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Abstract. Thermoelastic interactions in a linear, isotropic and homogeneous unbounded solid resulting from a continuous
line heat source are investigated utilizing modified temperature-rate-dependent two-temperature thermoelasticity theory
(MTRDTT, recently proposed by Shivay and Mukhopadhyay in J Heat Transf 142:4045241, 2019). By incorporating the
temperature-rate terms of thermodynamic temperature and conductive temperature, the two-temperature relation is mod-
ified in this theory. The problem is studied with the unified version of two-temperature relation to compare the results for
displacement, temperatures and stresses in the MTRDTT model with the corresponding results of the two-temperature
Green-Lindsay (TTGL) model. To solve the problem, Laplace and Hankel transforms are employed. Explicit expressions
for these field variables are obtained for the short-time approximation case. Further, the computational tool is used to
graphically depict the analytical findings and compare the results obtained from both models. Some important observations
about these models are highlighted.
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1. Introduction

It is accepted that the equation of heat conduction in classical coupled thermoelasticity theory proposed
by Biot [1] is based on Fourier’s law. Although Biot’s theory overcomes the shortcoming of the uncoupled
thermoelastic theory, it still has a deficiency that thermal waves propagate instantaneously in this theory
due to relying on the classical Fourier’s law. Since it violates the causality principle, it is not well accepted
in view of physical phenomena. To overcome this drawback, hyperbolic type of energy equations were
needed. The first such generalization is due to Lord and Shulman (LS) [2], who replaced classical Fourier’s
law with a modified law of heat conduction involving the heat flux as well as its time derivative. The
second modification to the classical coupled thermoelasticity theory using the concept of Green and
Laws [3] was introduced by Green and Lindsay (GL) [4]. The GL theory incorporates temperature-rate
terms among the constitutive relations; therefore, this theory is known as the temperature-rate-dependent
thermoelasticity theory. Later on, by introducing thermal displacement as a new field variable, Green and
Naghdi [5–7] proposed three alternative theories, GN-I, GN-II, and GN-III, respectively, the first of which
is a linearized version of Biot’s theory.

Alternatively, Chen and Gurtin [8] and Chen et al. [9,10] received considerable attention for their
modification to heat conduction theory that involves two temperatures, the thermodynamic temperature
θ and the conductive temperature φ. They also demonstrated that the distinction between these two tem-
peratures in a time independent situation is proportional to the heat supply and these two temperatures
are identical when an external heat source is absent. They proposed a relation between these two temper-
atures and termed it as a two-temperature relation. Later on, taking into account this two-temperature
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relation, Youssef [11] developed the two-temperature generalized thermoelastic model in view of the LS
model. Since the propagation speed of thermal waves is infinite in this theory, consequently Youssef
and El-Bary [12] extended this theory and formulated the hyperbolic two-temperature thermoelasticity
theory. In the context of two-temperature GL (TTGL) theory, Youssef [11] also stated the complete
system of equations. This theory is also called the temperature-rate-dependent two-temperature theory.
Further, using the fundamental laws of thermodynamics, Shivay and Mukhopadhyay [13] formulated this
two-temperature GL theory. In this modified temperature-rate-dependent two-temperature (MTRDTT)
thermoelastic model, the two-temperature relation is modified which contains temperature-rate terms
associated with the thermodynamic and conductive temperatures.

Warren and chen [14] examined the propagation of waves for the thermoelasticity theory with two-
temperature. Puri and Jordan [15] studied the propagation of harmonic plane waves under the two-
temperature theory. In view of the two-temperature LS theory [11], Youssef and Al-Lehaibi [16] and
further Kumar and Mukhopadhyay [17] discussed a one-dimensional thermoelastic problem and the
propagation of plane harmonic waves, respectively. The growth and uniqueness of solutions under the
two-temperature LS and GL models were investigated by Magana and Quintanilla [18]. Also, Kumar
et al. [19,20] discussed thermoelastic interactions and plane wave propagation under the TTGL model.
Under two-temperature LS and GL theories, the spatial behavior of the solutions was investigated by
Miranville and Quintanilla [21]. Variational and reciprocal principles under the MTRDTT model were
obtained by Jangid and Mukhopadhyay [22]. Kumar et al. [23] analyzed thermoelastic interactions in the
hyperbolic two-temperature thermoelasticity theory. Further, the uniqueness and exponential instability
results in the MTRDTT theory were obtained by Fernández and Quintanilla [24]. Recently, thermome-
chanical interactions due to mode-I crack under this MTRDTT model were investigated by Shivay and
Mukhopadhyay [25].

The goal of this current study is to use the MTRDTT thermoelasticity theory to investigate thermoe-
lastic interactions inside an isotropic and homogeneous medium with a continuous line heat source. It is
worth recalling that thermoelastic interactions caused by a continuous line heat source were investigated
by Sherief and Anwar [26] in the LS model. Chandrasekharaiah and Murthy [27] examined thermoelastic
interactions resulting from a line heat source in the GL model. Ezzat [28] also used thermoelasticity
theory with two relaxation times to study thermoelastic interactions induced by a line heat source for
cylindrical regions. It is also worth mentioning some contributions to the study of thermoelastic inter-
actions resulting from a line heat source (see Refs. [29–31]) and one can find that there are significant
dissimilarities in the predictions by different models regarding the effects of heat source.

In view of the above, the present work is motivated to discuss thermoelastic interactions under the
MTRDTT theory inside an isotropic and homogeneous medium with a continuous line heat source.
We study our problem with the unified form of two-temperature relation to compare the results for
displacement, temperatures and stresses under the MTRDTT model with the corresponding results of the
TTGL model. We apply the Laplace transform and Hankel transform techniques to solve the problem.
Further, through the use of short-time approximation and inverse Laplace transform, the analytical
solutions in the space-time domain are obtained. The obtained results are further illustrated numerically
and distributions of field variables are depicted in various graphs. Some important observations are
highlighted.

2. The mathematical model

We consider an isotropic and homogeneous thermoelastic body assuming that there are no body forces
in the medium.

Thus, the governing equations in the context of MTRDTT thermoelasticity theory [13] can be written
as follows:
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The equation of motion:
σij,j = ρüi. (1)

The stress–strain temperature relation:

σij = λekkδij + 2μeij − γδij

(
1 + τ1

∂

∂t

)
θ. (2)

The strain–displacement relation:

eij =
1
2

(ui,j + uj,i) . (3)

The heat conduction equation including a heat source is considered as:

Kφ,ii = ρCE

(
∂

∂t
+ τ2

∂2

∂t2

)
θ + γθ0

∂e

∂t
− ρR. (4)

Here, we will consider a line heat source which is as follows:

R =
1

2πr
R0δ(r)H(t), (5)

where R0 is a constant, H(t) is the Heaviside unit step function, and δ(r) represents the Dirac delta
function.

The two-temperature relation is expressed as follows:(
1 + τ1p

∂

∂t

)
φ −

(
1 + τ1p

∂

∂t

)
θ = aφ,ii, (6)

where a represents the two-temperature parameter and p is a dimensionless parameter that is adopted to
express the unified two-temperature relation. These parameters satisfy following under GL model, TTGL
model and MTRDTT model as follows:

• GL model: p = a = 0
• TTGL model: p = 0, a �= 0
• MTRDTT model: p �= 0, a �= 0.

In the above equations, σij denotes the components of stress tensor, λ and μ represent Lamé constants, u
is the displacement, ρ is the mass density, eij represents the components of strain tensor, γ = (3λ+2μ)α,
where α denotes coefficient of linear thermal expansion. τ1 and τ2 are the thermal relaxation parameters,
K is the thermal conductivity of the material, e = eii is the dilatation, CE represents specific heat
at constant strain. θ0 is the reference temperature, θ and φ are the thermodynamic and conductive
temperatures, respectively, measured from θ0.

3. Formulation of the problem

In this work, an unbounded thermoelastic solid containing a line heat source is considered. We employ a
cylindrical coordinate system (r, ϕ, z) throughout this paper. The heat source is assumed to be located
along the z-axis. We consider that thermoelastic interactions are symmetrical about an axis therefore the
displacement and temperature vectors will be dependent only on the space variables r and time t having
only a radial component. There are two components of stress tensor, namely σrr and σϕϕ, where σrr is in
radial direction and σϕϕ denotes the circumferential stress in transverse direction. Therefore, the strain
tensor has nonzero components as

err =
∂u

∂r
, eϕϕ =

u

r
, (7)

so that the dilatation is given by

e = eii = err + eϕϕ =
∂u

∂r
+

u

r
. (8)
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Now, the cylindrical form of equation of motion (1) is as follows:

∂σrr

∂r
+

σrr − σϕϕ

r
= ρ

∂2u

∂t2
. (9)

Using Eq. (8), radial and circumferential stress components will take the forms

σrr = λ
u

r
+ (λ + 2μ)

∂u

∂r
− γ

(
1 + τ1

∂

∂t

)
θ, (10)

σϕϕ = λ
∂u

∂r
+ (λ + 2μ)

u

r
− γ

(
1 + τ1

∂

∂t

)
θ. (11)

Substituting Eqs. (10) and (11) in (9), we obtain

ρ
∂2u

∂t2
= (λ + 2μ)

(
∂2

∂r2
+

1
r

∂

∂r
− 1

r2

)
u − γ

(
1 + τ1

∂

∂t

)
∂θ

∂r
. (12)

Further, by combining Eqs. (4), (5) and (8), we get

K∇2φ = ρCE

(
∂

∂t
+ τ2

∂2

∂t2

)
θ + γθ0

∂

∂t

(
∂u

∂r
+

u

r

)
− ρR0

2πr
δ(r)H(t), (13)

where ∇2 = ∂2

∂r2 + 1
r

∂
∂r .

Now, we will use the following dimensionless transformations for the sake of simplicity:

(t′, τ ′
1, τ

′
2) = c20η(t, τ1, τ2), (r′, u′) = c0η(r, u), (θ′, φ′) =

1
θ0

(θ, φ),

(σ′
rr, σ

′
ϕϕ) =

1
(λ + 2μ)

(σrr, σϕϕ), R′ =
γR

Kc40η
2
,

where

c20 =
λ + 2μ

ρ
and η =

ρCE

K
.

Using the non-dimensional parameters and variables listed above, Eqs. (6) and (10)–(13) are reduced as
follows (by omitting the primes for the sake of simplicity):

∂2u

∂t2
=

(
∂2

∂r2
+

1
r

∂

∂r
− 1

r2

)
u − a1

(
1 + τ1

∂

∂t

)
∂θ

∂r
, (14)

∇2φ =
(

∂

∂t
+ τ2

∂2

∂t2

)
θ + a2

∂

∂t

(
∂u

∂r
+

u

r

)
− R0

2πra1
δ(r)H(t), (15)

σrr =
∂u

∂r
+ λ1

u

r
− a1

(
1 + τ1

∂

∂t

)
θ, (16)

σϕϕ =
u

r
+ λ1

∂u

∂r
− a1

(
1 + τ1

∂

∂t

)
θ, (17)

(
1 + τ1p

∂

∂t

)
φ −

(
1 + τ1p

∂

∂t

)
θ = a3∇2φ, (18)

where

a1 =
γθ0

λ + 2μ
, a2 =

γ

ρCE
, a3 = ac20η

2, λ1 =
λ

λ + 2μ
.
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4. The governing equations in the Laplace transform domain

In the present context, the homogeneous initial conditions are considered for all field variables assuming
that the body is initially at rest in an unstressed and undeformed state at a constant temperature.

To get the solution, we use the Laplace transform defined by

f(r, s) =

∞∫
0

f(r, t)e−stdt, Re(s) > 0

to Eqs. (14)–(18). Therefore, we obtain

s2u =
(

∂2

∂r2
+

1
r

∂

∂r
− 1

r2

)
u − a1 (1 + τ1s)

∂θ

∂r
, (19)

∇2φ =
(
s + τ2s

2
)
θ + a2s

(
∂u

∂r
+

u

r

)
− A1δ(r)

rs
, (20)

σrr =
∂u

∂r
+ λ1

u

r
− a1 (1 + τ1s) θ, (21)

σϕϕ =
u

r
+ λ1

∂u

∂r
− a1 (1 + τ1s) θ, (22)

θ = φ −
(

a3

1 + τ1ps

)
∇2φ, (23)

where A1 = R0
2πa1

.

Eliminating θ between Eqs. (19) and (23), we get(
∂2

∂r2
+

1
r

∂

∂r
− 1

r2

)
u − a1 (1 + τ1s)

∂

∂r

[
φ − a3

1 + τ1ps

(
∂2

∂r2
+

1
r

∂

∂r

)
φ

]
= s2u. (24)

Further, by combining Eq. (23) and Eq. (20), we obtain[
1 +

a3

1 + τ1ps

(
s + τ2s

2
)] (

∂2

∂r2
+

1
r

∂

∂r

)
φ =

(
s + τ2s

2
)
φ + a2s

(
∂u

∂r
+

u

r

)
− A1δ(r)

rs
. (25)

We consider that D ≡ ∂
∂r and D∗ ≡ ∂

∂r + 1
r are two operators.

Therefore, decoupling of Eqs. (24) and (25), we arrive at
(
DD∗ − m2

1

) (
DD∗ − m2

2

)
u = [A2 (DD∗) − A3]

∂

∂r

(
δ(r)
r

)
, (26)

(
D∗D − m2

1

) (
D∗D − m2

2

)
φ =

[
s − 1

s
(D∗D)

]
A1δ(r)

r
. (27)

Here, A2 = a1a3(1+τ1s)A1
s(1+τ1ps) and A3 = A1a1(1+τ1s)

s . Furthermore, m2
1 and m2

2 are the roots of the equation(
1 + b4s + b5s

2
)
m4 − (

εs + b1s
2 + b2s

3 + b3s
4
)
m2 +

(
s3 + b6s

4 + b7s
5
)

= 0, (28)

where we use the notations

b1 = β + 1 + τ1pε,

b2 = a3 + τ1p(β + 1),
b3 = a3τ2,

b4 = τ1p + a3ε,

b5 = a3β,

b6 = τ1p + τ2,
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b7 = τ1τ2p,

β = τ2 + a1a2τ1,

ε = 1 + a1a2.

The solutions to Eqs. (26) and (27) that are bounded at infinity can be taken as follows:

u(r, s) =
1

m2
1 − m2

2

i=2∑
i=1

(−1)i−1mi(A2m
2
i − A3)K1(mir), (29)

φ(r, s) =
A1

m2
1 − m2

2

i=2∑
i=1

(−1)i−1 (m2
i − s2)
s

K0(mir), (30)

where, K0(mir) and K1(mir) denote the modified Bessel function of second kind having order zero and
order one, respectively.

To find the solutions for other field variables, we will use the following identities:

∇2K0(ar) = a2K0(ar),
∂

∂r
K1(ar) = −aK0(ar) − K1(ar)

r
. (31)

Therefore, combining Eqs. (30) and (23), we get

θ(r, s) =
A1

m2
1 − m2

2

i=2∑
i=1

(−1)i−1 (m2
i − s2)
s

(
1 − a3m

2
i

1 + τ1ps

)
K0(mir). (32)

Further, making use of Eqs. (31) and (32), Eqs. (21) and (22) yield the following equations:

σrr =
1

m2
1 − m2

2

i=2∑
i=1

(−1)i−1

{
m2

i (A3 − A2m
2
i ) + a1 (1 + τ1s) A1

(s2 − m2
i )

s

(
1 − a3m

2
i

1 + τ1ps

)}
K0(mir)

+
1

m2
1 − m2

2

i=2∑
i=1

(−1)i−1 (1 − λ1)
r

mi(A3 − A2m
2
i )K1(mir), (33)

σϕϕ =
1

m2
1 − m2

2

i=2∑
i=1

(−1)i−1

{
λ1m

2
i (A3 − A2m

2
i ) + a1 (1 + τ1s)A1

(s2 − m2
i )

s

(
1 − a3m

2
i

1 + τ1ps

)}
K0(mir)

+
1

m2
1 − m2

2

i=2∑
i=1

(−1)i−1 (λ1 − 1)
r

mi(A3 − A2m
2
i )K1(mir). (34)

The system of Eqs. (29)–(30) and (32)–(34) represents the solutions for displacement, temperatures and
stresses, respectively, in the Laplace transform domain.

5. Short-time approximation

For the purpose of obtaining the solutions for the field variables in the space-time domain (r, t), we
need to apply the inverse Laplace transform. Since the above equations involve the complicated terms on
the Laplace transform parameter s, for this reason, it is a challenging task to invert Laplace transform
analytically for arbitrary t and to find a closed form analytical solution. Furthermore, the present study is
more applicable for the problems concerning short time duration. In view of this, we will take into account
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the case of short-time approximation and find the solution for large s (small value of t). Therefore we
neglect higher power terms of 1/s.

Thus, the approximated roots m1 and m2 of Eq. (28) in the contexts of the MTRDTT and TTGL
theories are obtained as

m1 ≈ a10s + a11 + a12
s ,

m2 ≈ a20(s)1/2 + a21
(s)1/2 + a22

(s)3/2 ,

}
for the MTRDTT model (35)

m1 ≈ b10s + b11 + b12
s ,

m2 ≈ b20 + b21
s2 ,

}
for the TTGL model (36)

where

a10 =
√

τ2
β

, a11 =
√

τ2
β

{
β(a3 + τ1) − τ2(τ1 + a3ε)

2τ2a3β

}
,

a12 =
√

τ2
β

[
τ2
1 {β(−1 + 4β) − 3τ2} (β − τ2) − a2

3(β − ετ2)(β + 3ετ2)
8β2τ2

2 a2
3

+
2a3

{
2β(β + βετ1 − τ2)τ2 + τ1(−β2 − β(1 + ε + 2βε)τ2 + 3ετ2

2 )
}

8β2τ2
2 a2

3

]
,

a20 =
√

τ1
a3

, a21 =
√

τ1
a3

(
a3τ2 − τ2

1

2a3τ1τ2

)
,

a22 = −
√

τ1
a3

[
τ4
1 (−3 + 4β − 4τ2) + a2

3τ
2
2 + 2a3τ

2
1 {(3 + 2ετ1)τ2 − 2τ1(1 + ετ2)}

8a2
3τ

2
1 τ2

2

]
,

b10 =
√

τ2
β

, b11 =
√

τ2
β

{
β − τ2ε

2τ2β

}
,

b12 = −
√

τ2
β

{
a3ετ2(2β − 3ετ2) + 4βτ2(τ2 − β) − a3β

2

8β2τ2
2 a3

}
,

b20 =
1√
a3

, b21 =
−1√
a3

(
1

2a3τ2

)
.

Now, substituting the values of m1 and m2 from Eqs. (35) and (36) into Eqs. (29), (30) and (32)–
(34) and carrying out the detailed manipulations, we acquire the following short-time approximated
expressions for displacement, temperatures and stresses in the domain of Laplace transform assuming s
to be very large:

1. For the MTRDTT model:

u(r, s) =
(

f41 +
f42
s

+
f43
s2

)
K1 ((a10s + a11)r) +

(
f44
s5/2

)
K1

(
a20s

1/2r
)

, (37)

φ(r, s) =
(

f45
s

+
f46
s2

)
K0 ((a10s + a11)r) +

(
f47
s

+
f48
s2

)
K0

(
a20s

1/2r
)

, (38)

θ(r, s) =
(

f49 +
f50
s

+
f51
s2

)
K0 ((a10s + a11)r) +

(
f52
s2

)
K0

(
a20s

1/2r
)

, (39)

σrr(r, s) =
(

sf53 +
f54
s

+
f55
s2

)
K0 ((a10s + a11)r)

+
(

f56
s

+
f57
s2

)
K0

(
a20s

1/2r
)

+
(

f58 +
f59
s

+
f60
s2

)
K1 ((a10s + a11)r) +

(
f61
s5/2

)
K1

(
a20s

1/2r
)

, (40)
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σϕϕ(r, s) =
(

sf62 + f63 +
f64
s

)
K0 ((a10s + a11)r)

+
(

f65
s

+
f66
s2

)
K0

(
a20s

1/2r
)

+
(

f67 +
f68
s

+
f69
s2

)
K1 ((a10s + a11)r) +

(
f70
s5/2

)
K1

(
a20s

1/2r
)

. (41)

2. For the TTGL model:

u(r, s) =
(
sg41 + g42 +

g43
s

)
K1 ((b10s + b11)r) +

(g44
s2

+
g45
s3

)
K1 (b20r) , (42)

φ(r, s) =
(g46

s
+

g47
s2

)
K0 ((b10s + b11)r) +

(g48
s

+
g49
s2

)
K0 (b20r) , (43)

θ(r, s) =
(
sg50 + g51 +

g52
s

)
K0 ((b10s + b11)r) +

(g53
s

+
g54
s2

)
K0 (b20r) , (44)

σrr(r, s) =
(
s2g55 + sg56 + g57 +

g58
s

)
K0 ((b10s + b11)r)

+
(
g59 +

g60
s

+
g61
s2

)
K0 (b20r)

+
(
sg62 + g63 +

g64
s

)
K1 ((b10s + b11)r) +

(g65
s2

+
g66
s3

)
K1 (b20r) , (45)

σϕϕ(r, s) =
(
s2g67 + sg68 + g69 +

g70
s

)
K0 ((b10s + b11)r)

+
(
g71 +

g72
s

+
g73
s2

)
K0 (b20r)

+
(
sg74 + g75 +

g76
s

)
K1 ((b10s + b11)r) +

(g77
s2

+
g78
s3

)
K1 (b20r) . (46)

Here, the above-mentioned notations are provided in “Appendix A.”

6. Analytical results

To find the solutions for short-time approximation in the physical domain (r, t), we will use the following
formulae of Laplace inversions (Oberhettinger and Badii [32]):

L−1

[
1
sn

]
=

tn−1

(n − 1)!
,

L−1 [K0(asr)] =
H(t − ar)√
t2 − (ar)2

, L−1

[
K0(asr)

s

]
= H(t − ar)cosh−1

(
t

ar

)
,

L−1

[
K0(asr)

s2

]
= H(t − ar)

[
tcosh−1

(
t

ar

)
−

√
t2 − (ar)2

]
,

L−1 [K1(asr)] =
H(t − ar)t

ar
√

t2 − (ar)2
, L−1

[
K1(asr)

s

]
=

H(t − ar)
ar

√
t2 − (ar)2,

L−1

[
K1(asr)

s2

]
=

H(t − ar)
ar

[
t

2

√
t2 − (ar)2 − (ar)2

2
cosh−1

(
t

ar

)]
,

L−1
[
K0(ars1/2)

]
=

1
2t

e
−(ar)2

4t , L−1

[
arK1(ars1/2)

s1/2

]
= e

−(ar)2

4t .

Finally, applying the inverse Laplace transform to Eqs. (37)–(46) and then using the above-mentioned
formulae and the convolution theorem of Laplace transform, we arrive at the following solution in physical
domain:
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1. For the MTRDTT model:

u(r, t) = e−α1t

[
u11

H(t − a10r)√
t2 − (a10r)2

+ u12H(t − a10r)
√

t2 − (a10r)2

− u13H(t − a10r) cosh−1

(
t

a10r

)]
+

f44
a20r

t∫
0

(t − τ)e− (a20r)2

4τ dτ, (47)

φ(r, t) = e−α1t

[
φ11H(t − a10r)cosh−1

(
t

a10r

)
− φ12H(t − a10r)

√
t2 − (a10r)2

]

+
f47
2

t∫
0

1
τ

e− (a20r)2

4τ dτ +
f48
2

t∫
0

t − τ

τ
e− (a20r)2

4τ dτ, (48)

θ(r, t) = e−α1t

[
f49

H(t − a10r)√
t2 − (a10r)2

+ θ11H(t − a10r)cosh−1

(
t

a10r

)]

− θ12H(t − a10r)
√

t2 − (a10r)2
]

+
f52
2

t∫
0

t − τ

τ
e− (a20r)2

4τ dτ, (49)

σrr(r, t) = e−α1t

⎡
⎣f53

t∫
0

δ′(t − τ)
H(τ − a10r)√
τ2 − (a10r)2

dτ + σr
11

H(t − a10r)√
t2 − (a10r)2

+ σr
12H(t − a10r)cosh−1

(
t

a10r

)
− σr

13H(t − a10r)
√

t2 − (a10r)2
]

+
f56
2

t∫
0

1
τ

e− (a20r)2

4τ dτ +
f57
2

t∫
0

t − τ

τ
e− (a20r)2

4τ dτ +
f61

a20r2

t∫
0

(t − τ)e− (a20r)2

4τ dτ, (50)

σϕϕ(r, t) = e−α1t

⎡
⎣f62

t∫
0

δ′(t − τ)
H(τ − a10r)√
τ2 − (a10r)2

dτ + σϕ
11

H(t − a10r)√
t2 − (a10r)2

+ σϕ
12H(t − a10r)cosh−1

(
t

a10r

)
− σϕ

13H(t − a10r)
√

t2 − (a10r)2
]

+
f65
2

t∫
0

1
τ

e− (a20r)2

4τ dτ +
f66
2

t∫
0

t − τ

τ
e− (a20r)2

4τ dτ +
f70

a20r2

t∫
0

(t − τ)e− (a20r)2

4τ dτ, (51)

where α1 = a11
a10

.
2. For the TTGL model:

u(r, t) = e−α2t

⎡
⎣u14

t∫
0

δ′(t − τ)
τH(τ − b10r)√

τ2 − (b10r)2
dτ + u15

H(t − b10r)√
t2 − (b10r)2

+ u16H(t − b10r)
√

t2 − (b10r)2
]

+ u17e
−b20r, (52)

φ(r, t) = e−α2t

[
φ13H(t − b10r)cosh−1

(
t

b10r

)
− φ14H(t − b10r)

√
t2 − (b10r)2

]

+ φ15e
−b20r, (53)
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θ(r, t) = e−α2t

⎡
⎣g50

t∫
0

δ′(t − τ)
H(τ − b10r)√
τ2 − (b10r)2

dτ + θ13
H(t − b10r)√
t2 − (b10r)2

⎤
⎦

+ θ14H(t − b10r)cosh−1

(
t

b10r

)]
+ θ15e

−b20r, (54)

σrr(r, t) = e−α2t

⎡
⎣g55

t∫
0

δ′′(t − τ)
H(τ − b10r)√
τ2 − (b10r)2

dτ + σr
14

t∫
0

δ′(t − τ)
H(τ − b10r)√
τ2 − (b10r)2

dτ

+ σr
15

t∫
0

δ′(t − τ)
τH(τ − b10r)√

τ2 − (b10r)2
dτ + σr

16

H(t − b10r)√
t2 − (b10r)2

+ g58H(t − b10r)cosh−1

(
t

b10r

)
− g64

b10r2
H(t − b10r)

√
t2 − (b10r)2

]
+ σr

17e
−b20r, (55)

σϕϕ(r, t) = e−α2t

⎡
⎣g67

t∫
0

δ′′(t − τ)
H(τ − b10r)√
τ2 − (b10r)2

dτ + σϕ
14

t∫
0

δ′(t − τ)
H(τ − b10r)√
τ2 − (b10r)2

dτ

+ σϕ
15

t∫
0

δ′(t − τ)
τH(τ − b10r)√

τ2 − (b10r)2
dτ + σϕ

16

H(t − b10r)√
t2 − (b10r)2

+ g70H(t − b10r)cosh−1

(
t

b10r

)
− g76

b10r2
H(t − b10r)

√
t2 − (b10r)2

]
+ σϕ

17e
−b20r, (56)

where α2 = b11
b10

.

Here, the above-mentioned notations are presented in “Appendix B.” These expressions (47)–(56)
denote the final short-time approximated solutions in the domain (r, t).

7. Analysis of the analytical results

In this section, we examine the solutions for short-time approximation as obtained above. From these
solutions given by (47)–(56), one can clearly observe that each solution is made up of two distinct parts.
The first part, which includes the term H(t − a10r), expresses the role of an elastic wave that propagates
with finite speed 1/a10 near the wavefront r = t

a10
. Also, this wave decays exponentially and the decaying

exponent is found to be strongly influenced by the dimensionless two-temperature parameter a3. It is
also concluded that the velocity of elastic waves depends on the thermal relaxation parameters as well as
some other thermoelastic parameters. The rest part of the solution does not contribute to any wave, but
this part was also found to be dependent on the dimensionless two-temperature parameter a3.

Like the case of MTRDTT model, the first part of solutions in the TTGL model also contains the
term H(t− b10r) which expresses the role of an elastic wave nearby the wavefront r = t

b10
and propagates

with finite speed 1/b10. As opposed to the MTRDTT model, the decaying exponent in the first term
does not depend on the dimensionless two-temperature parameter a3. Similar to the MTRDTT model,
another part of the solution makes no contribution to any wave, but it is dependent on the dimensionless
two-temperature parameter a3. Therefore, the propagation speed is not finite for thermal waves in the
two-temperature models.
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(a) (b)

Fig. 1. a Variation of u along r at t = 0.4. b Variation of u along r at a3 = 0.6

Moreover, we conclude that the conductive temperature is continuous under the MTRDTT model
and TTGL model, whereas other field variables including displacement, thermodynamic temperature
and stresses are discontinuous in nature with an infinite discontinuity at the elastic wavefront.

Further comparing the results with the corresponding result obtained by Chandrasekharaiah and
Murthy [27] and also by Ezzat [28] for the case of GL model, a significant difference is observed with
the results predicted by MTRDTT and TTGL models. The solution of each field variable in the GL
model, unlike the MTRDTT and TTGL models, consists of two waves decaying exponentially and each
wave propagates with finite speed. Moreover, at both the elastic and thermal wavefronts, the temperature
distribution shows discontinuity with finite jumps and the stresses σrr and σϕϕ show infinite discontinuity
in the case of GL model [27,28]. Such significant dissimilarity in the prediction of two-temperature model
as compared to the GL model is an important investigation of the present study.

8. Numerical results and discussion

To gain a more in-depth understanding of the behavior of short-time approximated solutions including
heat sources, as well as to graphically represent the analytical findings, we carry out numerical work
using computational tool Matlab. Throughout this computations, the copper material is considered. The
values of physical parameters and material constants are taken as (Shivay and Mukhopadhyay [13])

λ = 7.76 × 1010 N m−2, μ = 3.86 × 1010 N m−2, CE = 383.1 J kg−1 K−1,

θ0 = 293K, ρ = 8954 kg m−3, R0 = 1W m−2, α = 1.78 × 10−5 K−1,

K = 386W m−1 K−1, τ1 = 0.15, τ2 = 0.10.
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(a) (b)

Fig. 2. a Variation of φ along r at t = 0.4. b Variation of φ along r at a3 = 0.6

The variations of these field quantities with respect to radial distance r are presented in different
figures. The computation of these field variables is carried out under two different thermoelastic models,
namely, the MTRDTT model and the TTGL model. The parts (a) and (b) of each figure are used to
exhibit the figures independently. The part (a) of all the figures shows the effect of a non-dimensional
parameter of two-temperature (a3) on the field quantities at a particular time t = 0.4, whereas part (b)
displays the variation of field variables at various instants of time (t = 0.25, 0.45, 0.65) at a3 = 0.6. Our
numerical results reveal that at the origin, all field variables have an infinite jump, where the heat source
is located. According to our observations, the dimensionless speed of elastic waves is 1.0125 for both
models. We further observe that all the field variables are identically zero beyond the elastic wavefront at
any time. This completely agrees with the corresponding theoretical results provided in Eqs. (47)–(56).
We also come across the following observations:

Figure 1a shows the nature of displacement for the three different values of a3 (a3 = 0.1, 0.5, 1)
with respect to radial distance r, whereas Fig. 1b displays the variation of displacement at different
values of time (t = 0.25, 0.45, 0.65) with respect to r. From Fig. 1a, b, we conclude that as r increases,
displacement decreases from a very high value to zero for both models. However, just behind the elastic
wavefront location, the displacement begins to rise abruptly and reaches a high positive value and jumps
down to zero in the case of MTRDTT model. On the other hand, the displacement suddenly decreases to
a high negative value just near the elastic wavefront location and then jumps up to zero value in the case
of TTGL model. This is due to the impact of impulsive heat source. We further observe that as the value
of a3 increases, the displacement increases and decreases in the cases of MTRDTT model and TTGL
model, respectively. Hence, the two-temperature parameter has a prominent effect. This is clearly verified
in Fig. 1a. Figure 1b verifies that behind the position of wavefront, the displacement component attains
a higher value at the initial time of interaction (i.e., for smaller values of time). However, no disturbance
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(a) (b)

Fig. 3. a Variation of θ along r at t = 0.4. b Variation of θ along r at a3 = 0.6

has been observed for both models after the elastic wavefront location. Thus, a significant difference is
observed in the results predicted by the MTRDTT and TTGL models for displacement near the location
of the elastic wavefront.

The distribution of conductive temperature (φ) along the radial distance is depicted in Fig. 2a, b.
Figure 2a b describes the variations of conductive temperature along with r for various values of a3

(a3 = 0.1, 0.5, 1) and time (t = 0.25, 0.45, 0.65), respectively in the contexts of MTRDTT and TTGL
models. Figure 2a, b shows the similar nature of conductive temperature for the MTRDTT and TTGL
models demonstrating that φ for both the models begins with infinite value and then, decreases to zero
as r increases. Therefore, this field has a decreasing nature. It can be seen that the value of temperature
is higher for the MTRDTT model in comparison with the TTGL model. From Fig. 2a, we further observe
that conductive temperature increases as the value of a3 increases for both the models. This indicates
that parameter a3 has a prominent effect on both models. Moreover, Fig. 2b reports that the value of
φ also increases with the increasing value of t in the case of MTRDTT model. In contrast, the value
of φ remains the same for different values of time in the case of TTGL model. Furthermore, conductive
temperature follows almost a similar trend under the MTRDTT and TTGL models at a given time.

Figure 3a, b represents the variation of thermodynamic temperature (θ) with respect to r for MTRDTT
and TTGL models. From Fig. 3a, b, it is observed that under the MTRDTT model, the thermodynamic
temperature increases from a negative infinity value, reaches a high value at the position of elastic
wavefront and then jumps down to zero. At the same time, starting from a negative infinity value, θ
increases as r increases and just before the elastic wavefront, abruptly decreases to a high negative value
and then approaches zero in view of the TTGL model. This field shows an infinite discontinuity at the
wavefront under both models. This is clearly verified from Fig. 3a that before the position of elastic
wavefront, θ decreases as the value of a3 increases and it is identically zero after the elastic wavefront
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(a) (b)

Fig. 4. a Variation of σrr along r at t = 0.4. b Variation of σrr along r at a3 = 0.6

under both the models. Figure 3b discusses the variation of thermodynamic temperature at different
instants of time and indicates that θ behaves differently with time near the elastic wavefront. In the
context of MTRDTT model, θ increases before the elastic wavefront as time increases, whereas θ has
a decreasing trend for the case of TTGL model. Hence, we conclude that for this field variable, the
MTRDTT model predicts prominently different behavior in comparison with the TTGL model.

The variation of radial stress (σrr) in the contexts of MTRDTT and TTGL models is illustrated by
Fig. 4a, b. Figure 4a depicts the variation of radial stress for various values of a3, whereas the variation
of radial stress for different values of t is presented in Fig. 4b. Figure 4a, b indicates that the radial stress
under the MTRDTT and TTGL models behave similarly. From Fig. 4a, b, we notice that under the
MTRDTT model, the radial stress increases from a negative infinity value, attains a very high positive
value and then decreases to a zero value. This variation trend in σrr is very similar to the TTGL model.
Therefore, it is concluded that σrr is an increasing function of r under both the models before the location
of wavefront. We further notice that σrr increases with the increase of a3 at the wavefront location which
is also clear in Fig. 4a. From Fig. 4b, it is observed that σrr attains a higher value at the wavefront position
at the initial time. Under both these theories, the radial stress field shows an infinite discontinuity at the
wavefront. Finally, we observe that the trend of radial stress under the MTRDTT model agrees with the
TTGL model.

Figure 5a, b demonstrates the variations of circumferential stress (σϕϕ) along with r for various values
of a3 and time, respectively. From Fig. 5a, b, it can be seen that the circumferential stress for the
MTRDTT model begins to decrease from a positive infinity value and just before the elastic wavefront, it
suddenly increases to a high positive value and then jumps to zero. However, the behavior of σϕϕ under
the MTRDTT model is quite different as compared to the TTGL model indicating that σϕϕ decreases
with the increasing value of r and jumps up to zero value after attaining a high negative value at the
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(a) (b)

Fig. 5. a Variation of σϕϕ along r at t = 0.4. b Variation of σϕϕ along r at a3 = 0.6

elastic wavefront. This fact is also clearly verified in Fig. 5a, b. Also, from Fig. 5a, it is found that the
σϕϕ increases as a3 increases under the MTRDTT model; however, σϕϕ decreases with the increasing
value of a3 under the TTGL model. Furthermore, as shown in Fig. 5b, the trend of variation of σϕϕ

changes with time near the elastic wavefront for both the models. We finally conclude that the profile of
circumferential stress for the MTRDTT model differs from the case of the TTGL model implying that the
effects of temperature rate terms in two-temperature relation play a significant role in the thermoelastic
interactions due to the presence of a heat source inside the medium.

9. Conclusion

In this work, the thermoelastic interactions inside an isotropic and homogeneous medium using the
MTRDTT and TTGL thermoelastic models in the presence of a continuous line heat source are investi-
gated. In order to investigate the effect of heat source on the field variables, the short-time approximated
solutions are derived. To compare the outcomes predicted by the MTRDTT model and the TTGL model,
the unified two-temperature relation is employed to study our problem. The theoretical results under both
the models (MTRDTT and TTGL) are graphically displayed. Several important facts about the behavior
of these field variables are highlighted. Some of these details can be categorized as follows:

• Unlike the GL model that predicts finite speed for elastic as well as for thermal waves, the short-
time approximated solutions obtained in the MTRDTT model and TTGL model clearly show that
the solution for each field is divided into two distinct parts. The first part expresses the role of an
elastic wave propagating with finite speed, whereas the rest part of the solution does not contribute
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to any wave under both the models. This signifies the fact that the temperature-rate-dependent
two-temperature models do not admit finite wave speed of the thermal wave.

• In the same way as in the GL model, the heat source’s effects for the MTRDTT and TTGL models
are limited to a bounded but time-dependent region of space around it.

• Except for the conductive temperature, which is continuous in both models, rest of the field variables
show discontinuity at the elastic wavefront.

• For displacement, temperature and circumferential stress fields, the difference between MTRDTT
and TTGL models seems to be more apparent. However, in the case of radial stress, it is investigated
that the variation of σrr is similar in nature under both the models.

• As the value of a3 increases, the value of all the field variables increases at the position of wavefront
under the MTRDTT model. As opposed to the MTRDTT model, the value of u, θ and σϕϕ decreases
with the increasing value of a3 at the position of wavefront in the context of TTGL model. However,
as with the MTRDTT model, the value of φ and σrr increases with the increasing value of a3 in the
TTGL model.

• Hence, the two-temperature parameter on all the field variables has a prominent effect on both the
models. It is worth to be mentioned here that the effect of this modified two-temperature relation
indicates a clear difference in the corresponding results predicated by the present models.
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Appendix A

The different notations used in Eqs. (37)–(46) are given as follows:

d10 = a10 − 2a11τ1, d11 = a11 − a12τ1, d12 = a2
10 + a2

11τ
2
1 ,

d13 = a11 − 2a12, d14 = a20 − 2a22τ1, d15 = a3(2a10τ1d11 − d12),

d16 = a3a10(a10 − 2τ1d11) + a3a11τ
2
1 d13,

f41 = a10a1a3A1, f42 = a11a1a3A1, f43 = a12a3 − τ2
1

a3τ2a10
,

f44 =
a20βa1A1τ

2
1

a3τ2
2

, f45 = A1

(
1 − 1

a2
10

)
,

f46 =
2a11A1 + a2

20a10f45
a3
10

, f47 =
A1

a2
10

, f48 = −f46,

f49 =
−a3a

2
10f45

τ1
, f50 = f45

{
1 +

a3a10d10
τ2
1

}
+

f46d15
τ3
1

,
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f51 =
f45d15

τ3
1

+
f46d16

τ4
1

, f52 = f47

{
a3(a20d14 − a2

21τ1)
τ2
1

}
+ f48

{
1 − a3a

2
20

τ1

}
,

f53 = −a1a3A1, f54 = f52a1τ1,

f55 = −(a11f43 + a12f42 + a1f51), f56 = −f54, f57 = −(a20f44 + a1f52),

f58 =
(λ1 − 1)

r
f41, f59 =

(λ1 − 1)
r

f42, f60 =
(λ1 − 1)

r
f43, f61 =

(λ1 − 1)
r

f44,

f62 = −(a10λ1 + a1τ1f49), f63 = −λ1(a10f43 + a11f42 + a12f41) − a1(f50 + τ1f51),

f64 = −(a11λ1f43 + a12λ1f42 + a1f51), f65 = f56,

f66 = −(a20λ1f44 + a1f52), f67 = −f58, f68 = −f59, f69 = −f60, f70 = −f61,

d16 = b10 + b11τ1, d17 = b11 + 3b12τ1, d18 = 1 + 3a3b
2
11, d19 = 1 − a3b

2
20,

d20 = 2b11τ1 − b20b10, g41 = b10a1a3A1τ1, g42 = a1a3A1d16,

g43 =
a1a3A1b10d18 − A1a1τ1d19

b10
, g44 =

−a1A1b20τ1d20
b210

, g45 =
a1A1b20d19d20

b310
,

g46 = A1

(
1 − 1

b210

)
, g47 =

2A1b11
b310

, g48 =
A1

b210
, g49 = −g47, g50 = −g46a3b

2
10,

g51 = −a3b10(g47b10 + 2g46b11), g52 = g46(1 − a3b
2
11 − 2a3b10b12) − 2g47a3b10b11,

g53 = g48d19, g54 = g49d19, g55 = −(b10g41 + a1τ1g50),

g56 = −(b10g42 + b11g41 + a1g50 + a1τ1g51),

g57 = −(b10g43 + b11g42 + b12g41 + a1g51 + a1τ1g52), g58 = −(b11g43 + b12g42 + a1g52),

g59 = −a1(g54 + τ1g53), g60 = −a1(g53 + τ1g54), g61 = −b20g44,

g62 =
(λ1 − 1)

r
g41, g63 =

(λ1 − 1)
r

g42, g64 =
(λ1 − 1)

r
g43, g65 =

(λ1 − 1)
r

g44,

g66 =
(λ1 − 1)

r
g45, g67 = −(b10λ1g41 + a1τ1g50),

g68 = −λ1(b10g42 + b11g41) − a1(g50 + τ1g51),

g69 = −λ1(b10g43 + b11g42 + b12g41) − a1(g51 + τ1g52),

g70 = −λ1(b11g43 + b12g42) − a1g52, g71 = g59, g72 = g60, g73 = λ1g61,

g74 = −g62, g75 = −g63, g76 = −g64, g77 = −g65, g78 = −g66.

Appendix B

The following are the expressions for the various notations used in Eqs. (47)–(56):

l1 =
t2

6
+

(a10r)2

3
, l2 =

t2

2
+

(a10r)2

4
, l3 =

t2

2
+

(b10r)2

4
,

u11 =
f41t

a10r
, u12 =

1
a10r

{(
f42 +

f43t

2

)
+ α1

(
f42t

2
+ f42α1l1 + 2f43l1

)}
,

u13 =
f42a11r

2
(1 + α1t) + f43r

(
a11t +

a10

2

)
, u14 =

g41t

b10r
,

u15 =
(g42 − g41α2)t

b10r
, u16 =

g43
b10r

(1 +
t

2
α2), u17 = t

(
g44 +

t

2
g45

)
,

φ11 = f45 + t(f45α1 + f46) + l2α1(f45α1 + 2f46),
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φ12 = f45α1 + f46 +
3
4
tα1(f45α1 + 2f46),

φ13 = g46 + t(g46α2 + g47) + l3α2(g46α2 + 2g47),

φ14 = g46α2 + g47 +
3
4
tα2(g46α2 + 2g47), φ15 = g48 + g49t,

θ11 = f50 + t(f50α1 + f51) + l2α1(f45α1 + 2f46),

θ12 = f50α1 + f51 +
3
4
tα1(f50α1 + 2f51), θ13 = g51 − α2g50,

θ14 = g52(1 + tα2 + l3α
2
2), θ15 = t

(
g53 +

t

2
g54

)
,

σr
11 = −f53α1 +

f58t

a10r2
,

σr
12 = f54 + t(f54α1 + f55) + α1(f54α1 + 2f55)l2 − a10

2
(f59α1 + f60) − a10t

2
α1(f59α1 + 2f60),

σr
13 = f54α1 + f55 +

3
4
tα1(f54α1 + 2f55) − 1

a10r2

(
f59t +

(f59α1 + f60)t
2

+ l1α1(f59α1 + 2f60)
)

,

σr
14 = g56 − 2α2g55, σ

r
15 =

g62
b10r2

, σr
16 = α2

2g55 + g57 +
t

b10r2
(g63 − α2g62),

σr
17 = g59δ(t) + g60 + t

(
g61 +

g65
r

+
g66t

2r

)
, σϕ

11 = f62α1 +
f67t

a10r2
,

σϕ
12 = f63 + t(f63α1 + f64) + α1(f63α1 + 2f64)l2 − a10

2
(f63α1 + f64) − a10t

2
α1(f63α1 + 2f64),

σϕ
13 = f63α1 + f64 +

3
4
tα1(f63α1 + 2f64) − 1

a10r2

(
f68t +

(f68α1 + f69)t
2

+ l1α1(f68α1 + 2f69)
)

,

σϕ
14 = g68 − 2α2g67, σ

ϕ
15 =

g74
b10r2

, σϕ
16 = α2

2g67 + g69 +
t

b10r2
(g75 − α2g74),

σϕ
17 = g71δ(t) + g72 + t

(
g73 +

g77
r

+
g78t

2r

)
.
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