S∗
∫

Ω

+∞∫

0

β(π)χ(π)dπ

[
i(x, t, 0) − i∗(0) − i∗(0) ln

i(x, t, 0)
i∗(0)

]
dx

−
∫

Ω

+∞∫

0

S∗β(a)
{

h

[
S∗

S(x, t)

]
+ h

[
Si∗(0)i(x, t, a)
S∗i(x, t, 0)i∗(a)

]}
dadx

≤ 0,

where h[s] = 1 − s + ln s, s ∈ R+ has the properties that h(s) ≤ 0 while s > 0 and h(s) reaches the
global minimum 0 at s = 1. In summary, {P∗} is the largest invariant set such that dVP∗ (t)

dt = 0, and due
to the invariance principle in [26], one gets that P∗ is globally attractive. One finishes the proof of this
theorem. �

7. Discussions

In this study, one considers the Tuberculosis model with the fast and slow progression, where age structure
and spatial diffusion are introduced. Although the basic reproduction number is independent of the
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diffusion coefficients D1, D2 and D3 and the dynamics of this model is similar to the model (1.19)–(1.23)
without spatial diffusions, the process and method of solving and proving are different from models (1.19)–
(1.23) without spatial diffusions. The difficulty in obtaining the dynamics of this model is the construction
of Lyapunov functional when proving global asymptotic stability. It is a pity that this spatial diffusion
is the Laplace (local) diffusion describing the random walk of the population in a connected domain.
Nevertheless, in modern time many infectious diseases are spread geographically by long-distance travel
such as air travel [27]. It seems that the Laplace (local) diffusion is unsuitable to model the spatial
spread of infectious diseases through this phnomenon [28,29]. Hence, some scholars propose convolution
(nonlocal) diffusion to describe the long-distance dispersal [30,31]. And then, one discusses the new type
of Tuberculosis model, namely age-dependent Tuberculosis model with convolution (nonlocal) diffusion.
One puts these in the future.
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