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Abstract. In this paper, we prove a stability result for a nonlinear wave equation, defined in a bounded domain of R
N ,

N ≥ 2, with time-dependent coefficients. The smooth boundary of Ω is Γ = Γ0 ∪ Γ1 such that Σ = Γ0 ∩ Γ1 �= ∅. On Γ0

we consider the homogeneous Dirichlet boundary condition and on Γ1 we consider the Neumann boundary condition with
damping term. The presence of time-dependent coefficients and, moreover, of the singularities generated by the condition
Σ �= ∅ brings some technical difficulties. The tools are the combination of appropriate functional with the techniques due
to Bey, Loheac, and Moussaoui [2] and new technical arguments.

Mathematics Subject Classification. 35L05, 35L20, 35B35, 35B40.

Keywords. Stability, Hyperbolic equation, Singularity, Boundary damping, Time-dependent coefficients.

1. Introduction

This paper is concerned with the study of the decay rates of the energy associated with the following
hyperbolic equation with boundary damping

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

K(x, t)utt − A(t)u + F (x, t, u,∇u) = 0 in Ω × (0,∞)

u = 0 on Γ0 × (0,∞)
∂u

∂νA
+ β(x)ut = 0 on Γ1 × (0,∞)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.1)

where Ω ⊂ R
N , N ≥ 2, is a bounded open set with boundary Γ = Γ0 ∪ Γ1, meas(Γ0) and meas(Γ1) are

positive and such that Γ0 ∩ Γ1 	= ∅. The sets Γ0 and Γ1 are specified below;

A(t)u =
N∑

j=1

∂

∂xj

(

a(x, t)
∂u

∂xj

)

,

here a : Ω × (0,∞) → R is a known function; ∇ is the gradient operator in the spatial variable;

∂u

∂νA
=

N∑

j=1

a(x, t)
∂u

∂xj
νj ,

is the conormal derivative of u with respect to A, ν = (ν1, ν2, . . . , νN ) is the normal unit vector to Γ;
K : Ω × (0,∞) → R, F : Ω × [0,∞) × R

N+1 → R, and β : Ω → R are known functions; and u0 and u1

are the initial data.
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Problems concerning the wave equation with nonconstant coefficient in the principal part have been
called the attention of many researchers. We start calling the attention to the important paper Yao [27]
where the author studied the boundary exact controllability for the following problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

utt −
N∑

i,j=1

∂

∂xi

(

aij(x)
∂u

∂xj

)

= 0 in Ω × (0, T )

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u = 0 in Γ1 × (0, T ), y = v in Γ0 × (0, T ),

(1.2)

where v ∈ L2(0, T ;L2(Γ0)) is the control function. The observability inequalities were established by
the Riemannian geometry method under some geometric condition for the Dirichlet problem and for the
Neumann problem. The Riemannian geometry method was used by Liu, Li, and Yao [25] to prove the
decay of the energy associated with a wave equation with variable coefficients in an exterior domain. The
damping was considered on a portion the boundary and also in a portion of the interior of the domain.
See also Yao [28–30].

When the wave motion holds in an inhomogeneous medium context, the coefficient of utt is not
constant with respect to the spatial variable. A natural way to prove the stability of the problem is use
the tools of Microlocal Analysis. A good description of this tools concerning a linear problem can be
found in the lecture note due to Burq and Gérard [4]. Nonlinear problems was studied by Cavalcanti et
al. [1,6–9]. We would like to highlight the work of Cavalcanti et al. [5] where was studied the problem

⎧
⎪⎨

⎪⎩

ρ(x)utt − div(K(x)∇u) + f(u) + a(x)g(ut) = 0 in Ω × (0,∞),

u = 0 on Γ0 × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

(1.3)

The use of Microlocal Analysis tools brings us two main assumptions. The first one involves the geometric
control condition and the second one involves a unique continuation result for the main operator associated
with the problem. Problem in inhomogeneous medium and with dynamical boundary conditions was
studied by Coclite, G. Goldstein, and J. Goldstein [11]. Results concerning dynamical boundary conditions
can be found in the works of Coclite, G. Goldstein, and J. Goldstein [12–14], Coclite et al. [15–17] and
references therein. See also the more recent works of Coclite et al. [18,19] where the authors studied
problems concerning Neumann boundary conditions and discontinuous sources.

When the coefficients are time-dependent the problem becomes more delicate. Indeed, it is well know
that the semigroups arguments can not be used. Moreover, the Microlocal Analysis tools also are not
appropriate. In [10], using the Faedo–Galerkin method, Cavalcanti, Domingos Cavalcanti, and Soriano
proved an existence and uniqueness result to problem (1.1) when the assumption

Γ0 ∩ Γ1 = ∅ (1.4)

is in place. Using an appropriate Lyapunov functional they also proved that the energy decay exponen-
tially.

It is well know that assumption (1.4) allows us to use elliptic results which give us regularity on the
solution. When this assumption is not in place, we have some delicate technical difficulties which need
to be overcome. In the two- and three- dimensional case the tool to overcome the loss of regularity was
introduced by Grisvard [21], see also Grisvard [22,23]. Indeed, he states that a weak solution u of an
associate elliptic problem can be split into uR and uS , where uR ∈ H2(Ω) and uS is given by

uS =
∑

x∈Σ

ρ(r, θ)
√

r sin
(

θ

2

)

,
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here (r, θ) is a coordinate system with center in x̃ ∈ Σ and ρ and an appropriate smooth function with
compact support with 0 ≤ ρ ≤ 1. This decomposition allows us to estimate some integrals that are in
place due to the presence of singularities.

The ideas of Grisvard was extended to R
N , N ≥ 3, by Bey, Loheac, and Moussaoui [2]. In fact, they

proved a theorem which gives as a decomposition of the solution into two functions uR and uS with uS

write as in Grisvard case. Moreover, they give a response to the control of ∇u in a tangential direction.
Bey, Loheac, and Moussaoui also proved a stability result to a problem involving the linear wave equation.
Problems with singularities also was studied by Cornilleau, Loheac, and Osses [20]. In [20] the authors
studied the boundary stabilization of the wave equation by means of a linear or nonlinear Neumann
feedback. We highlight that the stability results of [2] and [20] are concerning the wave equation with
constant coefficients in the principal operator.

The main goal of the present paper is to study problem (1.1) without assumption (1.4). This work
extend the stability results of [2] and [20] to a time-dependent coefficient case. The ideas of Grisvard [21]
and, mainly, of Bey, Loheac, and Moussaoui [2] combined with the techniques of Cavalcanti, Domingos
Cavalcanti and Soriano [10] are the key to prove our main result.

The difficulties of the present paper are as follows: due to the general assumptions on K and a we do
not have control on the derivative of the functional energy. In fact, we do not have the traditional energy
identity which is an important tool to prove stability results. This problem combined with the presence
of singularities, generated by the change of boundary conditions, brings some technical difficulties which
needs to be overcome.

Finally, we also would like to cite the works of Liu and Yao [24], Boiti and Manfrin [3], and Reissig
and Smith [26] where the authors studied the wave equation with time-dependent coefficients. In [24]
Liu and Yao deal with boundary exact controllability for the dynamics governed by the wave equation
subject to Neumann boundary controls. In [3] the authors study the asymptotic behavior of the energy
to the Cauchy problem for wave equations with time-dependent propagation speed (i.e., the function
which multiply the Laplace operator is time-dependent). Lp − Lq estimates for wave equation with time-
dependent propagation speed was studied in [26].

Our paper is organized as follows. In section 2 we present the notations and the assumptions. We also
enunciate the existence and uniqueness result. The theorem which gives us the stability also is enunciated
in section 2. Finally, in section 3 we prove the stability result, our main result.

2. Preliminaries and existence theorem

Let us denote by ‖ · ‖L2(Ω) the usual norm in the Hilbert space L2(Ω) endowed with the inner product
(u, v)L2(Ω) =

∫

Ω

u(x)v(x) dx. We also consider the subspace of H1(Ω), denoted by V , as the closure of

C1(Ω) such that u|Γ0
= 0 in the strong topology of H1(Ω), i.e.,

V = {u ∈ C1(Ω); u|Γ0
= 0}H1(Ω)

.

We have that the Poincaré Inequality holds in V , thus there exists a positive constant cp such that

‖∇u‖L2(Ω) ≤ cp‖u‖L2(Ω),

for all u ∈ V . Therefore, the space V can be endowed with the norm, ‖∇ · ‖L2(Ω), induced by the inner
product

(u, v)V = (∇u,∇v)L2(Ω),

which is equivalent to usual norm of H1(Ω).
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Let x0 a fixed point of RN . We define

m(x) = (x − x0) · ν,

for all x ∈ R
N . We consider that the boundary Γ of Ω is given by

Γ0 = {x ∈ Γ; m · ν < 0} and Γ1 = {x ∈ Γ; m · ν ≥ 0}.

Below, we introduce the assumption on the function F . Our prototype of function F is given by
F (x, t, u,∇u) = |u|γu + ϑ(t)

∑N
j=1 sin

(
∂u
∂xj

)
, where ϑ is a regular function.

Assumption 1. We suppose that F : Ω× [0,∞)×R
N+1 → R is continuously differentiable and that there

exist positive constants C0 and C1 such that

|F (x, t, ξ, ς)| ≤ C0(1 + |ξ|γ+1 + |ς|),
|Ft(x, t, ξ, ς)| ≤ C0(1 + |ξ|γ+1 + |ς|),
|Fξ(x, t, ξ, ς)| ≤ C0(1 + |ξ|γ),
|Fςj

(x, t, ξ, ς)| ≤ C1, for j = 1, 2, . . . , N,

for all (x, t, ξ, ς) ∈ Ω × [0,∞) × R
N+1, where γ > 0, if N = 2 and 0 < γ ≤ N

N−2 , if N ≥ 3, and
ς = (ς1, . . . , ςN ). Moreover, we suppose that there exists a function C ∈ L∞(0,∞) ∩ L1(0,∞) such that

F (x, t, ξ, ς)η ≥ |ξ|γξη − C(t)(1 + |η||ς|),
for all (x, t, ξ, ς) ∈ Ω × [0,∞) × R

N+1 and for all η ∈ R;

F (x, t, ξ, ς)m · ς ≥ |ξ|γξm · ς − C(t)(1 + |ς||m · ς|),
for all (x, t, ξ, ς) ∈ Ω× [0,∞)×R

N+1. We also suppose that there exist positive constant D1 and D2 such
that

(F (x, t, ξ, ς) − F (x, t, ξ̂, ς̂))(η − η̂) ≥ −D1(|ξ|γ − |ξ̂|γ)|ξ − ξ̂||η − η̂| − D2|ς − ς̂||η − η̂|,
for all (x, t, ξ, ς), (x, t, ξ̂, ς̂) ∈ Ω × [0,∞) × R

N+1 and η, η̂ ∈ R.

Next, we write the assumptions on the functions K and a.

Assumption 2. We suppose that K, a : Ω × (0,∞) → R satisfies

K ∈ W 1,∞(0,∞;C1(Ω)),

a ∈ W 1,∞(0,∞;C1(Ω)) ∩ W 2,∞(0,∞;L∞(Ω))
Kt, at ∈ L1(0,∞;L∞(Ω)),

Moreover, we suppose that there exist constants K0 and a0 such that

K > k0 > 0 and a > a0 > 0 in Ω × (0,∞).

Finally, in this paper we consider the case β(x) = m(x), for all x ∈ Ω.

Now, we can enunciate an existence and uniqueness theorem. The proof is exactly the same of Theorem
2.1 of [10]. But, we highlight that, since in our case Γ0∩Γ1 	= ∅, we cannot use elliptic regularity arguments
and to conclude that u(t) ∈ H2(Ω) (as it was used in [10]).

Theorem 2.1. (Existence and uniqueness of solution) Suppose that Assumptions 1 and 2 hold. For each
initial data (u0, u1) ∈ H2(Ω) × H2(Ω) satisfying ∂u0

∂νA
+ β(x)u1 = 0, there exist a unique solution of (1.1)

in the class

u ∈ W 1,∞
loc (0,∞;V ) ∩ W 2,∞

loc (0,∞, L2(Ω)). (2.5)
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Fig. 1. A prototype of the domain: R2 case

�
We define the energy associated with problem (1.1) by

E(t) =
1
2

⎛

⎝

∫

Ω

Ku2
t dx +

∫

Ω

a|∇u|2 dx

⎞

⎠+
1

γ + 2

∫

Ω

|u|γ+2 dx. (2.6)

Moreover, for each ε > 0, we define the perturbed energy by

Eε(t) = E(t) + εΨ(t), (2.7)

where

Ψ(t) = 2
∫

Ω

Kutm · ∇u dx + θ

∫

Ω

Kutu dx, (2.8)

here θ is an appropriate positive constant.
Due to the presence of singularities, initially it is necessary to work away of these points. Therefore,

first we define

Σ = Γ0 ∩ Γ1.

Now, let δ > 0 a small and fixed number. We consider

Bδ =
⋃

x∈Σ

B(x, δ),

where B(x, δ) = {y ∈ Ω; ‖x − y‖ < δ}. The boundary of Bδ is denoted by ∂Bδ. We work in the following
subset of Ω:

Ωδ = Ω \ Bδ.

Its boundary ∂Ωδ is denoted by

∂Ωδ = ∂ΩD
δ ∪ ∂ΩN

δ ∪ (∂Bδ ∩ Ω),

where

∂ΩD
δ = ∂Ωδ ∩ Γ0 and ∂ΩN

δ = ∂Ωδ ∩ Γ1.

See Figures 1 and 2.
We define the energy associated with problem (1.1) and to Ωδ by

EΩδ
(t) =

1
2

⎛

⎝

∫

Ωδ

Ku2
t dx +

∫

Ωδ

a|∇u|2 dx

⎞

⎠+
1

γ + 2

∫

Ωδ

|u|γ+2 dx. (2.9)
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Fig. 2. The sets ∂ΩN
δ , ∂ΩD

δ , ∂Bδ ∩ Ω, and Σ in the R
3 case

Finally, for each ε > 0, we define the perturbed energy associated with Ωδ by

Eδ,ε(t) = EΩδ
(t) + εΨδ(t), (2.10)

where

Ψδ(t) = 2
∫

Ωδ

Kutm · ∇u dx + θ

∫

Ωδ

Kutu dx. (2.11)

We have the following lemma connecting E(t) with EΩδ
(t).

Lemma 2.1. It holds

EΩδ
(t) → E(t) and Ψδ(t) → Ψ(t),

as δ → 0. Therefore,

Eδ,ε(t) → Eε(t), (2.12)

as δ → 0.

Proof. It follows Lebesgue converge theorem. �
To prove the stability result, it is necessary the following assumption (this assumption also was used

by Bey, Loheac, and Moussaoui [2] and Grisvard [21]).

Assumption 3. We denote by τ the unit tangent vector to Γ and normal to Σ pointing towards the
exterior of Γ1, from Γ1 to Γ0. We suppose that

m(x) · τ(x) < 0,

for all x ∈ Σ.

See Figure 3.

Theorem 2.2. Assume that assumptions 1, 2, and 3 hold and let E(t) the energy associated with (1.1).
Assume that there exist positive constants α, r, ε, and θ0 such that for all t sufficiently large, it holds

t∫

0

eεθ0sϕ(s) ds ≤ αtr, (2.13)

where

ϕ(t) =
r1

a0
‖at(t)‖L∞(Ω) +

(
1
k0

+ C2ε

)

r1‖Kt(t)‖L∞(Ω) + ε
(
C3‖∇a(t)‖L∞(Ω) + C5‖∇K(t)‖L∞(Ω)

)

+
{

[1 + ε(2 + θ)]meas(Ω) +
4r1√
k0a0

+ ε(C4 + C7)r1

}

C(t), (2.14)

where C2, . . . , C7 and r1 are known constants, then the energy decay exponentially, i.e., there exist positive
constants β1 and β2 such that

E(t) ≤ β1 (E(0) + αtr) e−β2t (2.15)
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Fig. 3. Examples of domain Ω and a x0 satisfying Assumption 3

It is possible to verify that the energy EΩδ
(t) and the perturbed energy Eδ,ε(t) are equivalent. Precisely,

there exists a positive constant r0 such that

|Eδ,ε(t) − EΩδ
(t)| ≤ εr0EΩδ

(t), (2.16)

for all t ≥ 0 and for all ε > 0.
Moreover, there exists a positive constant r1 such that

EΩδ
(t) ≤ r1, (2.17)

for all t ≥ 0.
Next lemma gives us a kind of inequality of energy. We observe that this lemma does not allow us to

conclude that the energy decay. It holds because the assumptions of K and a are very general.

Lemma 2.2. Let EΩδ
(t) the energy of (1.1) associated with δ. The following inequality holds

E′
Ωδ

(t) ≤ −
∫

∂ΩN
δ

m · νu2
t dΓ −

∫

∂Ωδ∩Ω

∂u

∂νA
ut dΓ

+C(t)
∫

Ωδ

(1 + |ut||∇u|) dx +
1
2

∫

Ωδ

Ktu
2
t dx +

1
2

∫

Ωδ

at|∇u|2 dx. (2.18)

Proof. Multiplying (1.1) by ut and integrating over Ωδ, we have

1
2

d

dt

⎛

⎝

∫

Ωδ

Ku2
t dx +

∫

Ωδ

a|∇u|2 dx

⎞

⎠+
∫

∂ΩN
δ

m · νu2
t dΓ +

∫

∂Ωδ∩Ω

∂u

∂νA
ut dΓ

+
∫

Ωδ

F (u)ut dx − 1
2

∫

Ωδ

Ktu
2
t dx − 1

2

∫

Ωδ

at|∇u|2 dx = 0. (2.19)

From this and observing Assumption 1, we obtain (2.18). �
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3. Stability theorem proof

Proof of Theorem 2.2. Differentiating Ψδ(t) and observing (1.1), we have

Ψ′
δ(t) = 2

∫

Ωδ

Ktutm · ∇u dx − 2
∫

Ωδ

A(t)u m · ∇u dx − 2
∫

Ωδ

F (x, t, u,∇u)m · ∇u dx + 2
∫

Ωδ

Kutm · ∇ut dx

+θ

∫

Ωδ

Ktutu dx + θ

∫

Ωδ

Ku2
t dx − θ

∫

Ωδ

uA(t)u dx − θ

∫

Ωδ

F (x, t, u,∇u)u dx.

From this and using Assumption 1, we infer

Ψ′
δ(t) ≤ 2

∫

Ωδ

Ktutm · ∇u dx−2
∫

Ωδ

A(t)u m · ∇u dx − 2
∫

Ωδ

|u|γu m · ∇u dx − 2C(t)
∫

Ωδ

(1+|∇u|)|m · ∇u| dx

+2
∫

Ωδ

Kutm · ∇ut dx + θ

∫

Ωδ

Ktutu dx + θ

∫

Ωδ

Ku2
t dx

−θ

∫

Ωδ

uA(t)u dx − θ

∫

Ωδ

|u|γ+2 dx + θC(t)
∫

Ωδ

(1 + |u||∇u|) dx. (3.20)

Now, we are going to estimate the right-hand side of (3.20).

Estimate for −2
∫

Ωδ

A(t)u m · ∇u dx. Using Gauss theorem, we have

− 2
∫

Ωδ

A(t)u m · ∇u dx = −
∫

Ωδ

a m · ∇(|∇u|2) dx − 2
∫

Ωδ

a|∇u|2 dx + 2
∫

∂Ωδ

∂u

∂νA
m · ∇u dΓ. (3.21)

Using Gauss theorem one more time, we obtain
∫

Ωδ

a m · ∇(|∇u|2) dx = −
∫

Ωδ

∇a · m|∇u|2 dx − n

∫

Ωδ

a|∇u|2 dx +
∫

∂Ωδ

a m · ν|∇u|2 dΓ. (3.22)

Combining (3.21) with (3.22), we have

− 2
∫

Ωδ

A(t)u m · ∇u dx = (n − 2)
∫

Ωδ

a|∇u|2 dx +
∫

Ωδ

∇a · m|∇u|2 dx

+2
∫

∂Ωδ

∂u

∂νA
m · ∇u dΓ −

∫

∂Ωδ

a m · ν|∇u|2 dΓ. (3.23)

Estimate for −2
∫

Ωδ

|u|γu m · ∇u dx. We have that

− 2
∫

Ωδ

|u|γu m · ∇u dx = − 2
γ + 2

∫

Ωδ

∇(|u|γ+2) · m dx

=
2n

γ + 2

∫

Ωδ

|u|γ+2 dx − 2
γ + 2

∫

∂Ωδ

m · ν|u|γ+2 dΓ. (3.24)
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Estimate for 2
∫

Ωδ

Kutm · ∇ut dx. We observe that

2
∫

Ωδ

Kutm · ∇ut dx =
∫

Ωδ

Km · ∇u2
t dx

= −
∫

Ωδ

(∇K · m)u2
t dx − n

∫

Ωδ

Ku2
t dx + 2

∫

∂Ωδ

m · νKu2
t dΓ. (3.25)

Estimate for −θ
∫

Ωδ

uA(t)u dx. Using Gauss theorem, we obtain

− θ

∫

Ωδ

uA(t)u dx = −θ

∫

Ωδ

a|∇u|2 dx + θ

∫

∂Ωδ

∂u

∂νA
u dΓ. (3.26)

Substituting (3.21)–(3.26) into (3.20), we have

Ψ′
δ(t) ≤ 2

∫

Ωδ

Ktutm · ∇u dx − [θ − (n − 2)]
∫

Ωδ

a|∇u|2 dx +
∫

Ωδ

∇a · m|∇u|2 dx

−
(

θ − 2n

γ + 2

)∫

Ωδ

|u|γ+2 dx − 2C(t)
∫

Ωδ

(1 + |∇u|)|m · ∇u| dx −
∫

Ωδ

(∇K · m)u2
t dx

−(n − θ)
∫

Ωδ

Ku2
t dx + θ

∫

Ωδ

Ktutu dx + θC(t)
∫

Ωδ

(1 + |u||∇u|) dx

+2
∫

∂Ωδ

∂u

∂νA
m · ∇u dΓ −

∫

∂Ωδ

a m · ν|∇u|2 dΓ − 2
γ + 2

∫

∂Ωδ

m · ν|u|γ+2 dΓ

+2
∫

∂Ωδ

m · νKu2
t dΓ + θ

∫

∂Ωδ

∂u

∂νA
u dΓ. (3.27)

Now, we are going to estimate the integrals over ∂Ωδ. Observing that u = 0 on Γ0, we have

m · ∇u = m · ∂u

∂ν
and |∇u|2 =

(
∂u

∂ν

)2

on Γ0.

From this and observing the boundary condition on Γ1, we infer

2
∫

∂Ωδ

∂u

∂νA
m · ∇u dΓ = 2

∫

∂ΩD
δ

am · ν

(
∂u

∂ν

)2

dΓ

−2
∫

∂ΩN
δ

m · νut m · ∇u dΓ + 2
∫

∂Ωδ∩Ω

∂u

∂νA
m · ∇u dΓ. (3.28)

For the second integral on ∂Ωδ, we have

−
∫

∂Ωδ

a m · ν|∇u|2 dΓ = −
∫

∂ΩD
δ

a m · ν

(
∂u

∂ν

)2

dΓ

−
∫

∂ΩN
δ

a m · ν|∇u|2 dΓ −
∫

∂Ωδ∩Ω

a m · ν|∇u|2 dΓ. (3.29)
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Moreover, since m · ν ≥ 0 on Γ1, we obtain

− 2
γ + 2

∫

∂Ωδ

m · ν|u|γ+2 dΓ ≤ − 2
γ + 2

∫

∂Ωδ∩Ω

m · ν|u|γ+2 dΓ. (3.30)

We also have,

2
∫

∂Ωδ

m · νKu2
t dΓ = 2

∫

∂ΩN
δ

m · νKu2
t dΓ + 2

∫

∂Ωδ∩Ω

m · νKu2
t dΓ (3.31)

and

θ

∫

∂Ωδ

∂u

∂νA
u dΓ = −θ

∫

∂ΩN
δ

m · νutu dΓ + θ

∫

∂Ωδ∩Ω

∂u

∂νA
u dΓ. (3.32)

Combining (3.27)–(3.32), we infer

Ψ′
δ(t) ≤ 2

∫

Ωδ

Ktutm · ∇u dx − [θ − (n − 2)]
∫

Ωδ

a|∇u|2 dx +
∫

Ωδ

∇a · m|∇u|2 dx

−
(

θ − 2n

γ + 2

)∫

Ωδ

|u|γ+2 dx − 2C(t)
∫

Ωδ

(1 + |∇u|)|m · ∇u| dx −
∫

Ωδ

(∇K · m)u2
t dx

−(n − θ)
∫

Ωδ

Ku2
t dx + θ

∫

Ωδ

Ktutu dx + θC(t)
∫

Ωδ

(1 + |u||∇u|) dx

−2
∫

∂ΩN
δ

m · νut m · ∇u dΓ −
∫

∂ΩN
δ

a m · ν|∇u|2 dΓ + 2
∫

∂ΩN
δ

m · νKu2
t dΓ − θ

∫

∂ΩN
δ

m · νutu dΓ

+2
∫

∂Ωδ∩Ω

∂u

∂νA
m · ∇u dΓ −

∫

∂Ωδ∩Ω

a m · ν|∇u|2 dΓ − 2
γ + 2

∫

∂Ωδ∩Ω

m · ν|u|γ+2 dΓ

+2
∫

∂Ωδ∩Ω

m · νKu2
t dΓ + θ

∫

∂Ωδ∩Ω

∂u

∂νA
u dΓ. (3.33)

Recovering the energy on Ωδ. We observe that

−[θ − (n − 2)]
∫

Ωδ

a|∇u|2 dx −
(

θ − 2n

γ + 2

)∫

Ωδ

|u|γ+2 dx − (n − θ)
∫

Ωδ

Ku2
t dx

≤ −min {2[θ − (n − 2)], 2(n − θ), 2n − (γ + 2)θ} EΩδ
(t) := −C1EΩδ

(t). (3.34)

Moreover,

2
∫

Ωδ

Ktutm · ∇u dx ≤ 4√
k0a0

max
x∈Ω

{|m(x)|} ‖kt(t)‖L∞(Ω)EΩδ
(t) := C2‖Kt(t)‖L∞(Ω)EΩδ

(t), (3.35)

∫

Ωδ

∇a · m|∇u|2 dx ≤ 2
a0

max
x∈Ω

{|m(x)|} ‖∇a(t)‖L∞(Ω)EΩδ
(t) := C3‖∇a(t)‖L∞(Ω)EΩδ

(t),

−2C(t)
∫

Ωδ

(1 + |∇u|)|m · ∇u| dx ≤ 2meas(Ω)C(t) + 4max
x∈Ω

{|m(x)|} C(t)EΩδ
(t) (3.36)

:= 2meas(Ω)C(t) + C4C(t)EΩδ
(t), (3.37)
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−
∫

Ωδ

(∇K · m)u2
t dx ≤ 2

k0
max
x∈Ω

{|m(x)|} ‖∇K(t)‖L∞(Ω)EΩδ
(t) := C5‖∇K(t)‖L∞(Ω)EΩδ

(t), (3.38)

θ

∫

Ωδ

Ktutu dx ≤ 4θ

√
cp

a0k0
‖Kt(t)‖L∞(Ω)EΩδ

(t) := θC6‖Kt(t)‖L∞(Ω)EΩδ
(t),

θC(t)
∫

Ωδ

(1 + |u||∇u|) dx ≤ θmeas(Ω)C(t) + 4θ

√
cp

a0
C(t)EΩδ

(t) (3.39)

:= θmeas(Ω)C(t) + C7C(t)EΩδ
(t). (3.40)

Using estimates (3.34)–(3.40) in (3.33), we obtain

Ψ′
δ(t) ≤ −C1EΩδ

(t) + λ(t)EΩδ
(t) + (2 + θ)meas(Ω)C(t)

−2
∫

∂ΩN
δ

m · νut m · ∇u dΓ −
∫

∂ΩN
δ

a m · ν|∇u|2 dΓ + 2
∫

∂ΩN
δ

m · νKu2
t dΓ − θ

∫

∂ΩN
δ

m · νutu dΓ

+2
∫

∂Ωδ∩Ω

∂u

∂νA
m · ∇u dΓ −

∫

∂Ωδ∩Ω

a m · ν|∇u|2 dΓ − 2
γ + 2

∫

∂Ωδ∩Ω

m · ν|u|γ+2 dΓ

+2
∫

∂Ωδ∩Ω

m · νKu2
t dΓ + θ

∫

∂Ωδ∩Ω

∂u

∂νA
u dΓ, (3.41)

where

λ(t) = (C2 + θC6)‖Kt(t)‖L∞(Ω) + C3‖∇a(t)‖L∞(Ω) + (C4 + C7)C(t) + C5‖∇K(t)‖L∞(Ω).

Estimate for the integrals on ∂ΩN
δ . We have

−2
∫

∂ΩN
δ

m · νut m · ∇u dΓ ≤ 1
a0

(

max
x∈Ω

{|m(x)|}
)2 ∫

∂ΩN
δ

m · νu2
t dΓ +

∫

∂ΩN
δ

m · νa|∇u|2 dΓ, (3.42)

−θ

∫

∂ΩN
δ

m · νutu dΓ ≤ θ2

2a0σ

∫

∂ΩN
δ

m · νu2
t dΓ + σEΩδ

(t), (3.43)

for all σ > 0 constant. We also obtain that

2
∫

∂ΩN
δ

m · νKu2
t dΓ ≤ 2‖K‖L∞(Ω×(0,∞))

∫

∂ΩN
δ

m · νu2
t dΓ. (3.44)

Therefore,

Ψ′
δ(t) ≤ −(C1 − σ)EΩδ

(t) + λ(t)EΩδ
(t) + (2 + θ)meas(Ω)C(t) + C8

∫

∂ΩN
δ

m · νu2
t dΓ

+2
∫

∂Ωδ∩Ω

∂u

∂νA
m · ∇u dΓ −

∫

∂Ωδ∩Ω

a m · ν|∇u|2 dΓ − 2
γ + 2

∫

∂Ωδ∩Ω

m · ν|u|γ+2 dΓ

+2
∫

∂Ωδ∩Ω

m · νKu2
t dΓ + θ

∫

∂Ωδ∩Ω

∂u

∂νA
u dΓ, (3.45)
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where

C8 =
1
a0

(

max
x∈Ω

{|m(x)|}
)2

+
θ2

2a0σ
+ 2‖K‖L∞(Ω×(0,∞)).

Observing Lemma 2.2, (3.45) and the definition of Eδ,ε(t), we have

E′
δ,ε(t) ≤ −

∫

∂ΩN
δ

m · νu2
t dΓ −

∫

∂Ωδ∩Ω

∂u

∂νA
ut dΓ

+C(t)
∫

Ωδ

(1 + |ut||∇u|) dx +
1
2

∫

Ωδ

Ktu
2
t dx +

1
2

∫

Ωδ

at|∇u|2 dx

+ε

⎡

⎢
⎣−(C1 − σ)EΩδ

(t) + λ(t)EΩδ
(t) + (2 + θ)meas(Ω)C(t) + C8

∫

∂ΩN
δ

m · νu2
t dΓ

+2
∫

∂Ωδ∩Ω

∂u

∂νA
m · ∇u dΓ −

∫

∂Ωδ∩Ω

a m · ν|∇u|2 dΓ − 2
γ + 2

∫

∂Ωδ∩Ω

m · ν|u|γ+2 dΓ

+2
∫

∂Ωδ∩Ω

m · νKu2
t dΓ + θ

∫

∂Ωδ∩Ω

∂u

∂νA
u dΓ

⎤

⎦ . (3.46)

We have that

C(t)
∫

Ωδ

(1 + |ut||∇u|) dx +
1
2

∫

Ωδ

Ktu
2
t dx +

1
2

∫

Ωδ

at|∇u|2 dx

≤ J(t)EΩδ
(t) + C(t)meas(Ω),

where

J(t) =
‖at(t)‖L∞(Ω)

a0
+

‖Kt(t)‖L∞(Ω)

k0
+

4√
k0a0

C(t).

Thus,

E′
δ,ε(t) ≤ −ε(C1 − σ)EΩδ

(t) + (J(t) + ελ(t))EΩδ
(t) + [1 + ε(2 + θ)]meas(Ω)C(t)

−(1 − εC8)
∫

∂ΩN
δ

m · νu2
t dΓ + Λδ(t) + Ξδ(t),

where

Λδ(t) = ε

⎡

⎣2
∫

∂Ωδ∩Ω

∂u

∂νA
m · ∇u dΓ −

∫

∂Ωδ∩Ω

a m · ν|∇u|2 dΓ

⎤

⎦ (3.47)

and

Ξδ(t) = ε

⎡

⎣− 2
γ + 2

∫

∂Ωδ∩Ω

m · ν|u|γ+2 dΓ + 2
∫

∂Ωδ∩Ω

m · νKu2
t dΓ

+θ

∫

∂Ωδ∩Ω

∂u

∂νA
u dΓ

⎤

⎦−
∫

∂Ωδ∩Ω

∂u

∂νA
ut dΓ. (3.48)
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Fig. 4. The vectors ν, τ , ν̃, and τ̃ in the R
2 case

Choosing n − 2 < θ < n and, after this, σ = C1
4 and ε < 1

C8
, we infer

E′
δ,ε(t) ≤ −εC1

4
EΩδ

(t) + (J(t) + ελ(t))EΩδ
(t) + [1 + ε(2 + θ)]meas(Ω)C(t) + Λδ(t) + Ξδ(t). (3.49)

From this, using (2.16), and as

ϕ(t) = (J(t) + ελ(t))r1 + [1 + ε(2 + θ)]meas(Ω)C(t)

(see (2.14)) we obtain

E′
δ,ε(t) ≤ −εC1

8
Eδ,ε(t) + ϕ(t) + Λδ(t) + Ξδ(t), (3.50)

for ε > 0 small enough. Thus,

d

dt

(
Eδ,ε(t)e

εC1t
8

)
≤ e

εC1t
8 (ϕ(t) + Λδ(t) + Ξδ(t)) . (3.51)

Integrating from 0 to t, we obtain

Eδ,ε(t) ≤ Eδ,ε(0)e− εC1t
8 +

⎛

⎝

t∫

0

e
εC1s

8 (ϕ(s) + Λδ(s) + Ξδ(s)) ds

⎞

⎠ e− εC1t
8 . (3.52)

From this and using Assumption 2.13, we conclude that

Eδ,ε(t) ≤ Eδ,ε(0)e− εC1t
8 + αtre− εC1t

8 +

⎛

⎝

t∫

0

e
εC1s

8 [Λδ(s) + Ξδ(s)] ds

⎞

⎠ e− εC1t
8 . (3.53)

Estimate for
(

t∫

0

e
εC1s

8 Λδ(s) ds

)

e− εC1t
8 . First, we consider the two-dimensional case. For each x̃ ∈ Σ, we

denote by ν̃ = ν(x̃) and τ̃ = τ(x̃) the unit normal vector pointing towards the exterior and the tangent
vector of Σ, respectively. We consider τ̃ from Γ1 to Γ0. Using coordinate system (x̃, ν̃, τ̃), it is possible to
verify that

2
∂u

∂νA
m · ∇u − a m · ν|∇u|2 =

a

4δ
m̃ · τ̃ − a

4
ν · τ̃ .

See Figures 4 and 5.
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Fig. 5. The vectors ν, τ , ν̃, and τ̃ in the R
3 case

Observing that

1
πδ

∫

∂Ωδ∩Ω

a dΓ → a(x̃) := ã,

as δ → ∞, we infer
∫

∂Ωδ∩Ω

(

2
∂u

∂νA
m · ∇u − a m · ν|∇u|2

)

dΓ → π

4
ã m̃ · τ̃ , (3.54)

as δ → 0. As Assumption 3 is in place and since a ≥ 0, we conclude that the integral converges to a
negative number.

Now, we consider the case in R
N , with N ≥ 3. For each x ∈ ∂Ωδ ∩ Ω, there exists (x̃, ν̃, τ̃) such that x

is into the plane defined by (x̃, ν̃, τ̃). Moreover, there exists an arc of circumference γ(x̃, δ) into this plane
such that x ∈ γ(x̃, δ). Thus, writing

∇u = ∇2u + ∇T u, (3.55)

where ∇2u is into the plan describe above and ∇T u is orthogonal to ∇2u, we have

∇T u · ∇2u = 0 and |∇u|2 = |∇2u|2 + |∇T u|2.
Therefore,

∫

∂Ωδ∩Ω

(

2
∂u

∂νA
m · ∇u − a m · ν|∇u|2

)

dΓ

=
∫

∂Ωδ∩Ω

[
2a(∇2u + ∇T u) · ν m · (∇2u + ∇T u) − a m · ν(|∇2u|2 + |∇T u|2)] dΓ

=
∫

∂Ωδ∩Ω

(
2a∇T u · ν m · ∇T u − a m · ν|∇T u|2) dΓ

+
∫

∂Ωδ∩Ω

(
2a∇2u · ν m · ∇2u − a m · ν|∇2u|2) dΓ

+2
∫

∂Ωδ∩Ω

a (∇T u · ν m · ∇2u + ∇2u · ν m · ∇T u) dΓ. (3.56)
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Using the first part of Theorem 4 of [2], we have
∫

∂Ωδ∩Ω

(
2a∇T u · ν m · ∇T u − a m · ν|∇T u|2) dΓ → 0, (3.57)

as δ → 0.
Next step is to estimate the second integral of the right side of (3.56). From Theorem 4 of [2], we have

that u can be written locally as a sum of regular part with a singular part

Φ(x̃)uS(x − x̃),

where Φ is locally in H
1
2 (Σ) and uS is given by

uS(r, w, t) = c(t)r
1
2 � sin

(w

2

)
, (3.58)

where � ∈ C∞ with compact support and such that � = 1 into a neighborhood of zero and supp(�)⊂
[−�0, �0] ⊂ (−1, 1), with �0 > 0 small enough. As in the two-dimensional case, using the coordinate
system x̃, ν̃, τ̃ we obtain

2a∇2uS · ν m · ∇2uS − a m · ν|∇2uS |2 =
a

4δ
m̃ · τ̃ − a

4
ν · τ̃ .

Integrating over the arc γ(x̃, δ) and taking the limit as δ → 0, as in (3.54), we infer
∫

γ(x̃,δ)

(
2a∇2uS · ν m · ∇2uS − a m · ν|∇2uS |2) dΓ → π

4
ã m̃ · τ̃ , (3.59)

as δ → 0. Using Assumption 3, we infer that this integral converges to a negative number. Therefore,
using Fubini’s theorem, we conclude that the second integral of the right-hand side of (3.56) converges
to a negative number.

Finally, we are going to estimate the last integral of the right-hand side of (3.56). Using Hölder’s
inequality, we have

2
∫

γ(x̃,δ)

a (∇T u · ν m · ∇2u + ∇2u · ν m · ∇T u) dΓ ≤ C

⎛

⎜
⎝

∫

γ(x̃,δ)

|∇T u|2 dΓ

⎞

⎟
⎠

1
2
⎛

⎜
⎝

∫

γ(x̃,δ)

|∇2u|2 dΓ

⎞

⎟
⎠

1
2

.

From Theorem 4 of [2], we have
⎛

⎜
⎝

∫

γ(x̃,δ)

|∇T u|2 dΓ

⎞

⎟
⎠

1
2

→ 0,

as δ → 0, using the decomposition described above, we infer
⎛

⎜
⎝

∫

γ(x̃,δ)

|∇2u|2 dΓ

⎞

⎟
⎠

1
2

≤ C

2π∫

0

1√
δ

ds = C
√

δ → 0,

as δ → 0. Therefore,

2
∫

γ(x̃,δ)

a (∇T u · ν m · ∇2u + ∇2u · ν m · ∇T u) dΓ → 0, (3.60)

as δ → 0. Thus, (3.60) and Fubini’s theorem allow us to conclude that the third integral of the right-hand
side of (3.56) converges to zero.
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Therefore, we infer

Λδ(t) =
∫

∂Ωδ∩Ω

(

2
∂u

∂νA
m · ∇u − a m · ν|∇u|2

)

dΓ → α,

as δ → 0, where α ≤ 0 is a real number. At this moment, we consider two cases α < 0 and α = 0. If
α < 0, then there exists δ1 > 0 such that

Λδ(t) < 0, (3.61)

for all δ < δ1. Therefore,
⎛

⎝

t∫

0

e
εC1s

8 Λδ(s) ds

⎞

⎠ e− εC1t
8 < 0, (3.62)

for all δ < δ1. We conclude that term (3.62) can be removed of (3.53), when δ → 0.
If α = 0, then we consider two subcases. First, if there exists a positive δ2 such that

Λδ(t) < 0, (3.63)

for all δ < δ2, then we take the same way of the case α < 0. On the other hand, if there exists a positive
r1 such that

Λδ(t) > 0, (3.64)

for all δ < r2, then

0 ≤
t∫

0

(
e

εC1s
8 Λδ(s)

)
dse− εC1t

8 ≤
t∫

0

Λδ(s) ds → 0, (3.65)

as δ → 0. Therefore, in this case the term also goes to 0.
Thus, we conclude that

⎛

⎝

t∫

0

e
εC1s

8 Λδ(s) ds

⎞

⎠ e− εC1t
8 → 0, (3.66)

as δ → 0.

Estimate for
(

t∫

0

e
εC1s

8 Ξδ(s) ds

)

e− εC1t
8 . Using the decomposition described above as

u = uR + uS , (3.67)

where uR is the regular part of u and uS is the singular one, we have
∣
∣
∣
∣
∣
∣
2

⎛

⎝

t∫

0

e
εC1s

8

∫

∂Ωδ∩Ω

m · νK(x, s)|ut(x, s)|2 dΓ ds

⎞

⎠ e− εC1t
8

∣
∣
∣
∣
∣
∣

≤ C

⎛

⎝

t∫

0

e
εC1s

8

∫

∂Ωδ∩Ω

|m · ν|(uR)2t dΓ ds

⎞

⎠ e− εC1t
8

+C

⎛

⎝

t∫

0

e
εC1s

8

∫

∂Ωδ∩Ω

|m · ν|(uS)2t dΓ ds

⎞

⎠ e− εC1t
8 . (3.68)
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From Lebesgue convergence theorem, we have
⎛

⎝

t∫

0

e
εC1s

8

∫

∂Ωδ∩Ω

|m · ν|(uR)2t dΓ ds

⎞

⎠ e− εC1t
8 → 0, (3.69)

as δ → 0. Now, observing (3.58), we have

t∫

0

e
εC1s

8

∫

γ(x̃,δ)

|m · ν|(uS)2t dΓ dse− εC1t
8 ≤ C

2π∫

0

√
δ ds

t∫

0

e
εC1s

8 ds e− εC1t
8 ≤ Cδ

3
2 → 0, (3.70)

as δ → 0. From this and using the Fubini’s theorem, we have that the last integral of (3.68) goes to zero,
as δ → 0. Summarizing, (3.68)–(3.70) give us that

2

⎛

⎝

t∫

0

e
εC1s

8

∫

∂Ωδ∩Ω

m · νK(x, s)|ut(x, s)|2 dΓ ds

⎞

⎠ e− εC1t
8 → 0, (3.71)

as δ → 0.
On the other hand, using decomposition (3.67), we have

∣
∣
∣
∣
∣
∣

2
γ + 2

⎛

⎝

t∫

0

e
εC1s

8

∫

∂Ωδ∩Ω

m · ν|u(x, s)|γ+2 dΓ ds

⎞

⎠ e− εC1t
8

∣
∣
∣
∣
∣
∣

≤ C

⎛

⎝

t∫

0

e
εC1s

8

∫

∂Ωδ∩Ω

|m · ν||uR|γ+2 dΓ ds

⎞

⎠ e− εC1t
8

+C

⎛

⎝

t∫

0

e
εC1s

8

∫

∂Ωδ∩Ω

|m · ν||uS |γ+2 dΓ ds

⎞

⎠ e− εC1t
8 . (3.72)

From Lebesgue convergence theorem, we have
⎛

⎝

t∫

0

e
εC1s

8

∫

∂Ωδ∩Ω

|m · ν||uR|γ+2 dΓ ds

⎞

⎠ e− εC1t
8 → 0, (3.73)

as δ → 0. Now, observing (3.58), we have

t∫

0

e
εC1s

8

∫

γ(x̃,δ)

|m · ν||uS |γ+2 dΓ dse− εC1t
8 ≤ C

2π∫

0

δ
γ+2
2 ds

t∫

0

e
εC1s

8 ds e− εC1t
8 ≤ Cδ

γ+4
2 → 0, (3.74)

as δ → 0. From this and using the Fubini’s theorem, we have that the last integral of (3.68) goes to zero,
as δ → 0. Summarizing, (3.72)–(3.74) give us that

2
γ + 2

⎛

⎝

t∫

0

e
εC1s

8

∫

∂Ωδ∩Ω

m · ν|u(x, s)|γ+2 dΓ ds

⎞

⎠ e− εC1t
8 → 0, (3.75)

as δ → 0.
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On the other hand, using the decomposition of u into a regular and a singular part and (3.55), we
have that

⎛

⎝

t∫

0

e
εC1s

8

∫

∂Ωδ∩Ω

∂u

∂νA
u dΓ ds

⎞

⎠ e− εC1t
8

=

⎛

⎝

t∫

0

e
εC1s

8

∫

∂Ωδ∩Ω

a∇T u · νuR dΓ ds

⎞

⎠ e− εC1t
8 +

⎛

⎝

t∫

0

e
εC1s

8

∫

∂Ωδ∩Ω

a∇2u · νuS dΓ ds

⎞

⎠ e− εC1t
8

+

⎛

⎝

t∫

0

e
εC1s

8

∫

∂Ωδ∩Ω

a∇2u · νuR dΓ ds

⎞

⎠ e− εC1t
8 +

⎛

⎝

t∫

0

e
εC1s

8

∫

∂Ωδ∩Ω

a∇T u · νuS dΓ ds

⎞

⎠ e− εC1t
8

≤ C
√

δ. (3.76)

From Lebesgue convergence theorem, we have
⎛

⎝

t∫

0

e
εC1s

8

∫

∂Ωδ∩Ω

a∇T u · νuR dΓ ds

⎞

⎠ e− εC1t
8 → 0, (3.77)

as δ → 0. Making calculus analogous to the preview ones, we infer
⎛

⎝

t∫

0

e
εC1s

8

∫

∂Ωδ∩Ω

a∇2u · νuS dΓ ds

⎞

⎠ e− εC1t
8 ≤ Cδ → 0, (3.78)

⎛

⎝

t∫

0

e
εC1s

8

∫

∂Ωδ∩Ω

a∇2u · νuR dΓ ds

⎞

⎠ e− εC1t
8 ≤ C

√
δ → 0, (3.79)

⎛

⎝

t∫

0

e
εC1s

8

∫

∂Ωδ∩Ω

a∇T u · νuS dΓ ds

⎞

⎠ e− εC1t
8 ≤ Cδ

3
2 → 0, (3.80)

as δ → 0.
Therefore,

⎛

⎝

t∫

0

e
εC1s

8

∫

∂Ωδ∩Ω

∂u

∂νA
u dΓ ds

⎞

⎠ e− εC1t
8 → 0, (3.81)

as δ → 0.
Analogously,

⎛

⎝

t∫

0

e
εC1s

8

∫

∂Ωδ∩Ω

∂u

∂νA
ut dΓ ds

⎞

⎠ e− εC1t
8 → 0, (3.82)

as δ → 0.
From (3.71), (3.75), (3.81), and (3.82), we conclude that

⎛

⎝

t∫

0

e
εC1s

8 Ξδ(s) ds

⎞

⎠ e− εC1t
8 → 0, (3.83)

as δ → 0.
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Returning to the estimate of Eδ,ε(t). Observing Lemma 2.2, (3.53), (3.66), and (3.83), we infer

Eε(t) ≤ (Eε(0) + αtr) e− εC1t
8 , (3.84)

for all t ≥ 0. From (3.84) and using (2.16), we conclude that (2.15) holds. �
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Valéria Neves Domingos Cavalcanti
e-mail: vndcavalcanti@uem.br
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