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Abstract. The behavior of displacement field due to a screw dislocation is similar to the angular basis function (ABF) Arg(z).
It is different from the radial basis function (RBF) ln(r) that is used to describe the velocity potential of a sink or source.
Nevertheless, the complex-valued fundamental solution ln(z) contains the two parts of RBF ln(r) and ABF Arg(z). In this
paper, not only the RBF in the null-field boundary integral equation (BIE) but also the ABF for the screw dislocation
are employed to study the interaction between a screw dislocation and an elastic elliptical inhomogeneity. This problem is
decomposed into a free field with a screw dislocation and a boundary value problem containing an elliptical inhomogeneity.
The boundary value problem is solved by using the RBF and the null-field BIE. Since the geometric shape is an ellipse,
the degenerate kernel is expanded to a series form under the elliptical coordinates, while the unknown boundary densities
are expanded to eigenfunctions. By combining the degenerate kernel and the null-field BIE, the boundary value problem
can be easily solved. The inconsistency between Sendeckyj (In: Simmons JA, et al (eds) Fundamental aspects of dislocation
theory. US National Bureau of Standards, Gaithersburg, pp 57–69, 1970) and Gong and Meguid (Int J Eng Sci 32(8):1221–
1228, 1994) for the problem was also found by using the present approach. The error in Gong and Meguid (Int J Eng Sci
32(8):1221–1228, 1994) was also printed out. Finally, some examples are demonstrated to verify the validity of the present
approach.
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1. Introduction

For the development of advanced materials, the interaction between a dislocation and multi-phase mate-
rials is an important topic. Two basic types are edge and screw dislocations. They are characterized by
that the Burgers vector which is perpendicular and parallel with respect to the dislocation line, respec-
tively. Many researchers investigated the dislocation and inclusion problems in the past years. Head [3]
used an analogy between screw dislocations and electrostatic line charges to solve the interaction of an
elastic screw dislocation with an idealized grain boundary. In the same year, the interaction between an
edge dislocation and bimetallic elastic solid was reduced to two standard problems in potential theory
by him [4]. Based on the technique of conformal mapping and the method of analytical continuation
in conjunction with the alternating technique, Chen et al. [5] derived the analytical solution for plane
elasticity problems of an elliptically cylindrical layered media subject to an arbitrary edge dislocation.
Zhou et al. [6] reviewed recent works about inclusions well. Smith [7] successfully solved the problem of
the interaction between a screw dislocation and a circular inclusion contained within an infinite body by
using the complex-variable function and the circle theorem. Besides, the uniform anti-plane remote shear
was also considered at the same time. Shen [8] used the complex variable theory and the alternating
technique to deal with the problem of a circular layered inclusion interacting with a generalized screw
dislocation under the remote anti-plane shear stress and in-plane magnetoelectric loads. In the same year,
Wang and Pan also study this interaction between a screw dislocation and a viscoelastic piezoelectric
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Fig. 1. An elliptical inhomogeneity and its mapped region

bimaterial interface [9]. Although Smith [7] introduced the conformal mapping to discuss the elliptical
inhomogeneity, it exists a paradox. The ellipse would be mapped to concentric circles instead of a circle
as shown in Fig. 1. The inner circular boundary must be considered. Later, Sendeckyj [1] found that the
five dislocations would be brought by this mapping operator as shown in Fig. 2. It violates the condition
of only one dislocation. Sendeckyj [1] introduced the corresponding dislocations to eliminate the extra
dislocations. Gong and Meguid [2] revisited this problem in 1994. They used the Laurent series to repre-
sent the potential. Unfortunately, their analytical results of the potential function are not equivalent. The
inconsistency may be attributed to typos. It is why we revisit this issue by using the alternative way, the
angular basis function. This method is free of using the extra dislocations or matching the extra boundary
condition to modify the potential. In this paper, we would examine this nonequivalence. Dislocation prob-
lems have been solved by using complex variables [10–12]. Fang et al. [13] derived the general solutions
for the complex multiply connected region. Not only a screw dislocation but also interfacial cracks are
considered for an elliptical inhomogeneity. Later, Luo and Xiao [14] investigated the nano inhomogeneity
by accounting the Gurtin–Murdoch model. Recently, Wang and Schiavone [15] solved the interaction
problem of a screw dislocation in an elastic inhomogeneity of arbitrary shape partially penetrated by a
semi-infinite crack. For Burgers vector and the Peach–Koehler force, Lubarda [16] had a well-done review
in 2019. Since almost all of the above problems were solved by using the complex-variable technique, its
extension to three-dimensional cases may be limited. A more general approach is not trivial for further
investigation. The present approach may fill the gap.

The complex-valued fundamental solution ln(z) can be decomposed into the radial basis function
(RBF) and the angular basis function (ABF). Kansa [17] directly collocated the RBF to solve the par-
abolic, hyperbolic and the elliptic Poisson’s equation. Zheng et al. [18] proposed a meshless local RBF
collocation method to calculate the band structures of 2D anti-plane transverse elastic waves in photonic
crystals. The RBF was used to interpolate the data as well as to solve the PDE in recent decades [19–23].
Since the conventional fundamental solution is also one kernel of the RBF, e.g., ln r, the expression to
degenerate kernel provides an analytical tool to solve the problem. Chen et al. [20] employed the degener-
ate kernel and superposition technique to revisit the Green’s function of Laplace problems with circular
boundaries. They derived the analytical solution by using the addition theorem free of the complex vari-
ables and the image method. Here, we introduce the degenerate (or so-called separable) kernel for the
angle-type fundamental solution instead of the radial-basis one to represent the screw dislocation solu-
tion. The terminology of degenerate kernel is not coined by authors, but can refer to the literature [24].
To our best knowledge, the degenerate kernel for the angle-type fundamental solution was first proposed
for the circular inclusion using the polar coordinates in [25]. After that, many researchers paid attention
to the angle-type fundamental solution. In 2015, Young et al. [26] used the ABF to solve potential flow
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Fig. 2. Locations of the propagated dislocations through the mapping operator

problems. However, a branch-cut problem may result in the difficulty in choosing the location of screw
dislocation. Until 2018, Li et al. [27] proposed a new approach (MTABF) that can directly adopt source
point distributions used in the traditional MFS to improve the method of angular basis function (MABF)
proposed by Young et al. [26]. In the same year, Alves et al. [28] proposed a remedy which used a pair
of two points to restrict the discontinuity appearing only along the line segment between two points,
and they named this kind of singularity as cracklets. It is nothing more than the constant element of
double-layer potential from the viewpoint of the dual BEM [29]. Kuo et al. [30] revisited the two-point
angular basis functions (cracklets) and adopted the concept of domain decomposition or added the log-
arithmic function into the base function to deal with the problem of a multiply-connected domain with
cracklets. Regarding the mathematical theory of dislocation, two books [31,32] can be consulted with. In
1988, Hong and Chen [29] linked the bridge between the dual boundary integral equation and dislocation
theory. Leandro [33] used the tangential differential operator to reduce the order of strong singularities
in the traction BIE. Later, Liu and Li [34] revisited this equivalence and connected to the displacement
discontinuity method.

Although previous investigations did a lot of elegant work for the problem of a screw dislocation, it
seems that numerical results were very few in the literature. In this paper, we extend the previous success
of a circular case [25] to an elliptical inclusion subject to a screw dislocation. The interaction between a
screw dislocation and an elliptical inhomogeneity contained within an infinite body is demonstrated as
shown in Fig. 3a. The angle-type fundamental solution for the screw dislocation in terms of degenerate
kernel for polar coordinates is extended to the elliptical coordinates. The use of the degenerate kernel has
the merit of free of singular integrals even collocating on the boundary of a domain. By employing the
superposition technique, a screw dislocation solution is decomposed into two parts: one is the infinite plane
subject to the screw dislocation problem, the other is the infinite plane with an elliptical inhomogeneity
subject to the corresponding boundary condition. After superimposing the two solutions, the governing
equation and boundary conditions can be both satisfied. Finally, the result is demonstrated to show the
validity of the present method. Agreement with Sendeckyj’s result [1] is obtained. The typo of Gong and
Meguid [2] is also verified.

2. Problem statements

For the anti-plane strain problem, we only consider the anti-plane displacement w such that

u(x) = 0, v(x) = 0, and w(x) = w(x, y), (1)
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(a) An infinite-plane problem containing an elliptical inclusion subject to a screw dislocation

(b) An infinite matrix with an elliptical hole
subject to a screw dislocation

(c) An interior Laplace problem for an elliptical 
inclusion (using the RBF)

(d) An infinite matrix subject to a screw 
dislocation (using the ABF)

(e) An exterior Laplace problem for the matrix
(using the RBF)

Fig. 3. Sketch of an infinite plane with an elliptical inclusion subject to a screw dislocation by taking free body and using
the superposition technique

where u and v are the vanishing components of displacement. The governing equation for the anti-plane
displacement, w, in the absence of body force is simplified to

∇2w(x) = 0, x ∈ D, (2)

where ∇2 is the two-dimensional Laplace operator and D denotes the domain of interest. Therefore, the
screw dislocation can be described as

lim
y→yd

(
w(x, y−) − w(x, y+)

)
= bz, x ≥ xd, (3)
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Fig. 4. Displacement contour of an infinite plane with a circular inclusion (a = 1, b = 0.999, μI = 0.6 and μM = 1)

where bz denotes the component of the Burgers vector (0, 0, bz) along the anti-plane direction and (xd, yd)
denotes the location of the screw dislocation. By taking the free body along the interface between the
matrix and inclusion, the problem is decomposed into two systems. One is an infinite plane with an
elliptical hole subject to a screw dislocation as shown in Fig. 3b. The other is that an elliptical inclusion
bounded by the contour B which satisfies the Laplace equation as shown in Fig. 3c. For the problem in
Fig. 3b, it can also be superimposed by two parts. One is a free field containing a screw dislocation and
the other is an infinite plane with an elliptical hole, which satisfies the specified boundary condition as
shown in Fig. 3d, e, respectively. The displacement and traction arising from the screw dislocation in
Fig. 3d is expanded along the boundary by using the degenerate kernel and is introduced in the next
section. In order to solve the interior and exterior typical boundary value problems (BVPs) in Fig. 3c, e,
respectively, the null-field boundary integral formulation is reviewed and is elaborated on later. According
to the displacement continuity and force equilibrium conditions on the interface between the matrix and
inclusion, we have

wM (x) = wI(x), x ∈ B, (4)

μM tM (x) = −μItI(x), x ∈ B, (5)
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Fig. 5. Displacement contour of an infinite plane with a circular inclusion (a = 1, b = 0.999 and μI = μM = 1)

where μI and μM denote the shear moduli for the inclusion and matrix, respectively, and t(·)(x) =
∂w(·)(x)/∂nx in which nx is the unit outward normal vector at x.

3. Mathematical formulation

3.1. Transformation of the screw dislocation by using the degenerate kernel in the elliptical coordinates

In order to transform the screw dislocation with respect to the center of elliptical boundary, the degenerate
kernel is used here. The kernel function in the elliptical coordinates is utilized to replace the Cartesian
coordinates. Therefore, the location of the screw dislocation and collocation points are expressed as
sd = (ξd, ηd) and x = (ξx, ηx), respectively, in elliptical coordinates. In order to derive the degenerate
kernel of screw dislocation of Laplace equation, we have

ln(x − sd) = ln(reiϕ) = ln r + iϕ, (6)
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Fig. 6. Displacement contour of an infinite plane with an elliptical inclusion (a = 2, b = 1.5, μI = 0.6 and μM = 1)

where r and ϕ are the distance and argument, respectively, in the complex plane. For the exterior
case(ξd < ξx), Eq. (6) can be expanded as follows:

ln(x − sd) = ln c
2 + ξx −

∞∑

m=1

1
me−m (ξx+ξd) cos m(ηx + ηd) −

∞∑

m=1

1
me−m (ξx−ξd) cos m(ηx − ηd)

+iηx −
∞∑

m=1

i
me−m (ξx+ξd) sin m(ηx + ηd) −

∞∑

m=1

i
me−m (ξx−ξd) sin m(ηx − ηd), ξd<ξx.

(7)

It is interesting to find that the component in the degenerate kernel is nothing more than the complete
Trefftz base. Thus, the degenerate (separable) form for the fundamental solution of the screw dislocation,
ϕ(sd,x), is obtained

φ(sd,x) = ηx −
∞∑

m=1

1
m

e−m (ξx+ξd) sinm(ηx + ηd) −
∞∑

m=1

1
m

e−m (ξx−ξd) sin m(ηx − ηd), ξd < ξx. (8)

Similarly, we also obtain

ϕ(sd,x) = ηd + π +
∞∑

m=1

1
m

e−m (ξx+ξd) sinm(ηx + ηd) +
∞∑

m=1

1
m

e−m (ξd−ξx) sin m(ηd − ηx), ξd ≥ ξx. (9)
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Fig. 7. Displacement contour of an infinite plane with an elliptical inclusion (a = 2, b = 1.5, μI = 0.2 and μM = 1)

for the interior case (ξd ≥ ξx). The principal argument of angular basis function, ϕ(sd,x) is defined in the
interval between 0 and 2π. In order to match the physical meaning and mathematical requirement, we
modify the range of the interest between −π and π as shown in Table 1. Thus, the fundamental solution
of the screw dislocation (ϕ(sd,x)) is expressed by

ϕ(sd,x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕE(ξd, ηd; ξx, ηx) = ηx − π −
∞∑

m=1

1
me−m (ξx+ξd) sin m(ηx + ηd)

−
∞∑

m=1

1
me−m (ξx−ξd) sin m(ηx − ηd), ξd < ξx,

ϕI(ξd, ηd; ξx, ηx) = ηd +
∞∑

m=1

1
me−m (ξx+ξd) sin m(ηx + ηd)

+
∞∑

m=1

1
me−m (ξd−ξx) sin m(ηd − ηx), ξd ≥ ξx,

(10)

where the superscripts “I” and “E” denote the interior and exterior cases, respectively. For the contour
plot of the screw dislocation as shown in Table 1, the interior case means that the collocation point in
the blue region and the exterior case means that the collocation point in the red region, where the screw
dislocation is on the elliptical boundary.
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3.2. Review of the null-field integral equations for the BVP

Following the success of the null-field boundary integral equation method for BVPs, a detailed formulation
is reviewed here.

3.2.1. Null-field boundary integral formulation. By introducing the degenerate kernels, the collocation
point can be located on the real boundary free of facing the principal value. Therefore, the integral
representations of the exterior case including the boundary point can be written as

2πw(x) =
∫

B

TE(s,x)w(s)dB(s) −
∫

B

UE(s,x)
∂w(s)
∂ns

dB(s), x ∈ D ∪ B, (11)

where s and x are the source and field points, respectively, B is the boundary, nx and nsdenote the
unit outward normal vector at the field point and the source point, respectively, and the kernel function
U(s,x) is the fundamental solution ln r = ln |x − s|. The other kernel function can be obtained as
T (s,x) = ∂U(s,x)

∂ns
. The superscripts “E” of U and T kernels denote the corresponding degenerate kernel

[23]. By moving the field point to the complementary domain, the null-field boundary integral equation
is shown below:

0 =
∫

B

T I(s,x)w(s)dB(s) −
∫

B

U I(s,x)
∂w(s)
∂ns

dB(s), x ∈ Dc ∪ B, (12)

where Dc denotes the complementary domain of D.

3.2.2. Expansions of boundary densities by using the eigenfunction. To fully employ the property of
elliptical geometry, the mathematical tools, degenerate kernel (so-called separable kernel) and eigenfunc-
tion expansion for an analytical study, the unknown boundary densities are represented by using the
eigenfunction expansion as shown below:

wM (s) =
bz

2π

(

aM
0 +

∞∑

n=1

aM
n cos nηs +

∞∑

n=1

bM
n sinnηs

)

, (13)

wI(s) =
bz

2π

(

aI
0 +

∞∑

n=1

aI
n cos nηs +

∞∑

n=1

bI
n sinnηs

)

, (14)

∂wM (s)
∂ns

= tM (s) =
1
Js

bz

2π

(

pM
0 +

∞∑

n=1

pM
n cos nηs +

∞∑

n=1

qM
n sin nηs

)

, (15)

and

∂wI(s)
∂ns

= tI(s) =
1
Js

bz

2π

(

pI
0 +

∞∑

n=1

pI
n cos nηs +

∞∑

n=1

qI
n sin nηs

)

, (16)

where Js = c
√

(sinh ξs cos ηs)2 + (cosh ξs sin ηs)2 and c is the half distance between the foci of the elliptical
coordinates. In the elliptical coordinates, the boundary distribution of wd(x) and ∂wd(x)

∂nx
= − 1

Jx

∂wd(x)
∂ξx

=
td(x) due to the screw dislocation are expressed as

wd(x) =
bz

2π

(

ηd +
∞∑

m=1

1
m

e−m (ξx+ξd) sin m(ηx + ηd) +
∞∑

m=1

1
m

e−m (ξd−ξx) sinm(ηd − ηx)

)

,

ξx < ξd, (17)
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and

td(x) =
1
Jx

bz

2π

( ∞∑

m=1

e−m (ξx+ξd) sin m(ηx + ηd) −
∞∑

m=1

e−m (ξd−ξx) sinm(ηd − ηx)

)

, ξx < ξd. (18)

4. Illustrative examples and discussions

4.1. Revisit the problem of a screw dislocation by using the complex variables

Here, we focused on the interaction between a screw dislocation and an elliptical inhomogeneity. Smith
[7] extended the circle theorem in hydrodynamics to derive the solution for the interaction between a
screw dislocation and a circular inhomogeneity as shown below:

{
FM (z) = μM bz

2πi

(
ln(z − z0) + K ln

(
R2

0
z − z̄0

))
,

FI(z) = (1 + K)μM bz

2πi ln(z − z0),
(19)

and

w(z) =

{
1

μM Re [FM (z)] , for the matrix,
1

μI Re [FI(z)] , for the inclusion,
(20)

where K = (μI − μM )/
(
μI + μM

)
, z0 is the location of a screw dislocation outside the circular inclu-

sion, R0 is the radius of the circle, and FM (z) and FI(z) are potential functions in the matrix and the
inhomogeneity, respectively. For an elliptical inclusion with semi-major and semi-minor axes a and b, he
introduced the conformal mapping as shown below:

z = f(z1) = R0
a+b

(
z1 +

(
z21 − c2

)1/2
)

,

z1 = g(z) = c
2

(
kz + 1

kz

)
,

(21)

where c is the half distance between the foci and k =
√

a+b√
a−b

. However, the ellipse in the z1 plane is mapped
to concentric circles instead of a circle as shown in Fig. 1 The radii of outer and inner circles are R0 and
R1, respectively. Sendeckyj [1] employed the mapping function to obtain the potential function as given
below:

FM (g(z)) = μM bz

2πi

(
ln (z − z0) + K ln

(
z − 1

z0

)
+ ln

(
z − λ

z0

)

+ K ln
(
z − z0

λ

) − (1 + K) ln z + ln c + K ln cz
)
,

(22)

where λ = R2
1 = a−b

a+b . It meant that FM (z) in Eq. (22) consists the rigid body term, ln c and five
screw dislocations in the z plane as shown in Fig. 2. It violates the condition of a dislocation only at z0.
Sendeckyj introduced the corresponding dislocations to eliminate the extra dislocations in the z plane [1].
He derived an alternative expression for FM (z1) as shown below:

FM (g(z)) =
μMbz

2πi

{
ln (z − z0) + K

(
ln

(
z − 1

z0

)
− ln z

)

+(1 − K2)
∞∑

n=0

(−K)n

(
ln

(
z − λn+1

z0

)
− ln z

)}

. (23)

The solution for screw dislocation near a circular boundary is in agreement of Smith [7] and Dundurs
[35]. But the expression for the inclusion, FI(z) was not proposed in [1]. Until 1994, Gong and Meguid
revisited this problem [2]. They used the Laurent series to represent the potential. In addition to the
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interface conditions in Eqs. (4) and (5) for B0, an extra condition must be satisfied on B1 as shown
below:

FI(z) = FI(z̄), z ∈ B1. (24)

The alternative expression for FM (z1) was derived as shown below:

FM (g(z)) =
μMbz

2πi

{

ln (z − z0) −
∞∑

m=1

Kλ−m

K + λ−m

1
m + 1

(zz0)
−m

}

. (25)

The potential in the inclusion was

FI (g(z)) =
∞∑

n=0

cnzn+1 + dnz−(n+1), (26)

where coefficients are

cn = Lnān + Nnan, and dn = λn+1 (Lnān + Nnan) ,

in which

Ln = K (1 + K) λ−(n+1)/Δ, Nn = (1 + K) λ−2(n+1)/Δ, an = −μMbz

2πi

1
n + 1

z
−(n+1)
0 , (27)

and Δ = λ−2(n+1) − K2.

To verify the equivalence between Eqs. (23) and (25), Eq. (23) could be expanded as

FM (g(z)) =
μMbz

2πi

{

ln (z − z0) − K
∞∑

m=1

1
m

(zz0)
−m −(1 − K2)

∞∑

n=0

(−K)n
∞∑

m=1

1
m

(zz0)
−m

λm(n+1)

}

.

(28)

By taking the Taylor series for series terms in Eq. (25), we have

FM (g(z)) =
μMbz

2πi

{

ln (z − z0) − K

∞∑

m=1

1
m

(zz0)
−m +K2

∞∑

m=1

1
m

(zz0)
−m

∞∑

n=0

(−K)n
λm(n+1)

}

. (29)

Unfortunately, the result of Eqs. (28) and (29) does not match in our plot, i.e., the error may exist.
The above three methods by Smith [7], Sendeckyj [1], Gong and Meguid [2] were compared in Table
2. It is why we revisit this issue by using the alternative and independent approach, the angular basis
function. This method is free of the extra dislocations or modification to match the boundary condition.
Some numerical results verified the results.

4.2. The present method—degenerate kernel of the angular basis function

By employing the superposition technique, an anti-plane problem with a screw dislocation is decomposed
into two parts. One is the infinite plane subject to the screw dislocation, and the other is the infinite
plane with an elliptical inhomogeneity subject to the corresponding B.C. For the inclusion, the null-field
boundary integral equation is rewritten as

0 =
∫

B

TE(s, x)wI(s)dB(s) −
∫

B

UE(s, x)tI(s)dB(s), x ∈ DI
c ∪ B, (30)
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where we adopt the degenerate kernel to represent ln r instead of ϕ, DI
c is the complementary domain of

an elliptical inclusion as shown in Fig. 3c,

U(s, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

UE(s, x) = ln c
2 + ξx −

∞∑

m=1

1
me−m (ξx+ξs) cos m(ηx + ηs)

−
∞∑

m=1

1
me−m (ξx−ξs) cos m(ηx − ηs), ξx ≥ ξs,

U I(s, x) = ln c
2 + ξs −

∞∑

m=1

1
me−m (ξx+ξs) cos m(ηx + ηs)

−
∞∑

m=1

1
me−m (ξs−ξx) cos m(ηs − ηx), ξx < ξs,

(31)

and

T (s, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TE(s, x) = 1
Js

( ∞∑

m=1
e−m (ξx+ξs) cos m(ηx + ηs)

−
∞∑

m=1
e−m (ξx−ξs) cos m(ηx − ηs)

)
, ξx > ξs,

T I(s, x) = 1
Js

(
1 +

∞∑

m=1
e−m (ξx+ξs) cos m(ηx + ηs)

+
∞∑

m=1
e−m (ξs−ξx) cos m(ηx − ηs)

)
, ξx < ξs.

(32)

After substituting Eqs. (14), (16), (31) and (32) into Eq. (30) and collocating the field point x on the
boundary, we have

∞∑

n=1

πe−2nξ0
(
aI

n cos nηx − bI
n sinnηx

) −
∞∑

n=1

π
(
aI

n cos nηx + bI
n sinnηx

)

= 2π
(
ln

c

2
+ ξ0

)
pI
0

−
∞∑

n=1

π

n
e−2nξ0

(
pI

n cos nηx − qI
n sinnηx

) −
∞∑

n=1

π

n

(
pI

n cos nηx + qI
n sin nηx

)
, (33)

where ξ0 is the radial parameter in the elliptical coordinates for the interface. By comparing with the
coefficients of Fourier base in Eq. (33), we have

⎧
⎪⎪⎨

⎪⎪⎩

pI
0 = 0,

aI
n = − 1

n

(
e−2nξ0 +1
e−2nξ0 −1

)
pI

n, n = 1, 2, . . . ,

bI
n = − 1

n

(
e−2nξ0 −1
e−2nξ0 +1

)
qI
n, n = 1, 2, . . . ,

(34)

By satisfying the continuity condition on the interface of Eqs. (4) and (5), we obtained
⎧
⎪⎪⎨

⎪⎪⎩

pM
0 = − μI

μM pI
0 = 0,

pM
n = − μI

μM pI
n, n = 1, 2, . . . ,

qM
n = − μI

μM qI
n, n = 1, 2, ...,

(35)

and
⎧
⎪⎪⎨

⎪⎪⎩

aM
0 = aI

0,

aM
n = aI

n = 1
n

μM

μI

(
e−2nξ0+1
e−2nξ0−1

)
pM

n , n = 1, 2, . . . ,

bM
n = bI

n = 1
n

μM

μI

(
e−2nξ0−1
e−2nξ0+1

)
qM
n , n = 1, 2, . . . .

(36)
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According to the superposition technique and the null-field boundary integral equation, we have

0 =
∫

B

T I(s, x)
(
wM (s) − wd(s)

)
dB(s) −

∫

B

U I(s, x)
(
tM (s) − td(s)

)
dB(s), x ∈ DM

c ∪ B, (37)

where DM
c is the complementary domain of the matrix as shown in Fig. 3e,

wd(s) =
bz

2π

(

ηd +
∞∑

m=1

1
m

e−m (ξ0+ξd) sinm(ηs + ηd) +
∞∑

m=1

1
m

e−m (ξd−ξ0) sinm(ηd − ηs)

)

,

s = (ξ0, ηs) ∈ B (38)

and

td(s) =
1
Js

bz

2π

( ∞∑

m=1

e−m (ξ0+ξd) sinm(ηs + ηd) −
∞∑

m=1

e−m (ξd−ξ0) sinm(ηd − ηs)

)

, s = (ξ0, ηs) ∈ B.

(39)
After substituting Eqs. (31), (32), (34)–(36), (38) and (39) into Eq. (37) and collocating the field point

x on the boundary, Eq. (37) yields

−
(

2πηd +

∞∑

m=1

2π

m
e−m(ξd−ξ0) sin m(ηd − ηx) +

∞∑

m=1

2π

m
e−m(ξd+ ξ0) sin m(ηd + ηx)

)

= −
(

2πaM
0 +

∞∑

n=1

π

n

(
e−2n ξ0 + 1

) (
μM

μI

(
e−2nξ0 + 1

e−2nξ0 − 1

)
− 1

)
pM

n cos nηx

−
∞∑

n=1

π

n

(
e−2n ξ0 − 1

) (
μM

μI

(
e−2nξ0 − 1

e−2nξ0 + 1

)
− 1

)
qM
n sin nηx

)

. (40)

By comparing with the coefficient of the Fourier sine base in Eq. (40), we have
⎧
⎪⎪⎨

⎪⎪⎩

pI
0 = 0,

aI
n = − 1

n

(
e−2nξ0 +1
e−2nξ0 −1

)
pI

n, n = 1, 2, . . . ,

bI
n = − 1

n

(
e−2nξ0 −1
e−2nξ0 +1

)
qI
n, n = 1, 2, . . . ,

(41)

Based on Eqs. (34), (35), (36) and (41), the unknown Fourier coefficients could be determined by
⎧
⎪⎪⎨

⎪⎪⎩

aI
0 = aM

0 = ηd,

aI
n = aM

n = 2
n

μM (e−n(ξd+ ξ0) + e−n(ξd−ξ0) )
(μM −μI)e−2nξ0 +(μM+μI)

sin nηd, n = 1, 2, . . . ,

bI
n = bM

n = − 2
n

μM (e−n(ξd+ ξ0) − e−n(ξd− ξ0) )
(μM −μI)e−2nξ0 − (μM+μI)

cos nηd, n = 1, 2, . . . .

(42)

Finally, the analytical solution derived by the present method is given below. For the matrix, we have

w(x) = wM (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bz

2π

(
ηx − π+

∞∑

n=1

1
n e−n (ξx−ξd) sinn(ηx − ηd)

+
∞∑

n=1

1
n e−n (ξx+ξd−2ξ0)

μM (e−2nξ0 +1)+μI(e−2nξ0 −1)
μM (e−2nξ0 +1)−μI(e−2nξ0 −1) sin nηd cos nηx

−
∞∑

n=1

1
n e−n(ξx+ξd−2ξ0)

μM (e−2nξ0 −1)+μI(e−2nξ0 +1)
μM (e−2nξ0 −1)−μI(e−2nξ0 +1) cos nηd sinnηx

)
, ξx ≥ ξd,

bz

2π

(
ηd+

∞∑

n=1

1
n e−n (ξd−ξx) sin n(ηd − ηx)

+
∞∑

n=1

1
n e−n (ξx+ξd−2ξ0)

μM (e−2nξ0 +1)+μI(e−2nξ0 −1)
μM (e−2nξ0 +1)−μI(e−2nξ0 −1) sinnηd cos nηx

−
∞∑

n=1

1
n e−n(ξx+ξd−2ξ0)

μM (e−2nξ0 −1)+μI(e−2nξ0 +1)
μM (e−2nξ0 −1)−μI(e−2nξ0 +1) cos nηd cos nηx

)
, ξ0 ≤ ξx < ξd.

(43)
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For the inclusion, we have

w(x) = wI(x) = bz

2π

(
ηd +

∞∑

n=1

2
n

μM (e−n(ξd+ξx) + e−n(ξd −ξx) )
(μM −μI)e−2nξ0 +(μM+μI)

sin nηd cos nηx

−
∞∑

n=1

2
n

μM (e−n(ξd+ξx) − e−n(ξd−ξx) )
(μM −μI)e−2nξ0 − (μM+μI)

cos nηd sin nηx

)
, ξx < ξ0.

(44)

First, a special case, a circular inclusion in the infinite plane with a screw dislocation is examined. In
the literature [7], an analytical solution of the circular case was derived by Smith as shown in Eqs. (19)
and (20). The screw dislocation is located at sd = (1.2, 0). For the present method, the center of the
elliptical inclusion is set at (0, 0). The semimajor and semiminor axes of the ellipse, a = 1 and b = 0.999,
respectively, are selected to simulate a circular case. The shear moduli for the inclusion and matrix are
μI = 0.6 and μM = 1, respectively. Figure 4 shows the displacement contour by using the Smith’s method
[7] and the present method. It is found that the result of the present approach matches well with that of
using the Smith’s method. Besides, the special case, μI = μM = 1, is also addressed in Fig. 5.

For an elliptical case, the screw dislocation is located at sd = (2.2, 0). The center of the elliptical
inclusion is set at (0, 0). The semimajor and semiminor axes of the ellipse are a = 2 and b = 1.5,
respectively. The shear moduli for the inclusion and matrix are μI = 0.6 and μM = 1, respectively. By
comparing with the results of ours and the literatures [1,2], we find a typo in Eq. (25) which was derived
by Gong and Meguid [2]. Equation (25) should be corrected as

FM (g(z)) =
μMbz

2πi

{

ln (z − z0) −
∞∑

m=1

Kλ−m − 1
K + λ−m

1
m + 1

(zz0)
−m

}

. (45)

Therefore, the equivalence between Eqs. (23) and (45) can be proved by expanding Eq. (23) into the
Taylor series for series terms in Eq. (45). Figure 6 shows the displacement contour by using the Gong
and Meguid’s method [2] and the present method. By correcting the new representation formula in Eq.
(45) instead of Eq. (25), their results agree well with ours. While the shear moduli for the inclusion and
matrix are μI = 0.2 and μM = 1, respectively, the agreeable results are also obtained as shown in Fig. 7.

5. Conclusions

Following the previous successful experience of a circular case, the infinite plane problem containing an
elliptical inhomogeneity subject to the screw dislocation was analytically solved here. The degenerate ker-
nel and superposition technique were employed to solve the BVP. Moreover, the angle-type fundamental
solution for the screw dislocation in terms of degenerate kernel for polar coordinates was extended to the
elliptical coordinates in this paper. By using the ABF, the boundary displacement and traction caused
by the screw dislocation along the elliptical interface can be obtained. The interaction between a screw
dislocation and an elliptical inhomogeneity was investigated to show the validity of the present method.
Besides, one limiting case of a circular inclusion by approaching the length of the axes was also addressed
for comparison. Finally, good agreements were made after comparing with those of complex variables. The
expression of Gong and Meguid’s solution was also corrected. Although the result of complex variables
can extend to other domains by using the conformal mapping, the extra boundary condition may be con-
sidered like this case. The present approach can extend to other shapes by using the suitable degenerate
kernel, even the three-dimensional case. In addition, it is also possible to extend multiple inclusions by
using this method combining with the adaptive observer.
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