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Stability for a nonlinear hyperbolic equation with time-dependent coefficients and
boundary damping
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Abstract. In this paper, we prove a stability result for a nonlinear wave equation, defined in a bounded domain of R,
N > 2, with time-dependent coefficients. The smooth boundary of Q is I' = I'g UT'; such that ¥ =Tg N T # . On I
we consider the homogeneous Dirichlet boundary condition and on I'; we consider the Neumann boundary condition with
damping term. The presence of time-dependent coefficients and, moreover, of the singularities generated by the condition
3 # () brings some technical difficulties. The tools are the combination of appropriate functional with the techniques due
to Bey, Loheac, and Moussaoui [2] and new technical arguments.
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1. Introduction

This paper is concerned with the study of the decay rates of the energy associated with the following
hyperbolic equation with boundary damping

K(z,t)uy — A(t)u + F(z,t,u, Vu) =0 in Q x (0, 00)
u=0 on Iy x (0,00)
ou (1.1)

N + B(z)us =0 on I'y x (0,00)

u(z,0) = up(), u(z,0) = ui(x), z €,

where Q c RV, N > 2, is a bounded open set with boundary I' = I'o U 'y, meas(T'g) and meas(T'y) are
positive and such that T'g NIy # (. The sets I'y and T'; are specified below;

At)u = i 889[:] <a(x,t)§;> )

here a : Q x (0,00) — R is a known function; V is the gradient operator in the spatial variable;
N
Ju ou
— = a(r,t)=—vj,
al/A Z ( )8xj J
Jj=1
is the conormal derivative of u with respect to A, v = (v1,va,...,vyN) is the normal unit vector to T’
K:Qx(0,00) =R, F:Qx[0,00) x R¥1 - R and 3 : Q — R are known functions; and uy and u;
are the initial data.
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Problems concerning the wave equation with nonconstant coefficient in the principal part have been
called the attention of many researchers. We start calling the attention to the important paper Yao [27]
where the author studied the boundary exact controllability for the following problem

AR ou
Ut — Z 87% (a”(x)axj> =01in Q x (O,T)
1,7=1 (12)
u(z,0) = ug(x), ur(x,0) =ui(x), z € Q,
u=0 inT; x(0,7), y=v inTyx(0,7),

where v € L?(0,T;L?(Ty)) is the control function. The observability inequalities were established by
the Riemannian geometry method under some geometric condition for the Dirichlet problem and for the
Neumann problem. The Riemannian geometry method was used by Liu, Li, and Yao [25] to prove the
decay of the energy associated with a wave equation with variable coefficients in an exterior domain. The
damping was considered on a portion the boundary and also in a portion of the interior of the domain.
See also Yao [28-30].

When the wave motion holds in an inhomogeneous medium context, the coefficient of u;; is not
constant with respect to the spatial variable. A natural way to prove the stability of the problem is use
the tools of Microlocal Analysis. A good description of this tools concerning a linear problem can be
found in the lecture note due to Burq and Gérard [4]. Nonlinear problems was studied by Cavalcanti et
al. [1,6-9]. We would like to highlight the work of Cavalcanti et al. [5] where was studied the problem

p(x)uy — div(K (x)Vu) + f(u) + a(xz)g(u) =0 in Q x (0, 00),
u=0 onTy x (0,00), (1.3)
u(z,0) = up(x), u(z,0) = uy(z), =€ Q.

The use of Microlocal Analysis tools brings us two main assumptions. The first one involves the geometric
control condition and the second one involves a unique continuation result for the main operator associated
with the problem. Problem in inhomogeneous medium and with dynamical boundary conditions was
studied by Coclite, G. Goldstein, and J. Goldstein [11]. Results concerning dynamical boundary conditions
can be found in the works of Coclite, G. Goldstein, and J. Goldstein [12-14], Coclite et al. [15-17] and
references therein. See also the more recent works of Coclite et al. [18,19] where the authors studied
problems concerning Neumann boundary conditions and discontinuous sources.

When the coefficients are time-dependent the problem becomes more delicate. Indeed, it is well know
that the semigroups arguments can not be used. Moreover, the Microlocal Analysis tools also are not
appropriate. In [10], using the Faedo—-Galerkin method, Cavalcanti, Domingos Cavalcanti, and Soriano
proved an existence and uniqueness result to problem (1.1) when the assumption

is in place. Using an appropriate Lyapunov functional they also proved that the energy decay exponen-
tially.

It is well know that assumption (1.4) allows us to use elliptic results which give us regularity on the
solution. When this assumption is not in place, we have some delicate technical difficulties which need
to be overcome. In the two- and three- dimensional case the tool to overcome the loss of regularity was
introduced by Grisvard [21], see also Grisvard [22,23]. Indeed, he states that a weak solution u of an
associate elliptic problem can be split into ur and ug, where ug € H?(2) and ug is given by

ug = Z o(r,0)y/rsin (Z) ;

reX
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here (r, ) is a coordinate system with center in Z € 3 and p and an appropriate smooth function with
compact support with 0 < p < 1. This decomposition allows us to estimate some integrals that are in
place due to the presence of singularities.

The ideas of Grisvard was extended to RY, N > 3, by Bey, Loheac, and Moussaoui [2]. In fact, they
proved a theorem which gives as a decomposition of the solution into two functions ug and ug with ug
write as in Grisvard case. Moreover, they give a response to the control of Vu in a tangential direction.
Bey, Loheac, and Moussaoui also proved a stability result to a problem involving the linear wave equation.
Problems with singularities also was studied by Cornilleau, Loheac, and Osses [20]. In [20] the authors
studied the boundary stabilization of the wave equation by means of a linear or nonlinear Neumann
feedback. We highlight that the stability results of [2] and [20] are concerning the wave equation with
constant coefficients in the principal operator.

The main goal of the present paper is to study problem (1.1) without assumption (1.4). This work
extend the stability results of [2] and [20] to a time-dependent coefficient case. The ideas of Grisvard [21]
and, mainly, of Bey, Loheac, and Moussaoui [2] combined with the techniques of Cavalcanti, Domingos
Cavalcanti and Soriano [10] are the key to prove our main result.

The difficulties of the present paper are as follows: due to the general assumptions on K and a we do
not have control on the derivative of the functional energy. In fact, we do not have the traditional energy
identity which is an important tool to prove stability results. This problem combined with the presence
of singularities, generated by the change of boundary conditions, brings some technical difficulties which
needs to be overcome.

Finally, we also would like to cite the works of Liu and Yao [24], Boiti and Manfrin [3], and Reissig
and Smith [26] where the authors studied the wave equation with time-dependent coefficients. In [24]
Liu and Yao deal with boundary exact controllability for the dynamics governed by the wave equation
subject to Neumann boundary controls. In [3] the authors study the asymptotic behavior of the energy
to the Cauchy problem for wave equations with time-dependent propagation speed (i.e., the function
which multiply the Laplace operator is time-dependent). LP — L? estimates for wave equation with time-
dependent propagation speed was studied in [26].

Our paper is organized as follows. In section 2 we present the notations and the assumptions. We also
enunciate the existence and uniqueness result. The theorem which gives us the stability also is enunciated
in section 2. Finally, in section 3 we prove the stability result, our main result.

2. Preliminaries and existence theorem

Let us denote by || - ||r2() the usual norm in the Hilbert space L?(2) endowed with the inner product
(u,v)r2() = [u(x)v(x) dz. We also consider the subspace of HY(Q), denoted by V, as the closure of
Q

C1(2) such that |, = 0 in the strong topology of HY(Q), i.e.,

— H'(Q)

We have that the Poincaré Inequality holds in V', thus there exists a positive constant ¢, such that
IVullze @) < epllullz2 (o),

for all u € V. Therefore, the space V' can be endowed with the norm, ||V - | z2(q), induced by the inner
product

(u,v)v = (Vu, Vv)2(q),

which is equivalent to usual norm of H'(Q).
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Let x¢ a fixed point of RV. We define
m(z) = (z — xo) - v,
for all z € RY. We consider that the boundary I' of € is given by
I'p={zel;m-vr<0} and T'1={zxel; m-v>0}
Below, we introduce the assumption on the function F. Our prototype of function F' is given by

F(xz,t,u, Vu) = |u|"u + 9(t) Zjvzl sin (%), where 9 is a regular function.

Assumption 1. We suppose that F': Q x [0, 00) x R¥*1 — R is continuously differentiable and that there
exist positive constants Cy and C; such that

|F(x,1,€,6)] < Co(1+ [ +[<)),
|Fo(z,,€,9)] < Co(1+ (€7 + <)),
|F§($,t,£,§)| < 00(1 + |£|’Y)a
|}?g-cf7t7§’§>| f; (jlv for j = 1727-~-7<A[
for all (z,t,&,6) € Q x [0,00) x RNF! where v > 0, if N = 2 and 0 < vy < NL if N > 3, and

—2
¢ = (s1,--.,5n). Moreover, we suppose that there exists a function C € L>(0,00) N L'(0, c0) such that

Fx,t,6,¢)n = [§]7¢n — C@)(1 + [nlls)),
for all (z,t,&,5) € Q x [0,00) x RN and for all 5 € R;
F(z,t,&)m-¢ > [{[7ém ¢ — C(t)(1 + [s[|m - <),

for all (z,t,£&,6) € Qx [0,00) x RN We also suppose that there exist positive constant D; and Dy such
that

(F(,t,€,6) = F2,,€,9))(n = 0) > =Di(|€]" = [€[)[¢ = E|ln — Al = Dals = lln —l,
for all (z,t,€,¢), (z,£,€,$) € 2 x [0,00) x RNt and 7,9 € R.
Next, we write the assumptions on the functions K and a.

Assumption 2. We suppose that K, a : Q x (0,00) — R satisfies
K € Wh*(0,00;C*(Q)),
a € WH>(0,00; CH(Q)) N W(0, 00; L=(Q))
Ki,a; € L'(0,00; L™(Q)),
Moreover, we suppose that there exist constants K and ag such that
K>ky>0 and a>ap>0 inQ x (0,00).

Finally, in this paper we consider the case 3(z) = m(x), for all z € Q.

Now, we can enunciate an existence and uniqueness theorem. The proof is exactly the same of Theorem
2.1 of [10]. But, we highlight that, since in our case I'yNI'y # ), we cannot use elliptic regularity arguments
and to conclude that u(t) € H*(Q) (as it was used in [10]).

Theorem 2.1. (Existence and uniqueness of solution) Suppose that Assumptions 1 and 2 hold. For each
initial data (ug,u1) € H*(Q) x H?(Q) satisfying g% + B(z)u; =0, there exist a unique solution of (1.1)
in the class

we Wh(0,00; V) N W20, 00, L(Q)). (2.5)

loc loc
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FiG. 1. A prototype of the domain: R? case

]
We define the energy associated with problem (1.1) by
By = 1 /m? dz + /a|vu|2 o | + —— / lu[1*2 da (2.6)
2 t v+ 2 ' '
Q Q Q
Moreover, for each € > 0, we define the perturbed energy by
E.(t) = E(t) +e¥(t), (2.7)
where
U(t) :2/Kutm~Vudx+9/Kutudx, (2.8)
Q Q

here 6 is an appropriate positive constant.
Due to the presence of singularities, initially it is necessary to work away of these points. Therefore,
first we define

Y =TyNT;.

Now, let § > 0 a small and fixed number. We consider

B(; = U B(J?,(S),

TEX

where B(z,d) = {y € Q; ||z —y|| < 6}. The boundary of Bs is denoted by dBs. We work in the following
subset, of (2

Qs =Q\ Bs.
Its boundary 00 is denoted by
o0 = 00P LAY U (0B; N Q),
where
995 =0Q;NTy and 09 =00 NTy.

See Figures 1 and 2.
We define the energy associated with problem (1.1) and to s by

1 1
Eq,(t) = 3 /Kuf dx + /0L|Vu|2 dz | + P / lu| 72 d. (2.9)
Qs Qs Qs
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Fic. 2. The sets 89?’, 8(25D, OBs N Q, and ¥ in the R3 case

Finally, for each € > 0, we define the perturbed energy associated with 5 by
Es.(t) = Eq,(t) +eVs(t), (2.10)

where

Us(t) :2/Kutm~Vudm+9/Kutudx. (2.11)
Q5 in

We have the following lemma connecting E(t) with Eq, ().
Lemma 2.1. It holds
Eo,(t) - B(t) and W,(t) — W(t),
as 6 — 0. Therefore,
Ese(t) — Ex(t), (2.12)
as & — 0.
Proof. Tt follows Lebesgue converge theorem. O

To prove the stability result, it is necessary the following assumption (this assumption also was used
by Bey, Loheac, and Moussaoui [2] and Grisvard [21]).

Assumption 3. We denote by 7 the unit tangent vector to I' and normal to ¥ pointing towards the
exterior of I'y, from I'; to I'y. We suppose that

m(z) - 7(x) <0,
for all x € X.
See Figure 3.

Theorem 2.2. Assume that assumptions 1,2, and 3 hold and let E(t) the energy associated with (1.1).
Assume that there exist positive constants «, r, €, and 0y such that for all t sufficiently large, it holds
t

/eeeosgo(s) ds < at”, (2.13)
0
where

r 1
p(t) = ;;||at(t)||Lw(Q) + <k0 + 02€> rl| K ()] e ) + € (Cal|Va(t) || g ) + C5IVE ()] Lo ()

4r
+ {[1 +2(2+4 6)]meas(Q) + 1a +e(Cy + C7)7"1} C(t), (2.14)
040
where Cso, ..., C7 and ry are known constants, then the energy decay exponentially, i.e., there exist positive

constants 31 and B2 such that
E(t) < 61 (B(0) + at™) e~ P2t (2.15)



ZAMP Stability for a nonlinear hyperbolic equation... Page 7 of 20 221

Fic. 3. Examples of domain 2 and a z¢ satisfying Assumption 3

It is possible to verify that the energy Eq, () and the perturbed energy Ej . (t) are equivalent. Precisely,
there exists a positive constant ry such that

|Es.e(t) — Eq,(t)| < ergEq,(t), (2.16)

for all t > 0 and for all € > 0.
Moreover, there exists a positive constant r; such that

Eq,(t) <, (2.17)

for all t > 0.
Next lemma gives us a kind of inequality of energy. We observe that this lemma does not allow us to
conclude that the energy decay. It holds because the assumptions of K and a are very general.

Lemma 2.2. Let Eq,(t) the energy of (1.1) associated with §. The following inequality holds

E&é(t)gf/m~yufdff / ;—uutdf

7\
a0y 905N0

1 1
+C(t) /(1 + |ue| | Vul) de + E/Ktu? dx + 3 /at\Vu|2 dx. (2.18)
Qs Qs Qs

Proof. Multiplying (1.1) by u; and integrating over s, we have

%dﬂ (/Kutdx—i— a|Vu|2dm /m vu? dTl' + / —utdI‘

Qs oy Q5N
1 1
+ w)ug do — 3 /K,gut2 dx — 3 /at|Vu|2 dx = 0. (2.19)
Qs Qs Qs

From this and observing Assumption 1, we obtain (2.18). 0
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3. Stability theorem proof

Proof of Theorem 2.2. Differentiating Ws(¢) and observing (1.1), we have

Wi(t) :2/Ktutm-Vudac—Q/A(t)um-Vud:v—Q/F(x,t,u7Vu)m-Vudx+2/Kutm~Vutdac
Qs Qs Qs Qs

+0/Ktutu dx + G/Kuf dx — Q/UA(t)u dx — H/F(amf,u, Vu)u dx.
Qs Qs Qs Qs
From this and using Assumption 1, we infer
Ui(t) < 2/Ktutm -Vu dx—Q/A(t)um -Vudr — 2/ [uYum - Vudz —2C(t) /(1—|—|Vu|)|m - Vu| dz
Qs Qs Qs Qs

—|—2/Kutm~Vutdx—&—e/Ktutudx—i—@/Kufdx
Qs Qs Qs

fé/uA(t)u dx — 9/ lu[ "2 dx + 0C(2) /(1 + |ul|Vul) d. (3.20)
Qs Qs Qs

Now, we are going to estimate the right-hand side of (3.20).

Estimate for —2 [ A(t)um - Vudz. Using Gauss theorem, we have
Qs

fZ/A(t)um~Vudx:—/am~V(\Vu\2) d:U—Z/a|Vu|2 dx +2 / aa—urrrVudF. (3.21)
v
Qs Qs Qs Qs 4

Using Gauss theorem one more time, we obtain
/a m - V(|Vul?) dz = f/Va -m|Vul? dx — n/a\Vu\2 dz + / am - v|Vul? dr. (3.22)
Q(; Qé

Combining (3.21) with (3.22), we have

Qg 695

—2/A(t)um-Vudx = (7”L—2)/0L|Vu|2 dw—i—/me\Vu\Z dx

Qs Qs Qs
ou 9
+2 [ —m-Vudl — [ am-v|Vu|*dl. (3.23)
81/A
00 Qs
Estimate for —2 [ |u[Yum - Vu dz. We have that
Qs
2 +2
-2 [ |ul"um -Vuder = —— | V(|[u|""7) -mdx
v+ 2
Qs Qs
2 2
S /|u|7+2 de — —2— / m - v|u[YT2 T (3.24)
v +2 v+ 2

Qs Qs
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Estimate for 2 f Kuym - Vuy de. We observe that
Qs

Z/Kutm~Vutdx:/Km~Vut2dx

Qs Qri
—/(VK-m)u?dx—n/Kufdx+2/m-l/Kthdl". (3.25)
Qs Qs 0Qs
Estimate for —0 [ wA(t)u dz. Using Gauss theorem, we obtain
Qs
- e/uA tu dx = —9/a|Vu|2 dx + 6 / —u dr. (3.26)
Qs

Substituting (3.21)—(3.26) into (3.20), we have

Wh(t) < Q/Ktutm~Vud:U— 0 — (71—2)}/a|Vu|2 dx+/Va-m|Vu|2 dx

Qs Qs Qs
2
- (9 - 7f2> /|u|7+2 da — 20(15)/(1 +IVul)m - Vu| do — /(VK -m)u? dz
5 Qs Qs
— /Kuf dz + 0 / Kyugu dz + 0C(0) /(1 + [ul|Vul) de
Qs
Ou 2 +2

+2 . Vudl' — [ am-v|Vul*dll — —— [ m-v|u|"™*dl

895 A BQ,s GQR)
+2 / m - vKu? dl + 6 / U dr. (3.27)

895 BQS

Now, we are going to estimate the integrals over 0€)s. Observing that u = 0 on I'g, we have
9 o\
m-Vu=m- % and |Vu|? = ) o Tp.
ov ov

From this and observing the boundary condition on I'y, we infer

2
2 ﬂm VudI‘—Q/am V(Bu) dar’

vy ov
Qs oQpb
ou
-2 m - vugm - Vudl + 2 —m - Vudl. (3.28)
5I/A
893;\[ Qs N
For the second integral on 05, we have
ou\ 2
- / am-v|Vu|*dl' = — / am~u(u> dr
ov
Qs oQp
— / am-v|Vu|? dl' — / am - v|Vul? dT. (3.29)

dQ(IS\] 005N
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Moreover, since m - v > 0 on I'y, we obtain

2
/ m - vlu| T2 dl < — / m - v|u| T2 dl. (3.30)
7+2 +2
Qs 005NN
We also have,
2/m-yKu§dF:2/m-uKu§dF+2 / m - vKu? dl (3.31)
0N (‘)Qé\’ ONsNQ
and
0 / L udr = -0 / m - vugu dl + 0 / —u dr. (3.32)
81/A
Qs aQN 0NsN

Combining (3.27)—(3.32), we infer

Uhi(t) < 2/Ktutm-Vudx— [9—(n—2)]/a|Vu\2 dx—|—/Va-m\Vu|2 dx

Qs Qs Qs
2
—<0— fz)/|u7+2dz—2C’(t)/(l+|Vu|)|m~Vu| dx—/(VK~m)ut2 dx
7 Qs Qs Qs
—(n—e)/Kuf da:+9/Ktutudx+0C’(t)/(1+|u||Vu\)dx
Qs
—2/m-yutm~VudI‘—/am-u|Vu\2dI‘+2/m-yKude—Q/m~uutudF
o0y a0y QY o0y
+2 / aa—un%Vude / am- V|Vu\2df—7 / m - v|u[7T% dl
v
odsne 05N Q 905N Q
+2 / m - vKuZ dT + 8 / O ar. (3.33)
8UA
8925NQ 0950

Recovering the energy on 5. We observe that

—[9—(n—2)]/a|Vu|2 da — (9— 721‘2)/|w+2 dx—(n—@)ﬂ/aKuf dx

Qs Qs
< —min{2[0 — (n — 2)],2(n — 0),2n — (v + 2)0} Eq, (t) := —C1Eq,(t). (3.34)

Moreover,

max {[m(z)|} |k (t)]| L= () Ea, (1) := Col Kt (t)[| oo () By (1), (3.35)

4
2 | Kyuym - Vudr <
/ e 7\/]900:86

Qs
[ Varmlvu? de < Z s (@)} 19000101 Bos (1) = CallVo(o)] oy B 0
Qs
—2C(t) / (14 Vulm- V| de < 2meas(DC(®) + 4max {m(@)]} C(1) B, (1) (3.36)

Qs
= 2meas(Q)C(t) + C4C(t) Eq, (1), (3.37)
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2
~ [V )t do < max (@)} [V O]l o) Eos (1) = G| VK0 () Ba 0. (339

C
H/Ktutu Az < 40, [ [ Ku(O)ll s (0) B (8) = 0Co (1) 1 (0 By (1)

0C (¢) /(1 + |u]|Vu|) dz < fmeas(Q)C'(t) + 49%?0(7?)E95 (t) (3.39)
Qs
= Omeas(Q)C(t) + C7C(t) Eq, (t). (3.40)

Using estimates (3.34)-(3.40) in (3.33), we obtain
Ui(t) < —C1Eq;(t) + A(t)Eq;(t) + (2 + 0)meas(Q)C(t)
-2 / m-vugm - Vudl — / am-v|Vul? dT + 2 / m-vKu? dl' — 6 / m - vugu dl’

oy oy oy oy

+2 / —m Vudl — / am - v|Vu|? dF— —_— / m - v|u|" T2 dl’
0NsNQ 0NsN 89509

+2 / m - vKu; dU + 6 / —u ar, (3.41)
05NQ 85NQ

where
A(t) = (C2 +0Cs) | Ki () || Lo () + C3[|Va(t)|| L= () + (Ca + C7)C(t) + C5 VK ()| o< (-

Estimate for the integrals on 92) . We have

1 2
-2 / m-vu;m-Vudl < . (max{|m(l‘)|}> / m - vu? dl + / m - va|Vul* dT, (3.42)
0

zeQ
oy oy QN
-0 / m - vugu dl < / m - vu? dU + o Eq, (t), (3.43)
a()O'
oy oy

for all o > 0 constant. We also obtain that

2 / m - vKu; dU < 2||K|| e (x (0,00) / m - vu? dr. (3.44)
oy oy

Therefore,

Us(t) < —(Ch — 0)Eq, (t) + M(t)Eq, (t) + (2 4 0)meas(Q)C(t) + Cs / m - vu? dl

oay
+2 / —m Vudl — / am - v|Vu|? F— —_— / m - vlu|T? dl’
905NQ 05NN aszémsz
+2 / m - vKu; dU + 6 / —u dr, (3.45)

005NN I0;NQ
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where

02
Ry + 2[| K| oo (2 (0,00)) -

o=+ <glgg{m($)}>2

ag
Observing Lemma 2.2, (3.45) and the definition of E5.(t), we have

9
E:S,E(t) < - / m'Vuf dal’ — aiutdF
VA
oy 8510
1 1
L) /(1 + el V) do + /Ktuf dz + i/at|Vu|2 do
Qs Qs Qs

+e | —(C1 — 0)Eq;(t) + A1) Eq, (t) + (2 4+ 0)meas(Q)C(t) + Cs / m - vui dl

+2 / —m Vudl — / am- 1/|Vu|2df—7 / m - v|u|" 2 dl’
05NQ 805NQ 905NQ

+2 / m - vKu? dU + 6 / —udF
892,;nQ 805NQ

We have that

1 1
c) [+ fulVal) dr+ 5 [ K do+ 5 [ alvuP s

Qs Qs Qs
< J(t)Eq4(t) + C(t)meas(£2),

where
lar ()= | 1K)~ (o) 4
J(t) = + + C(1).
(t) ” "o T (t)
Thus,
E5.(t) < —e(C1 = 0)Eq, () + (J(t) + eA(t)) Eq, (t) + [1 + £(2 + 0)|meas(Q)C(¢)
—(1—¢eCy) / m - vui dU + As(t) + Zs(t),
20y
where
As(t) =€ |2 / —m Vudl' — / am - v|Vu|* dl
9025NQ M0
and
Es(t)=¢|— ’7+2 / m - v|u|" 2 dl 4 2 / m - vKui dl

925N 5N

+0 / —udf - / ﬁu,ng
BI/A

005N INsNN

ZAMP

(3.46)

(3.47)

(3.48)
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o)

F1G. 4. The vectors v, 7, , and 7 in the R? case

Choosing n — 2 < 6 < n and, after this, o = % and € < C%;? we infer
C
E:;,E(t) < _%EQJ () + (J(t) + eA(t) Eq,s (t) + [1 + (2 4 0)Jmeas(Q)C(t) + As(t) + Z5(t). (3.49)

From this, using (2.16), and as
o(t) = (J(t) +eA(t))r1 + [1 + (24 0)meas(Q)C(t)
(see (2.14)) we obtain

eC =
B (1) € = =25 e (t) + (1) + As(t) + Zs(0), (3.50)
for € > 0 small enough. Thus,
d et} Heitd -
= (Bsee™) < e (ot) + As(t) + Z5(0) (3.51)
Integrating from 0 to ¢, we obtain
t
_Ct eCys _ _eCyt
Es.(t) < Es(0)e” 3 + /e 5 (o(s) +As(s) +E5(s)) ds | e” 5 . (3.52)

0
From this and using Assumption 2.13, we conclude that
t
eCyt eCyt eCys
Es.(t) < Es.(0)e” 5 +at'e 5 + /e 5 [As(s) +Zs(s)]ds | e
0

_ eyt
8

(3.53)

t eCqys eCqt
Estimate for (f e s As(s) ds> e First, we consider the two-dimensional case. For each Z € ¥, we
0

denote by v = v(Z) and 7 = 7(&) the unit normal vector pointing towards the exterior and the tangent
vector of %, respectively. We consider 7 from T'; to I'y. Using coordinate system (&, 7, 7), it is possible to
verify that

ou

2——m-Vu—am- v|Vul> =

m-T —
81/A

@
49
See Figures 4 and 5.
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F1G. 5. The vectors v, 7, 7, and 7 in the R3 case

Observing that

1
— / adl — a(Z) := a,
o

ONs N

as § — oo, we infer

ou
2 m Vu—am-v|Vul?) d0 — Zam -7, (3.54)
81/A 4
Q5N
as 6 — 0. As Assumption 3 is in place and since a > 0, we conclude that the integral converges to a
negative number.
Now, we consider the case in RY, with N > 3. For each z € 9§25 N (2, there exists (&, 7, 7) such that
is into the plane defined by (Z, 7, 7). Moreover, there exists an arc of circumference v(Z, §) into this plane
such that x € v(z, d). Thus, writing

Vu = Vou+ Vru, (3.55)
where Vsu is into the plan describe above and Vpu is orthogonal to Vou, we have

Vru-Vou=0 and |Vul> =|Vaul? + |Vrul?

/ (28um -Vu—am- 1/|Vu|2> dr

BVA
005N

Therefore,

= / [2a(Vou+ Vru) - vm- (Vou+ Vou) —am - v(|Vaul® + [Vrul?)] dl

Q5N

(2aVTu -vm-Vyou—am - I/|VTU|2) dl’
INsNN
+ / (2aV2u cvm-Vou—am- V|V2u|2) dr’
ONsNQ

+2 / a(Vru-vm-Vaou+ Vou-vm-Vyu) dl. (3.56)
005N
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Using the first part of Theorem 4 of [2], we have

(2aVru-vm-Vou—am-v|Voul?) dI' — 0, (3.57)
05NQ
as 0 — 0.

Next step is to estimate the second integral of the right side of (3.56). From Theorem 4 of [2], we have
that v can be written locally as a sum of regular part with a singular part

O(2)ug(x — ),
where @ is locally in H %(E) and ug is given by

us(r,w,t) = c(t)r? psin (%), (3.58)

where ¢ € C° with compact support and such that ¢ = 1 into a neighborhood of zero and supp(g)C
[—00,00] C (—1,1), with gg > 0 small enough. As in the two-dimensional case, using the coordinate
system Z, 7, T we obtain

a . _ a
2aV2uS~Vm~V2uS—am.V\VguS|2:Bm-T—Z%T.

Integrating over the arc (&, 0) and taking the limit as § — 0, as in (3.54), we infer

/ (2aV2u5 -vm-Voug —am- V\Vgus|2) dl —
v(2,6)
as § — 0. Using Assumption 3, we infer that this integral converges to a negative number. Therefore,
using Fubini’s theorem, we conclude that the second integral of the right-hand side of (3.56) converges
to a negative number.
Finally, we are going to estimate the last integral of the right-hand side of (3.56). Using Holder’s
inequality, we have

%am 7 (3.59)

2 2
2 / a(Vru-vm-Vaou+ Vou-vm-Vyu) dI' < C / \VTU\Q dI’ / |V2u|2 dI’
7(%,9) 7(%,9) v(2,6)
From Theorem 4 of [2], we have
%
‘VTU‘Q dl’ — 07
~(Z,6)
as 0 — 0, using the decomposition described above, we infer
% 27
1
Voul?dl | <C [ —=ds=CVé — 0,
| | <o [
¥(,6) 0
as 0 — 0. Therefore,
2 / a(Vru-vm-Vau+ Vau-vm-Vru) d' — 0, (3.60)
~(&,6)

as § — 0. Thus, (3.60) and Fubini’s theorem allow us to conclude that the third integral of the right-hand
side of (3.56) converges to zero.
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Therefore, we infer

As(t) = / <2§ym -Vu—am- 1/|Vu|2) dl' — a,
5NN

as § — 0, where o < 0 is a real number. At this moment, we consider two cases o < 0 and o = 0. If
a < 0, then there exists d; > 0 such that

As(t) <0, (3.61)
for all § < §;. Therefore,

¢
eCqs eCyt
/e s As(s)ds | e” 8 <0, (3.62)
0
for all 6 < &;. We conclude that term (3.62) can be removed of (3.53), when § — 0.

If o = 0, then we consider two subcases. First, if there exists a positive do such that

As(t) <0, (3.63)

for all § < &, then we take the same way of the case v < 0. On the other hand, if there exists a positive
r1 such that

As(t) > 0, (3.64)

for all 6 < ry, then

t t
0< / HAs(s)) dsem < / Ag(s) ds — 0, (3.65)
0 0

as 0 — 0. Therefore, in this case the term also goes to 0.
Thus, we conclude that

t
/eECSlSA(;(s) ds | e = 0, (3.66)
0

as 6 — 0.

¢
Estimate for (f e~ Es(s) ds> e 55 Using the decomposition described above as
0

u=ug+ us, (3.67)
where up is the regular part of v and ug is the singular one, we have
t
eCys eC
/ s / m-vK(z,s)|us(z,s)|? dT" ds e T
0 leRale!

0]

' eCys g0yt
<C /e / |m - v|(ug)?dlds | e” 5

0NsN

0
t
+C (/eicslé / |m - v|(us)? dT ds e =5, (3.68)
0
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From Lebesgue convergence theorem, we have
t
eCys eCyt
/eT / |m - v|(ug)idlds | e 5 —0, (3.69)
0 805NN

as 6 — 0. Now, observing (3.58), we have

I

as § — 0. From this and using the Fubini’s theorem, we have that the last integral of (3.68) goes to zero,
as 0 — 0. Summarizing, (3.68)—(3.70) give us that

t
/ Im - v|(us)? dT dse "% <c/fds/ S dse "5 < 08% 0, (3.70)

v(&,6) 0

t

2 /esc;ls / m-vK(z,s)|us(z,s)|? dl" ds i 0, (3.71)
0 9Qs5NQ
as § — 0.
On the other hand, using decomposition (3.67), we have
t
2 eCqys +2 _eCyt
—_— e s m-viu(x,s)|7*dlds | e~ 8
v+2
0 2Q5NQ
t
eCys +2 _eCqt
<C e 8 |m - v||ug|"™*dlds | e” 8
0 aQs5NQ
t
+C /ec / im - v|lus|"*2 dl ds | e =5 (3.72)
0 lePiale!
From Lebesgue convergence theorem, we have
t
/656;‘13 / |m - v||up| " dT ds | e~ R 0, (3.73)
0 aQ5NQ
as 6 — 0. Now, observing (3.58), we have
2m t
/ = / m - vlug| 2 dD dse™ " < c/(s%“ ds/egciils dse” "5 <067 50, (3.74)
(z,0) 0 0

as ¢ — 0. From this and using the Fubini’s theorem, we have that the last integral of (3.68) goes to zero,
as 0 — 0. Summarizing, (3.72)—(3.74) give us that

t
1t

2 € s 3
Po /e% / m - viu(z,s)|"*dl ds | e~ S — 0, (3.75)

0 925NQ

as 6 — 0.
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On the other hand, using the decomposition of w into a regular and a singular part and (3.55), we
have that

esL dr' d _Cyt
8
/ / 8v,4u e

aQsNQ
sCl s scl s cCyt
/e / aVru-vugdl' ds e_ / / aVaou-vusdl'ds | e~ 8
0 025NN 0 025NN
t t
sCls EClt aC’ls Oyt
/ aVou-vur dl'ds | e~ + (/e / aVru-vugdl'ds | e~ 8
0 895ﬂQ 0 005NN
< V3. (3.76)
From Lebesgue convergence theorem, we have
t
eCys g0yt
/eT / aVru-vugdlds | e 8 —0, (3.77)

0 9QsNQ

as § — 0. Making calculus analogous to the preview ones, we infer

¢
/es%s aVau - vug dI' ds <05 — 0, (3.78)
0 805NQ
¢
/65015 / aVou - vug dI' ds) e~ (3.79)
0 805NQ
¢
aclb _ et 3
/e / aVru - vug dT ds) e 5 <(Ci> —0, (3.80)
0 05NQ
as 6 — 0.
Therefore,
¢
e O drds | 55 o 3.81
8 _— 8
/e / 81/,4u s|e — 0, (3.81)
0 925NQ
as § — 0.
Analogously,
! 0
/ecf U dr ds) e 0, (3.82)
Ovy
0 995NQ
as 6 — 0.
From (3.71), (3.75), (3.81), and (3.82), we conclude that
t
eCys eCqyt
/ETE(;(S) ds|e 75 —0, (3.83)

0
as 6 — 0.



ZAMP Stability for a nonlinear hyperbolic equation... Page 19 of 20 221

Returning to the estimate of Ejc(t). Observing Lemma 2.2, (3.53), (3.66), and (3.83), we infer

eCyt

E.(t) < (E-(0) +at")e” 5, (3.84)

for all ¢ > 0. From (3.84) and using (2.16), we conclude that (2.15) holds. O
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