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Abstract. In this paper, we study normalized solutions of the fractional Schrödinger equation with a critical nonlinearity

⎧
⎨

⎩

(−Δ)su = λu + |u|p−2u + |u|2∗
s−2u

∫

RN

u2 = a2

where N ≥ 2, s ∈ (0, 1), a > 0, 2 < p < 2∗
s = 2N

2N−2s
and (−Δ)s is the fractional Laplace operator. We prove the existence

of the normalized solutions under different conditions on a, p, s and N .
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1. Introduction and main results

In this paper, we study normalized solutions for the fractional Schrödinger equation with a critical
nonlinearity |u|2∗

s−2u
⎧
⎨

⎩

(−Δ)su = λu + |u|p−2u + |u|2∗
s−2u

∫

RN

u2 = a2, (1.1)

where 0 < s < 1, a > 0, N ≥ 2, 2 < p < 2∗
s

.= 2N/(N − 2s) and the fractional Laplacian (−Δ)s is defined
by

(−Δ)su(x) = −C(N, s)
2

P.V.

∫

RN

u(x + y) + u(x − y) − 2u(x)
|y|N+2s

dy

= C(N, s)P.V.

∫

RN

u(x) − u(y)
|x − y|N+2s

dy

with a positive constant C(N, s). For convenience, we normalize the factor C(N,s)
2 = 1.

The study of (1.1) originates from investigating the standing wave solutions of the following fractional
Schrödinger equation with nonlinearities

⎧
⎨

⎩

i∂Φ
∂t = (−Δ)sΦ − f(|Φ|)Φ, (x, t) ∈ R

N × R
+,

∫

RN

|Φ(x, t)|2dx = a2, (1.2)
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where 0 < s < 1, N ≥ 2, 2 < p < 2∗
s

.= 2N/N − 2s, f(t) = tp−2 + t2
∗
s−2 and i denotes the imaginary

unit. To search for standing wave solutions Φ(x, t) = e−iλtu(x) for (1.2), one leads to problem (1.1).
In quantum mechanics, for the wave function Φ = Φ(x, t) : R

N × R
+ → C, |Φ(x, t)|2 represents the

probability density of the particles appearing in space x at time t. For single particle system, physicists
are interested in normalized solutions, that is, solutions satisfying

∫

RN

|Φ(x, t)|2dx = 1. For n body system

of Bose–Einstein condensate (see [3]), the wave function for the whole condensate is φ(x, t) =
√

nΦ(x, t)
and the wave function is normalized according to the total number of the particles, i.e.,

∫

RN

|φ(x, t)|2dx = n.

The operator (−Δ)s arises in physics, biology, chemistry and finance and can be seen as the infinitesi-
mal generators of Lévy stable diffusion process (see [1,2]). And, (−Δ+m2)

1
2 appears naturally in quantum

mechanics, where m is the mass of the particle under consideration; see [17]. The study of nonlinear equa-
tions involving a fractional Laplacian has attracted much attention from many mathematicians working
in different fields. Caffarelli et al investigated a fractional Laplacian with free boundary conditions; see
[7,8]. Chang and González [9] investigated this operator which also appears in conformal geometry. Sil-
vestre [23] studies the regularity problems for the obstacle problem of the fractional Laplacian. Felmer,
Quaas and Tan [14] studied the existence, regularity and symmetry of positive solutions to the fractional
Schrödinger equations in the whole space. In [11], Coti Zelati and Nolasco obtained the existence of a
ground state of some fractional Schrödinger equation involving the operator (−Δ + m2)

1
2 appearing in

quantum mechanics. We refer to [6,13] for more details on the fractional operator and applications.
Normalized solutions to Schrödinger equations, that is, equations similar to (1.1) as s = 1, where

the energy is unbounded from below on the L2-constraint, were first studied in the paper [16]. For quite
a long time, it is the only one in this aspect. More recently, however, problems of this type received
much attention, e.g., see [22] and the references therein. For problem (1.1), p = 2 + 4s

N is the L2-critical
exponent. But the appearance of the critical term |u|2∗

s−2u in (1.1) implies that the energy functional
is always unbounded below whether p is smaller or larger than the L2-critical exponent p = 2 + 4s

N . In
the recent paper [18], the authors deal with the existence of normalized ground states for the fractional
Schrödinger equations with combined nonlinearities as follows:

(−Δ)su = λu + |u|p−2u + |u|q−2u in R
N ,

∫

RN

u2 = a2. (1.3)

But they only consider the Sobolev sub-critical case p, q < 2∗
s. They found that the exponents p and

q affect the geometry of the corresponding energy functional and the solvability of the above problem.
Indeed, they obtained the following results.

• In the purely L2-subcritical case 2 < q < p < 2 + 4s
N , problem (1.3) admits a ground state for any

a > 0;
• In the purely L2-subcritical case 2 + 4s

N < q < p < 2∗
s , problem (1.3) admits a radial solution for

any a > 0;
• If 2 < q < p = 2 + 4s

N , then problem (1.3) admits a positive radial minimizer for any a ∈
(0, (

∫

RN

|QN,p|2) 1
2 ), where the function QN,p appears in (1.4);

• If 2 + 4s
N = q < p < 2∗

s , then problem (1.3) admits a radial solution for any a ∈ (0, a(s,N, p, q)),
where a(s,N, p, q) is some constant;

• If 2 < q < 2 + 4s
N < p < 2∗

s, then problem (1.3) admits two radial solutions for any a ∈
(0, a(s,N, p, q)), where a(s,N, p, q) is some constant.

Motivated by the above paper, the paper [21] where the normalized ground states for NLS equations
in the Sobolev critical case were considered and the pioneering work of Brezis and Nirenberg [5] on
investigating Sobolev critical component problem with a lower term perturbation, we address the problem



ZAMP Normalized solutions to a kind of fractional Schrödinger Page 3 of 23 149

(1.1):

(−Δ)su = λu + |u|p−2u + |u|2∗
s−2u in R

N ,

∫

RN

u2 = a2,

for some λ ∈ R, where 2 < p < 2∗
s.

In order to state our main results, we need to know some of the constants from the following fractional
Gagliardo–Nirenberg–Sobolev (GNS) inequality. That is, there exists a best constant C(s,N, p) depending
on s, N and p such that for any u ∈ Hs(RN ),

|u|pp ≤ C(s,N, p)|u|(1−γp,s)p
2 |(−Δ)

s
2 u|γp,sp

2 (1.4)

where γp,s
.= N(p−2)

2ps . The constant C(s,N, p) can be achieved by QN,p; see [15]. For the problem obtained
from (1.1) by removing the critical exponent term, we obtain one of its normalized solutions by rescaling
QN,p. From γp,sp = 2, we get p = 2 + 4s

N which is called the L2-critical exponent for the problem (1.1).
The main results of this paper are as follows.

Theorem 1.1. Let N ≥ 2, s ∈ (0, 1), 2 < p < 2 + 4s
N and assume that 0 < a < min{α1, α2} where

α1
.=

⎧
⎪⎪⎨

⎪⎪⎩

p(2∗
s − 2)

2C(s,N, p)(2∗
s − pγp,s)

⎛

⎝
2∗

sS
2∗

s
2

s (2 − pγp,s)
2(2∗

s − pγp,s)

⎞

⎠

2−pγp,s
2∗

s−2

⎫
⎪⎪⎬

⎪⎪⎭

1
p(1−γp,s)

(1.5)

and

α2
.=

⎧
⎪⎨

⎪⎩

22∗
ss

Nγp,sC(s,N, p)(2∗
s − pγp,s)

(
γp,sS

N
2s
s

2 − pγp,s

) 2−pγp,s
2

⎫
⎪⎬

⎪⎭

1
p(1−γp,s)

, (1.6)

where Ss is defined in (2.1). Then problem (1.1) has a couple of solutions (ua, λa) ∈ S(a)×R. Moreover,

E(ua) = inf
u∈V (a)

E(u) = inf
u∈V (a)+

E(u) = inf
u∈Ak

E(u), (1.7)

for some suitable small constant k > 0, where V (a) is the Pohozaev manifold defined in Lemma 2.1, the
set V (a)+ is defined in (3.2) and

Ak =
{
u ∈ S(a) : ‖(−Δ)

s
2 u‖L2(RN ) < k

}
.

Theorem 1.2. Let N ≥ 2, s ∈ (0, 1), N2 > 8s2, p = 2 + 4s
N and assume that 0 < a < α3 where

α3
.=
(

p

2C(s,N, p)

) 1
p−2

. (1.8)

Then problem (1.1) has a couple of solutions (ua, λa) ∈ S(a) × R such that

E(ua) = inf
u∈V (a)

E(u) = inf
u∈V (a)−

E(u)

where V (a)− is defined in (3.2).

Theorem 1.3. Let N ≥ 2, s ∈ (0, 1), N2 > 8s2, p > 2 + 4s
N and assume that 0 < a < α4 where

α4
.= (γp,s)

− 1
p(1−γp,s) S

N
4s
s . (1.9)

Then problem (1.1) has a couple of solutions (ua, λa) ∈ S(a) × R such that

E(ua) = inf
u∈V (a)

E(u) = inf
u∈V (a)−

E(u).
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Remark 1.4. The threshold α4 in Theorem 1.3 is finite. Actually we can relax to α4 = +∞ as 2 ≤ N ≤ 4s;
we refer to Remark 5.3 for more details.

Dimension N = 1 also admits a Sobolev critical exponent for the problem (1.3) if s < 1
2 . But the

compact embedding Hs
r (RN ) ↪→ Lp(RN ) we need in our proofs only holds for N ≥ 2 and p ∈ (2, 2∗

s). For
convenience, in this paper we only deal with the case N ≥ 2, although the case N = 1 can also be dealt
with by combining some other techniques.

For the proofs of the theorems here, we borrow the main strategy in [21], including the decomposition
of corresponding Pohozave manifold into three disjoint submanifolds. But extra difficulties still occur and
more complicated calculations are needed due to the nonlocal nature of the problem. For example, in
the proofs Theorem 1.2 and Theorem 1.3, in order to control the Gagliardo seminorm of uε, pointwise
estimates on uε are not enough. We need additional skills different from [21] for the estimates of ‖uε‖p.
Moreover, the condition N2 > 8s2 is crucial to obtain that the mountain pass level is strictly less than
the threshold and the proof is different from the one for the corresponding Laplacian equation in [21].

2. Preliminaries

To prove our theorems, we need some notations and useful preliminary results.
Throughout this paper, we denote Br the open ball of radius r with center at 0 in R

N , and | · |p the
usual norm of the space Lp(RN ) for p ≥ 1. Let H = Hs(RN ) and ‖ · ‖ be its norm. A generic positive
constant is denoted by C, C1, or C2..., which may change from line to line. Let H = H ×R with the usual
scalar product

〈·, ·〉H = 〈·, ·〉H + 〈·, ·〉R
and the corresponding norm

‖(·, ·)‖2
H

= ‖ · ‖2 + | · |2
R
.

We denote the best constant of the imbedding Ds,2(RN ) ↪→ L2∗
s (RN ) by

Ss = inf
u∈Ds,2(RN )\{0}

|(−Δ)
s
2 u|22

|u|22∗
s

, (2.1)

where Ds,2(RN ) denotes the completion of the space C∞
c (RN ) with the norm

‖u‖Ds,2(RN ) = |(−Δ)
s
2 u|2.

Ii is well-known that Ss is achieved by

Uε(x) =
ε

N−2s
2

(ε2 + |x|2)N−2s
2

, (2.2)

where ε > 0 is a parameter [12].
Solutions of (1.1) can be obtained as the critical points of associated energy functional

E(u) =
1
2

∫ ∫

R2N

(u(x) − u(y))2

|x − y|N+2s
dxdy − 1

p

∫

RN

|u(x)|pdx

− 1
2∗

s

∫

RN

|u(x)|2∗
s dx

defined on the constraint manifold

S(a) .=
{
u ∈ Hs(RN ) : Ψ(u) =

1
2
a2
}
,
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where Ψ(u) = 1
2

∫

RN

u2 and

Hs(RN ) .=

⎧
⎨

⎩
u ∈ L2(RN ) :

∫

RN

|(−Δ)
s
2 u(x)|2 =

∫ ∫

R2N

(u(x) − u(y))2

|x − y|N+2s
dxdy < ∞

⎫
⎬

⎭

endowed with the natural norm

‖u‖2
Hs =

∫

RN

|u(x)|2 +
∫

RN

|(−Δ)
s
2 u(x)|2.

In this paper, we only need to find the critical points of the functional E on Hs
r (RN )

⋂
S(a), since

Hs
r (RN ) .= {u ∈ Hs(RN ) : u(x) = u(|x|)} is a natural constraint (e.g., see [24]). It is also well-known that

Hs
r (RN ) is compactly embedded into Lp(RN ) for any p ∈ (2, 2∗

s).
In this paper, the useful fiber map preserving the L2-norm

τ 	 u
.= e

Nτ
2 u(eτx), for a.e. x ∈ R

N ,

which was firstly introduced in [16], is also used. By direct calculation, we have

|τ 	 u|22 = |u|22, |τ 	 u|pp = epsγp,sτ |u|pp
and

|(−Δ)
s
2 (τ 	 u)|22 = e2sτ |(−Δ)

s
2 u|22.

Define a auxiliary functional I : H → R by

I(u, τ) = E(τ 	 u) =
1
2
e2sτ |(−Δ)

s
2 u|22 − epsγp,sτ

p
|u|pp − e2∗

ssτ

2∗
s

|u|2∗
s

2∗
s
.

The Pohozaev identity plays an important role in our discussion. We give it in the following lemma;
for more details, see [10,16].

Lemma 2.1. Let (u, λ) ∈ S(a) × R be a weak solution of problem (1.1). Then u belongs to the set

V (a) � {u ∈ Hs(RN ) : P (u) = 0}
where

P (u) = |(−Δ)
s
2 u|22 − γp,s|u|pp − |u|2∗

s
2∗

s
.

We define ϕu(τ) .= I(u, τ) for any u ∈ S(a) and τ ∈ R. Then

(ϕu)′(τ) = s
(
e2sτ |(−Δ)

s
2 u|22 − γp,se

psγp,sτ |u|pp − e2∗
ssτ |u|2∗

s
2∗

s

)

= s
(
|(−Δ)

s
2 (τ 	 u)|2 − γp,s|τ 	 u|pp − |τ 	 u|2∗

s
2∗

s

)
.

Therefore, we have

Lemma 2.2. For any u ∈ S(a), τ ∈ R is a critical point of ϕu(τ) if and only if τ 	u ∈ V (a). Particularly,
u ∈ V (a) if and only if 0 is a critical point for ϕu(τ).

Remark 2.3.

The map (u, τ) ∈ H �→ τ 	 u ∈ H is continuous; (2.3)

see [4, Lemma3.5].
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3. L2-subcritical perturbation case

In this section, we deal with the L2-subcritical perturbation case 2 < p < 4s
N + 2 and give the proof of

Theorem 1.1. As in [18,21,22], we firstly consider a decomposition of V (a). In view of Lemma 2.2, we
define the following sets:

V (a)+ .=
{

u ∈ V (a) : 2|(−Δ)
s
2 u|22 > pγ2

p,s|u|pp + 2∗
s|u|2∗

s
2∗

s

}

= {u ∈ V (a) : (ϕu)′′(0) > 0} (3.1)

V (a)0 .=
{

u ∈ V (a) : 2|(−Δ)
s
2 u|22 = pγ2

p,s|u|pp + 2∗
s|u|2∗

s
2∗

s

}

= {u ∈ V (a) : (ϕu)′′(0) = 0} ,

V (a)− .=
{

u ∈ V (a) : 2|(−Δ)
s
2 u|22 < pγ2

p,s|u|pp + 2∗
s |u|2∗

s
2∗

s

}

= {u ∈ V (a) : (ϕu)′′(0) < 0} . (3.2)

It is clearly that

V (a) = V (a)+ ∪ V (a)0 ∪ V (a)−.

Lemma 3.1. Let 2 < p < 4s
N + 2 and a < α1, where

α1
.=

⎧
⎪⎪⎨

⎪⎪⎩

p(2∗
s − 2)

2C(s,N, p)(2∗
s − pγp,s)

⎛

⎝
2∗

sS
2∗

s
2

s (2 − pγp,s)
2(2∗

s − pγp,s)

⎞

⎠

2−pγp,s
2∗

s−2

⎫
⎪⎪⎬

⎪⎪⎭

1
p(1−γp,s)

.

Then V (a)0 = ∅ and V (a) is a smooth manifold of codimension 2 in Hs(RN ).

Proof. Suppose on the contrary that V (a)0 �= ∅. Taking u ∈ V (a)0, we have
{

2|(−Δ)
s
2 u|22 = pγ2

p,s|u|pp + 2∗
s|u|2∗

s
2∗

s

|(−Δ)
s
2 u|22 = γp,s|u|pp + |u|2∗

s
2∗

s
.

Combining the above equalities with (1.4) and (2.1), we deduce that
⎧
⎨

⎩

|(−Δ)
s
2 u|22 = 2∗

s−pγp,s

2−pγp,s
|u|2∗

s
2∗

s
≤ 2∗

s−pγp,s

(2−pγp,s)S
2∗

s
2

s

|(−Δ)
s
2 u|2∗

s
2

|(−Δ)
s
2 u|22 = γp,s

2∗
s−pγp,s

2∗
s−2 |u|pp ≤ C(s,N, p)γp,s

2∗
s−pγp,s

2∗
s−2 a(1−γp,s)p|(−Δ)

s
2 u|γp,sp

2 .

By the fact pγp,s < 2 and the above inequality, we obtain that

a(1−γp,s)p ≥ (2∗
s − 2)

γp,sC(s,N, p)(2∗
s − pγp,s)

⎛

⎝
2∗

sS
2∗

s
2

s (2 − pγp,s)
2(2∗

s − pγp,s)

⎞

⎠

2−pγp,s
2∗

s−2

≥ p(2∗
s − 2)

2C(s,N, p)(2∗
s − pγp,s)

⎛

⎝
2∗

sS
2∗

s
2

s (2 − pγp,s)
2(2∗

s − pγp,s)

⎞

⎠

2−pγp,s
2∗

s−2

= α
(1−γp,s)p
1

which contradicts to a < α1.
Next we verify that V (a) is a smooth manifold of codimension 2 in H. Notice that

V (a) = {u ∈ H : F (u) = (P (u), |u|22 − a2) = (0, 0)},
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where P and G(u) .= |u|22 − a2 are of class C1 in H. It suffices to prove that for any u ∈ V (a) the range
of F ′(u) is R

2. Since

F ′(u)v =

⎛

⎝

∫

RN

2(−Δ)
s
2 u(−Δ)

s
2 v − pγp,s|u|p−2uv − 2∗

s|u|2∗
s−2uv,

∫

RN

2uv

⎞

⎠

for any v ∈ H and F ′(u)u = (b, 2a2) for b = (2 − p)γp,s|u|pp − (2∗
s − p)|u|2∗

s
2∗

s
< 0 (by u ∈ V (a)), we have

that F ′(u) is not surjective if and only if
∫

RN

2(−Δ)
s
2 u(−Δ)

s
2 v − pγp,s|u|p−2uv − 2∗

s|u|2∗
s−2uv =

b

2a2

∫

RN

2uv, ∀v ∈ H.

Hence, u is a solution of the following equation

2(−Δ)su =
b

a2
u + pγp,s|u|p−2u + 2∗

s|u|2∗
s−2u in R

N .

We can easily conclude that the following Pohozaev type identity

2|(−Δ)
s
2 u|22 = pγp,s

2|u|pp + 2∗
s |u|2∗

s
2∗

s
,

which is a contradiction to the fact that u ∈ V (a). �

By the fractional GNS inequality (1.4), we deduce that for every u ∈ Hs(RN )
⋂

S(a)

E(u) ≥ 1
2
|(−Δ)

s
2 u|22 − C(s,N, p)

p
ap−pγp,s |(−Δ)

s
2 u|pγp,s

2 − 1

2∗
sS

2∗
s
2

s

|(−Δ)
s
2 u|2∗

s
2 . (3.3)

In order to explore the geometry of the functional E(u), we introduce a function h : R+ → R related to
the right-hand side of (3.3)

h(t) .=
1
2
t2 − C(s,N, p)

p
ap−pγp,stpγp,s − 1

2∗
sS

2∗
s
2

s

t2
∗
s .

Since pγp,s < 2 < 2∗
s, it is easy to see that h(0+) = 0− and h(+∞) = −∞.

Lemma 3.2. Assume that a < α1, where α1 is defined in (1.5). Then the function h has a local strict
minimum at negative level and a global strict maximum at positive level, and there exist two positive
constants R1 > R0, both depending on a, such that h(R0) = h(R1) = 0 and h(t) > 0 if and only if
t ∈ (R0, R1).

Proof. Notice that

h(t) = tpγp,s

⎛

⎝
1
2
t2−pγp,s − 1

2∗
sS

2∗
s
2

s

t2
∗
s−pγp,s − C(s,N, p)

p
ap−pγp,s

⎞

⎠ .

So, we have h(t) > 0 if and only if g(t) > 0 for t > 0, where

g(t) .=
1
2
t2−pγp,s − 1

2∗
sS

2∗
s
2

s

t2
∗
s−pγp,s − C(s,N, p)

p
ap−pγp,s .

Since

g′(t) =
2 − pγp,s

2
t1−pγp,s − 2∗

s − pγp,s

2∗
sS

2∗
s
2

s

t2
∗
s−pγp,s−1,
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we have that g is strictly increasing on (0, t1) and decreasing (t1,+∞) where

t1 =

⎛

⎝
2∗

sS
2∗

s
2

s (2 − pγp,s)
2(2∗

s − pγp,s)

⎞

⎠

1
2∗

s −2

.

The maximum value of g on (0,+∞) is

g(t1) =
(2∗

s − 2)
2(2∗

s − pγp,s)

⎛

⎝
2∗

sS
2∗

s
2

s (2 − pγp,s)
2(2∗

s − pγp,s)

⎞

⎠

2−pγp,s
2∗

s−2

− C(s,N, p)
p

ap−pγp,s

=
C(s,N, p)

p
α

p−pγp,s

1 − C(s,N, p)
p

ap−pγp,s .

Since a < α1, there exist two constants R0 and R1 such that

h(t)

⎧
⎨

⎩

< 0, t ∈ (0, R0) or (R1,+∞),
= 0, t = R0 or R1,
> 0, t ∈ (R0, R1).

It follows that h(t) has a global maximum at positive level in (R0, R1) and, by the fact that h(0+) = 0−,
a local minimum at negative level in (0, R0). By a direct calculation

h′(t) = tpγp,s−1

(

t2−pγp,s − 1

S
2∗

s
2

s

t2
∗
s−pγp,s − γp,sC(s,N, p)ap−pγp,s

)pγp,s−1

f(t)

and

f ′(t) = (2 − pγp,s)t1−pγp,s − 2∗
s − pγp,s

S
2∗

s
2

s

t2
∗
s−pγp,s−1,

it is easy to see that h′(t) = 0 if and only if f = 0 for t > 0, and f is strictly increasing on (0, t2),
decreasing on (t2,+∞) where

t2 =

⎛

⎝
S

2∗
s
2

s (2 − pγp,s)
2∗

s − pγp,s

⎞

⎠

1
2∗

s −2

.

Thus, f has at most two zeros on (0,+∞), which are necessarily the previously found local minimum
and the global maximum of h. �

By the properties of the function h, we give the following lemma.

Lemma 3.3. Let 2 < p < 4s
N + 2 and a < α1. Then for every u ∈ S(a), ϕu(τ) has two critical points

su < tu ∈ R and two zeros cu < du with su < cu < tu < du. Moreover,
(1) su 	 u ∈ V (a)+ and tu 	 u ∈ V (a)−, and if τ 	 u ∈ V (a), then either τ = su or τ = tu;
(2) |(−Δ)

s
2 (τ 	 u)|22 ≤ R0 for every τ < cu and

E(su 	 u) = min
{
E(τ 	 u) : τ ∈ R and |(−Δ)

s
2 (τ 	 u)|22 ≤ R0

}
< 0; (3.4)

(3) we have

E(tu 	 u) = max {E(τ 	 u) : τ ∈ R} > 0, (3.5)

and ϕu(τ) is strictly decreasing and concave on (tu,+∞);
(4) the maps u ∈ V (a) �→ su ∈ R and u ∈ V (a) �→ tu ∈ R are of class C1.
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Proof. First, we show that ϕu(τ) has at least two critical points. From (3.3), we have

ϕu(τ) = E(τ 	 u) ≥ h(|(−Δ)
s
2 (τ 	 u)|2) = h(e2sτ |(−Δ)

s
2 u|2).

By Lemma 3.2, we deduce that ϕu(τ) > 0 on (ξ(R0), ξ(R1)) where

ξ(R) =
log R − 2 log |(−Δ)

s
2 u|2

2s
.

Combining ϕu(−∞) = 0−, ϕu(+∞) = −∞ and noticing that ϕu(τ) is a C2 function, we deduce that
ϕu(τ) has at least two critical points su < tu, with su a local minimum point on (−∞, ξ(R0)) at negative
level and tu a global maximum point at positive level. By the arguments similar to those in Lemma 3.2,
we can get that ϕu(τ) have no other critical points. Then (3.5) holds and (3.4) follows from

|(−Δ)
s
2 (su 	 u)|22 = e2sus|(−Δ)

s
2 u|22 ≤ e2ξ(R0)s|(−Δ)

s
2 u|22 < R0. (3.6)

By the minimality of su, (ϕu)′′(su) ≥ 0. Recalling that V (a)0 = ∅, we obtain that su 	 u ∈ V (a)+.
Similarly, we have tu 	 u ∈ V (a)−.

Moreover, noticing that ϕu(su) < 0, ϕu(tu) > 0 and ϕu(+∞) = −∞, we can deduce that ϕu(τ) has
two zeros cu < du with su < cu < tu < du. It is easy to verify that ϕu(τ) have no other zeros; otherwise,
ϕu(τ) will has a third critical point.

Since

(ϕu)′′(τ) = s2
(
2e2sτ |(−Δ)

s
2 u|22 − pγp,s

2epsγp,sτ |u|pp − 2∗
se

2∗
ssτ |u|2∗

s
2∗

s

)
,

we have that (ϕu)′′(−∞) = 0−. Combining (ϕu)′′(su) > 0 and (ϕu)′′(tu) < 0, we deduce that (ϕu)′′(τ)
has two zeroes, which implies that ϕu(τ) has two inflection points. Arguing as before, (ϕu)′′(τ) has exactly
two inflection points. So ϕu(τ) is strictly decreasing and concave on (tu,+∞).

It remains to prove that the maps u ∈ V (a) �→ su ∈ R and u ∈ V (a) �→ tu ∈ R are of class C1.
Here, we apply the implicit function theorem to the C1 function Φ(τ, u) .= (ϕu)′(τ) and use the facts
that Φ(su, u) = 0 and ∂τ (Φ(su, u) > 0. Hence, u ∈ V (a) �→ su ∈ R is of class C1. The proof for
u ∈ V (a) �→ tu ∈ R is similarly given. �

For k > 0, we define

Ak
.=
{
u ∈ S(a) : |(−Δ)

s
2 u|2 < k

}
and m(a) .= inf

AR0

E.

As an immediate corollary, we have

Corollary 3.4. supV (a)+ E ≤ 0 ≤ infV (a)− E and V (a)+ ⊂ AR0 .

Furthermore, we have the following lemma.

Lemma 3.5. −∞ < m(a) = infV (a) E = infV (a)+ E < 0 and

m(a) < inf
AR0\AR0−ρ

E

for ρ > 0 small enough.

Proof. For u ∈ AR0 , by (3.3), one has

E(u) ≥ h(|(−Δ)
s
2 u|2) ≥ min

t∈[0,R0]
h(t) > −∞.

Moreover, by (3.6), we have m(a) < 0. By the above corollary, we know m(a) ≤ infV (a)+ E. On the other
hand, if u ∈ AR0 , we have su 	 u ∈ V (a)+. Hence, by (3.4), we have m(a) ≥ infV (a)+ E. From the above
corollary, we get that 0 ≤ infV (a)− E, which implies that

inf
V (a)

E = inf
V (a)+

E.
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Finally by the continuity of h and h(R0) = 0, there exists ρ > 0 such that h(t) ≥ m(a)/2 on [R0−ρ,R0].
Therefore,

E(u) ≥ h(|(−Δ)
s
2 u|2) ≥ m(a)

2
> m(a),

for any u ∈ AR0\AR0−ρ, which completes the proof. �

Proof of Theorem 1.1. Take a minimizing sequence {wn} ⊂ H
⋂

S(a) for E|AR0
. We can assume that

{wn} ⊂ Hr are radially decreasing for every n. Otherwise, we replace wn by |wn|∗, which is the Schwarz
rearrangement of |wn|. By Lemma 3.3, there exists a sequence {swn

} such that swn
	 wn ∈ V (a)+ and

E(swn
	 wn) ≤ E(wn) for every n. Besides, by Lemma 3.5, we obtain that swn

	 wn ∈ AR0\AR0−ρ. Thus,
{w̄n = swn

	wn} is a new minimizing sequence for E|AR0
with w̄n ∈ Hr∩V (a)+ and |(−Δ)

s
2 w̄n|2 < R0−ρ.

By Ekeland’s variational principle, there exists a new minimizing sequence {un} satisfying
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

‖un − w̄n‖ → 0, as n → ∞,

E(un) → m(a), as n → ∞,

P (un) → 0, as n → ∞,

E′|S(a)(un) → 0, as n → ∞.

(3.7)

Now, from its last property in (3.7), we apply the Lagrange multipliers rule to {un}. Then there exists a
sequence {λn} ⊂ R such that

E′(un) − λnΨ′(un) → 0 in H−1. (3.8)

Since {un} ⊂ AR0 , we deduce that there exists ua ∈ Hr(RN ) such that, up to a subsequence, un ⇀ ua in
H.
Step 1: We prove that, up to a subsequence, λn → λ < 0.

Since {un} is bounded in H, by (3.8), we have

E′(un)un − λnΨ′(un)un = on(1). (3.9)

Therefore,

λn|un|22 = |(−Δ)
s
2 un|22 − |un|pp − |un|2∗

s
2∗

s
+ on(1). (3.10)

Using the fact |un|22 = a2 and {un} is bounded in H, we deduce that {λn} is bounded. Hence, up to
subsequence, λn → λ ∈ R. By noticing that P (un) → 0, (3.10) and the embedding Hr(RN ) ↪→ Lp(RN )
is compact for p ∈ (2, 2∗

s), we have

λa2 = lim
n→∞(|(−Δ)

s
2 un|2 − |un|pp − |un|2∗

s
2∗

s
)

= (γp,s − 1)|ua|pp ≤ 0, (3.11)

with λ = 0 if and only if ua ≡ 0. Therefore, we only need to prove that ua �= 0. We assume by contradiction
that ua ≡ 0. Up to a subsequence, let |(−Δ)

s
2 un|22 → l ∈ R. Since P (un) → 0 and un → 0 in Lp(RN ),

then we have |un|2∗
s

2∗
s

→ l. By (2.1), one has

(l)
2
2∗

s ≤ l

Ss
.

So, we have

l = 0 or l ≥ S
N
2s
s .
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If l > 0, we have

m(a) + on(1) = E(un) = E(un) − 1
2∗

s

P (un) + on(1)

=
s

N
|(−Δ)

s
2 un|22 + on(1)

=
s

N
l + on(1),

which contradicts to m(a) < 0 in Lemma 3.5. If l = 0, we have

|(−Δ)
s
2 un|22 → 0, |un|2∗

s
2∗

s
→ 0,

implying that E(un) → 0, which is also a contradiction to m(a) < 0.
Step 2: Since λ < 0, we can define an equivalent norm of H, that is

‖u‖2 =
∫

RN

|(−Δ)
s
2 u|2dx − λ

∫

RN

|u|2dx.

Since un ⇀ ua in H, applying the Lebesgue convergence theorem to (3.8), one has
∫

RN

(−Δ)
s
2 ua(−Δ)

s
2 v − λ

∫

RN

uav − |u|p−2uv − |ua|2∗
s−2uav = 0, ∀v ∈ H. (3.12)

It follows from the Pohozaev identity that P (ua) = 0. Let vn = un − ua ⇀ 0, by Brezis–Lieb lemma we
have

{
|(−Δ)

s
2 vn|22 = |(−Δ)

s
2 un|22 − |(−Δ)

s
2 u|22 + on(1);

|vn|2∗
s

2∗
s

= |un|2∗
s

2∗
s

− |u|2∗
s

2∗
s

+ on(1).
(3.13)

Since P (un) = P (un) − P (ua) → 0 and un → u in Lp(RN ), we obtain |(−Δ)
s
2 vn|22 = |vn|2∗

s
2∗

s
+ on(1). Up

to subsequence, we assume that

|(−Δ)
s
2 vn|22 = |vn|2∗

s
2∗

s
→ l.

So, we have

l = 0, or l ≥ S
N
2s
s .

If l ≥ S
N
2s
s , by (3.13), we deduce that

m(a) = lim
n→∞ E(un) = lim

n→∞

(

E(ua) +
1
2
|(−Δ)

s
2 vn|22 − 1

2∗
s

|vn|2∗
s

2∗
s

)

= E(ua) +
s

N
l ≥ E(ua) +

s

N
S

N
2s
s .

Step 3: We prove that l ≥ S
N
2s
s will lead to a contradiction.

We first give a lower bounded estimate on E(ua). By (1.4), we have

E(ua) = E(ua) − 1
2∗

s

P (ua)

≥ s

N
|(−Δ)

s
2 ua|22 − (

1
p

− γps

2∗
s

)C(s,N, p)ap−pγp,s |(−Δ)
s
2 ua|pγp,s

2 .

Define

m(t) .=
s

N
t2 − (

1
p

− γps

2∗
s

)C(s,N, p)ap−pγp,stpγp,s .
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By a direct calculation, we have that m(t) is strictly decreasing on (0, t3) and increasing on (t3,+∞),
where

t
2−pγp,s

3 =
N

2s
(
1
p

− γp,s

2∗
s

)pγp,sC(s,N, p)ap−pγp,s .

Hence, the minimum of m(t) on (0,+∞) is

m(t3) = −(1 − pγp,s

2
)
(

ap−pγp,sC(s,N, p)(
1
p

− γp,s

2∗
s

)
) 2

2−pγp,s

(
Npγp,s

2s
)

pγp,s
2−pγp,s .

Define

α2
.=

⎧
⎪⎨

⎪⎩

22∗
ss

Nγp,sC(s,N, p)(2∗
s − pγp,s)

(
γp,sS

N
2s
s

2 − pγp,s

) 2−pγp,s
2

⎫
⎪⎬

⎪⎭

1
p(1−γp,s)

. (3.14)

Since a ≤ α2, we have that m(t) > − s
N S

N
2s
s on (0,+∞). Moreover, by Step 2, we have m(a) > 0, which

is a contradiction.
Step 3: We complete the proof at this step.
From the discussion of Step 2, only l = 0 is possible. Therefore, we obtain that |un|2∗

s
2∗

s
→ |ua|2∗

s
2∗

s
. From

(3.12), we get that

E′(ua)ua − λΨ′(ua)ua = 0.

Subtracting the left hand of (3.9) from that of the above equality and using the fact that |un|p → |ua|p,
we have that ‖un‖2 → ‖ua‖2. In view of un ⇀ ua in H, we have un → ua in H. Since E(ua) = infV (a) E,
we deduce that ua is a ground state. Besides, by Lemma 3.5, we have

E(ua) = inf
u∈V (a)

E(u) = inf
u∈AR0

E(u).

�

4. L2-critical perturbation case

In the section, we consider the case p = 2 + 4s
N and prove Theorem 1.2. First, we prove that I(u, s) has

the mountain pass geometry on Sr(a) × R in the following lemmas, where Sr(a) = Hs
r (RN )

⋂
S(a).

Lemma 4.1. Assume that p = 2 + 4s
N and 0 < a < α3, where

α3
.=
(

p

2C(s,N, p)

) 1
p−2

is defined in (1.8). Then there exist two constants k2 > k1 > 0 such that

P (u), E(u) > 0 for all u ∈ Ak1 , and 0 < sup
u∈Ak1

E(u) < inf
u∈Bk2

E(u)

where

Ak
.=
{
u ∈ S(a) : ‖(−Δ)

s
2 u‖L2(RN ) < k

}
,

Bk
.= {u ∈ Sr(a) : |(−Δ)

s
2 u|22 = 2k}.
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Proof. Let k > 0 be arbitrary fixed and suppose that u, v ∈ Sr(a) are such that |(−Δ)
s
2 u|22 < k and

|(−Δ)
s
2 v|22 = ck where c > 0 is determined later. Then, in view of (1.4) and pγp,s = 2, we have

P (u) ≥ |(−Δ)
s
2 u|22 − C(s,N, p)γp,sa

p−2|(−Δ)
s
2 u|22 − 1

S
2∗

s
2

s

|(−Δ)
s
2 u|2∗

s
2

≥ (1 − C(s,N, p)
2
p
ap−2)|(−Δ)

s
2 u|22 − 1

S
2∗

s
2

s

|(−Δ)
s
2 u|2∗

s
2 ,

E(u) ≥ 1
2
|(−Δ)

s
2 u|22 − C(s,N, p)

p
ap−pγp,s |(−Δ)

s
2 u|22 − 1

2∗
sS

2∗
s
2

s

|(−Δ)
s
2 u|2∗

s
2

≥ 1
2
(1 − C(s,N, p)

2
p
ap−2)|(−Δ)

s
2 u|22 − 1

2∗
sS

2∗
s
2

s

|(−Δ)
s
2 u|2∗

s
2 ,

and

E(v) − E(u) ≥ E(v) − 1
2
|(−Δ)

s
2 u|22

≥ 1
2
(1 − C(s,N, p)

2
p
ap−2)c2k2 − c2∗

s

2∗
sS

2∗
s
2

s

k2∗
s − 1

2
k2

≥ 1
2

{

(1 − C(s,N, p)
2
p
ap−2)c2 − 1

}

k2 − c2∗
s

2∗
sS

2∗
s
2

s

k2∗
s .

In view of the definition of α3, we can take c > 0 such that c2 > 1
1−C(s,N,p) 2

p ap−2 . Since a < α3, hence,

for k2 > k1 > 0 small enough, we have

P (u), E(u) > 0 for all x ∈ Ak1 , and 0 < sup
u∈Ak1

E(u) < inf
u∈Bk2

E(u).

�

Next, we give characterizations of the mountain pass levels for I(τ, u) and E(u). Ed denotes the closed
set {u ∈ Sr(a) : E(u) ≤ d}.

Proposition 4.2. Under the assumptions p = 2 + 4s
N and 0 < a < α3, let

σ̃r(a) = inf
η̃∈Γ̃a

max
t∈[0,1]

I(η̃(t))

with

Γ̃a = {η̃ ∈ C([0, 1], Sr(a) × R) : η̃(0) ∈ (Ak1 , 0), η̃(1) ∈ (E0, 0)},

and

σr(a) = inf
η∈Γa

max
t∈[0,1]

E(η(t))

with

Γa = {η ∈ C([0, 1], Sr(a)) : η(0) ∈ Ak1 , η(1) ∈ E0}.

Then, we have

σ̃r(a) = σr(a).
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Proof. Since Γa × {0} ⊆ Γ̃a, we have that σ̃r(a) ≤ σr(a). So, it remains to prove σ̃r(a) ≤ σr(a). For any
η̃(t) = (η̃1(t), η̃2(t)) ∈ Γ̃a, set η(t) = η̃2(t) 	 η̃1(t). Then η(t) ∈ Γa and

max
t∈[0,1]

I(η̃(t)) = max
t∈[0,1]

E(η̃2(t) 	 η̃1(t)) = max
t∈[0,1]

E(η(t)).

It shows that σ̃r(a) ≥ σr(a). �

In the following proposition, we give the existence of a (PS)σ̃r(a) sequence for I(u, s), whose proof can
be given by standard arguments by using Ekeland Variational principle and constructing pseudo-gradient
flows [19].

Proposition 4.3. [16, Proposition2.2] Let {gn} ⊂ Γ̃a be such that

max
t∈[0,1]

I(gn(t)) ≤ σ̃r(a) +
1
n

.

Then there exists a sequence {(un, τn)} ⊂ S(a) × R such that
(1) I(un, τn) ∈ [σ̃r(a) − 1

n , σ̃r(a) + 1
n ];

(2) mint∈[0,1] ‖(un, τn) − gn(t)‖H ≤ 1√
n
;

(3) ‖I ′|S(a)×R(un, τn)‖ ≤ 2√
n
i.e.

|〈I ′(un, τn), z〉H−1×H| ≤ 2√
n

‖z‖H
for all

z ∈ T̃(un,τn)
.= {(z1, z2) ∈ H : 〈un, z1〉L2 = 0}.

Proposition 4.4. Under the assumptions p = 2+ 4s
N and 0 < a < α3, there exists a sequence {vn} ⊂ Sr(a)

such that
(1) E(vn) → σr(a), as n → ∞;
(2) P (vn) → 0, as n → ∞;
(3) E′|Sr(a)(vn) → 0, as n → ∞, i.e.,

|〈E′(vn), h〉H−1×H | → 0

uniformly for all h ∈ Tvn
, ‖h‖ ≤ 1, where Tvn

.= {h ∈ H : 〈vn, h〉L2 = 0}.

Proof. By Proposition 4.2, σ̃r(a) = σr(a). Pick {gn = ((gn)1, 0)} ⊂ Γ̃a such that

max
t∈[0,1]

I(gn(t)) ≤ σ̃r(a) +
1
n

.

It follows from Proposition 4.3 that there exists a sequence {(un, τn)} ⊂ Sr(a) ×R such that, as n → ∞,
one has

I(un, τn) → σr(a), (4.1)
τn → 0, (4.2)
∂τI(un, τn) → 0. (4.3)

Let vn = τn 	 un. Then E(vn) = I(un, τn) and, by (4.1), (1) holds. For the proof of (2), we notice that

∂τI(un, τn) = s
(
e2sτn |(−Δ)

s
2 un|22 − γp,se

psγp,sτn |un|pp − e2∗
ssτn |un|2∗

s
2∗

s

)

= s
(
|(−Δ)

s
2 (τn 	 un)|2 − γp,s|τn 	 un|pp − |τn 	 un|2∗

s
2∗

s

)

= sP (vn)

which, by (4.3), implies (2).
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For the proof of (3), let hn ∈ Tvn
. We have

〈E′(vn), hn〉H−1×H =
∫ ∫

R2N

(vn(x) − vn(y))(hn(x) − hn(y))
|x − y|N+2s

−
∫

RN

|vn(x)|p−2vn(x)hn(x) −
∫

RN

|vn(x)|2∗
s−2vn(x)hn(x)

= e2sτn

∫ ∫

R2N

(un(x) − un(y))(hn(e−τnx) − hn(e−τny))e− Nτn
2

|x − y|N+2s

− e
N(p−2)τn

2

∫

RN

|un(x)|p−2un(x)hn(e−τnx)e− Nτn
2

− e
N(2∗

s −2)τn
2

∫

RN

|un(x)|2∗
s−2un(x)hn(e−τnx)e− Nτn

2 .

Setting ĥn(x) = e
−Nτn

2 hn(e−τnx), then

〈I ′(un, τn), (ĥn, 0)〉H−1×H = 〈E′(vn), hn〉H−1×H .

It is easy to see that

〈un(x), ĥn(x)〉L2 =
∫

RN

un(x)e
−Nτn

2 hn(e−τnx)

=
∫

RN

un(eτnx)e
3τn
2 hn(x)

=
∫

R3

vn(x)hn(x) = 0.

So, we have that (ĥn(x), 0) ∈ T̃(un,τn). On the other hand,

‖(ĥn(x), 0)‖2
H

= ‖ĥn(x)‖2

= |hn(x)|22 + e−2τn |∇hn(x)|22
≤ C‖hn(x)‖2,

where the last inequality holds by (4.2). Thus, (3) is proved. �

Let mr(a) .= infu∈Vr(a) E(u), where Vr(a) = V (a)
⋂

Sr(a). We have the following relationship between
σr(a) and mr(a).

Lemma 4.5. Under the assumptions p = 2 + 4s
N and 0 < a < α3, we have that

mr(a) = inf
u∈Vr(a)−

E(u) = σr(a) > 0,

where Vr(a)− = V (a)−⋂Sr(a).

Proof. Step 1: We claim that for every u ∈ Sr(a), there exists a unique tu ∈ R such that tu 	 u ∈ Vr(a),
where tu is the strict maximum point for the function φu(s) .= I(u, s) = E(s	u) on (0,+∞) on a positive
level. Moreover, Vr(a) = Vr(a)−.
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The existence of tu follows from Lemma 2.2. The uniqueness is from the following reasoning. Noticing
that

(ϕu)′′(τ) = s2
(
2e2sτ |(−Δ)

s
2 u|22 − pγp,s

2epsγp,sτ |u|pp − 2∗
se

2∗
ssτ |u|2∗

s
2∗

s

)

combining with (ϕu)′(tu) = 0, we have

(ϕu)′′(tu) = −s2(2∗
s − 2)|u|2∗

s
2∗

s
< 0.

By noticing that 0 < a < α3, it is clear that ϕu(−∞) = 0+ and ϕu(+∞) = −∞. Hence, ϕu(τ) has a
global maximum point at a positive level.
Step 2: We claim that E(u) ≤ 0 implies P (u) < 0.

Let E(u) ≤ 0. Since (ϕu)′′(tu) < 0, we know that ϕu is strictly decreasing and concave on (tu,+∞).
Since φu(0) = E(0 	 u) = E(u) ≤ 0, by the properties of the function φu(s) presented in Step 1, we have
that tu < 0. Moreover, since

P (tu 	 u) = (φu)′(tu) = 0 and P (u) = P (0 	 u) = (φu)′(0),

we have that P (u) < 0.
Step 3: σr(a) = mr(a).

Let u ∈ Sr(a). We take τ− << 0 and τ+ >> 0 such that τ− 	u ∈ Ak1 and E(τ+ 	u) < 0, respectively.
Then we define a path

ηu : t ∈ [0, 1] �→ ((1 − t)τ− + tτ+) 	 u ∈ Γa. (4.4)

By the definition of σr(a), we have

max
t∈[0,1]

E(ηu(t)) ≥ σr(a).

So, we have mr(a) ≥ σr(a) by Step 1. On the other hand, for any η̃(t) = (η̃1(t), η̃2(t)) ∈ Γ̃a, we consider
the function

P̃ (t) = P (η̃2(t) 	 η̃1(t)) ∈ R.

Since η̃2(0) 	 η̃1(0)) = η̃1(0) ∈ Ak1 and η̃2(1) 	 η̃1(1)) = η̃1(1) ∈ E0, hence by Lemma 4.1, we deduce that

P̃ (0) = P̃ (η̃1(0)) > 0,

and using the result in Step 2,

P̃ (1) = P̃ (η̃1(1)) < 0.

By (2.3), the function P̃ (t) is continuous and hence we deduce that there exists t̄ ∈ (0, 1) such that
P̃ (t̄) = 0, which implies that η̃2(t̄) 	 η̃1(t̄)) ∈ Vr(a). Therefore,

max
t∈[0,1]

I(η̃(t)) = max
t∈[0,1]

E(η̃2(t) 	 η̃1(t)) ≥ inf
u∈Vr(a)

E(u).

So, we infer that σ̃r(a) = σr(a) ≥ mr(a).
Step 4: At this step, we prove that σr(a) > 0.

If u ∈ Vr(a), then P (u) = 0. By GNS inequality (1.4), we deduce that

(1 − C(s,N, p)
2
p
ap−2)|(−Δ)

s
2 u|22 ≤ 1

S
2∗

s
2

s

|(−Δ)
s
2 u|2∗

s
2 .

Noticing a < α3, this implies that there exists δ > 0 such that infVr(a) |(−Δ)
s
2 u|22 ≥ δ. Then, in view of

pγp,s = 2, for any u ∈ Vr(a), we have that

E(u) = E(u) − 1
2∗

s

P (u) =
s

N
|(−Δ)

s
2 u|22 +

2s

pN
|u|pp ≥ sδ

N
> 0.

Thus, σr(a) > 0. �
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In the following lemma, we give an upper bound estimate for the mountain pass level σr(a).

Lemma 4.6. Let N2 > 8s2, p = 2+ 4s
N and 0 < a < α3. Then σr(a) < s

N S
N
2s
s , where Ss is defined in (2.1).

Proof. Let ϕ(x) ∈ C∞
c (B2(0)) be a radial cutoff function such that 0 ≤ ϕ(x) ≤ 1 and ϕ(x) ≡ 1 on B1(0).

We take uε = ϕ(x)Uε and

vε = a
uε

|uε|2 ∈ S(a) ∩ Hs
r ,

where Uε is defined in (2.2). In the following, we take ε = 1 and define

K1
.= |(−Δ)

s
2 U1|22, K2

.= |U1|22∗
s
, K3

.= |U1|22, K4
.= |U1|pp.

It is obvious that K1/K2 = Ss. As proved in [20], uε satisfies the following useful estimates:

|(−Δ)
s
2 uε|22 = K1 + O(εN−2s) and |uε|22∗

s
= K2 + O(εN ). (4.5)

|uε|22 =

⎧
⎨

⎩

K3ε
2s + O(εN−2s), N > 4s,

Csωε2s| log ε| + O(ε2s), N = 4s,
CsωεN−2s + O(ε2s), N < 4s,

(4.6)

where ω is the area of the unit sphere in R
N . For |uε|pp, we have the following estimate:

|uε|pp =
∫

RN

(
ε

N−2s
2

(ε2 + |x|2)N−2s
2

)p

|ϕ(x)|pdx

= εN− p(N−2s)
2

∫

RN

(
1

(1 + |x|2)N−2s
2

)p

|ϕ(εx)|pdx

= K4ε
N− p(N−2s)

2 + εN− p(N−2s)
2

∫

RN

(
1

(1 + |x|2)N−2s
2

)p

|ϕ(εx) − 1|pdx.

By N2 > 8s2 and p = 2 + 4s
N , it is easy to obtain that p > N

N−2s . Therefore,

∫

RN

(
1

(1 + |x|2)N−2s
2

)p

|ϕ(εx) − 1|pdx

≤
∫

RN \B1/ε

(
1

(1 + |x|2)N−2s
2

)p

dx

≤ ω

+∞∫

1/ε

rN−1

(
1

(|r|2)N−2s
2

)p

dx

= ω

+∞∫

1/ε

rN−1−p(N−2s)dr =
ω

(N − 2s)p − N
εN−p(N−2s).

Thus,

|uε|pp = εN− p(N−2s)
2

(
K4 + O(εp(N−2s)−N )

)
. (4.7)
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Define the following function on (−∞,+∞)

ψvε
(τ) .= ϕvε

(τ) +
1
p
|τ 	 vε|pp =

1
2
e2sτ |(−Δ)

s
2 vε|22 − e2∗

ssτ

2∗
s

|vε|2
∗
s

2∗
s
.

Then

ψ′
vε

(τ) = se2sτ |(−Δ)
s
2 vε|22 − se2∗

ssτ |vε|2
∗
s

2∗
s
.

It is easy to see that ψvε
(τ) has a unique critical point τε,0, which is a strict maximum point such that

esτε,0 =

(
|(−Δ)

s
2 vε|22

|vε|2
∗
s

2∗
s

) 1
2∗

s −2

(4.8)

and the maximum level of ψvε
(τ) is

ψvε
(τε,0) =

s

N

(
|(−Δ)

s
2 vε|22

|vε|2
∗
s

2∗
s

) 2∗
s

2∗
s −2

=
s

N

(
|(−Δ)

s
2 uε|22

|uε|2
∗
s

2∗
s

) 2∗
s

2∗
s−2

=
s

N

(
K1 + O(εN−2s)

K2 + O(εN )

) 2∗
s

2∗
s −2

=
s

N
S

N
2s
s + O(εN−2s) (4.9)

as ε → 0, where the estimates in (4.5) are used. Next, we give an upper bound estimate for the function
ϕvε

(τ) = I(vε, τ) on (−∞,+∞). Note that

ϕ′
vε

(τ) = s
(
e2sτ |(−Δ)

s
2 vε|22 − γp,se

psγp,sτ |vε|pp − e2∗
ssτ |vε|2

∗
s

2∗
s

)
.

Obviously, ϕvε
(τ) has a unique critical point τε,1 and in view of pγp,s = 2, we have

e(2∗
s−2)sτε,1 =

|(−Δ)
s
2 vε|22

|vε|2
∗
s

2∗
s

− 2
p

|vε|pp
|vε|2

∗
s

2∗
s

≥ (1 − 2
p
C(s,N, p)ap−2)

|(−Δ)
s
2 vε|22

|vε|2
∗
s

2∗
s

.

Combining (4.9) with the above inequality, we obtain

sup
R

ϕvε
(τ) ≤ sup

R

ψvε
(τ) − 1

p
e2sτε,1 |vε|pp

≤ s

N
S

N
2s
s + O(εN−2s)

− 1
p

(

1 − 2
p
C(s,N, p)ap−2

) 2
2∗

s−2
(

|(−Δ)
s
2 vε|22

|vε|2
∗
s

2∗
s

) 2
2∗

s −2

|vε|pp

≤ s

N
S

N
2s
s + O(εN−2s)

− 1
p

(

1 − 2
p
C(s,N, p)ap−2

) 2
2∗

s−2

ap−2
|(−Δ)

s
2 uε|

4
2∗

s−4

2 |uε|pp
|uε|

22∗
s

2∗
s −4

2∗
s

|uε|p−2
2

. (4.10)

By the facts (4.6), (4.7) and a simple calculation, we have

|uε|pp
|uε|p−2

2

=
|uε|pp
|uε|

4s
N
2

≥

⎧
⎪⎨

⎪⎩

CεN−(N−2s)(1+ 2s
N )− 4s2

N = C, N > 4s,

CεN−(N−2s)(1+ 2s
N )−s| log ε|− 1

2 = C| log ε|− 1
2 , N = 4s,

CεN−(N−2s)(1+ 2s
N )− 2s

N (N−2s) = Cε
8s2
N −2s N < 4s.

(4.11)
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Moreover, in view of a < α3, putting (4.5) and (4.11) into (4.10), we obtain that

sup
R

ϕvε
(τ) <

s

N
S

N
2s
s .

As in (4.4), we define a path

ηvε
: t ∈ [0, 1] �→ ((1 − t)τ− + tτ+) 	 vε ∈ Γa.

Therefore,

mr(a) ≤ max
t∈[0,1]

E(ηvε
(t)) = sup

R

ϕvε
(τ) <

s

N
S

N
2s
s .

�

Proof of Theorem 1.2. Choosing a PS sequence {un} as in Proposition 4.4 and applying the Lagrange
multipliers rule to (3) of Proposition 4.4, there exists a sequence {λn} ⊂ R such that

E′(un) − λnΨ′(un) → 0 in H−1 and E(un) → σr(a) as n → ∞. (4.12)

As in the proof of Theorem 1.1, we obtain, up to a subsequence,
⎧
⎪⎨

⎪⎩

λn → λ < 0 as n → ∞;
un ⇀ ua ∈ H as n → ∞;
un → ua ∈ Lp(R) as n → ∞

and P (ua) = 0. Denote vn
.= un − ua ⇀ 0. By the similar equalities as in (3.13), we can assume that, up

to a subsequence,

|(−Δ)
s
2 vn|22 = |vn|2∗

s
2∗

s
→ l.

So, we have

l = 0 or l ≥ S
N
2s
s .

If l ≥ S
N
2s
s , we deduce by the similar equalities as in (3.13), that

σr(a) = lim
n→∞ E(un) = lim

n→∞

(

E(ua) +
1
2
|(−Δ)

s
2 vn|22 − 1

2∗
s

|vn|2∗
s

2∗
s

)

= E(ua) +
s

N
l ≥ E(ua) +

s

N
S

N
2s
s .

On the other hand, E(ua) = E(ua) − 1
2P (ua) = s

N |ua|2∗
s

2∗
s

> 0. Moreover, by combining with Lemma 4.6,
we get a contradiction. This implies that un → ua in H by the similar arguments as in the end of the
proof of Theorem 1.1. Let m(a) .= infu∈V (a) E(u). As at the Step 1 of the proof of Lemma 4.5, it is easy
to obtain V (a) = V (a)−. Finally, we prove that m(a) = mr(a).

Since Vr(a) ⊂ V (a), we obtain m(a) ≤ mr(a). It remains to prove that m(a) ≥ mr(a). Otherwise, we
assume that there exists w ∈ V (a)\Sr(a) such that

E(w) < inf
Vr(a)

E(u). (4.13)

Then we let v
.= |w|∗. By the properties of the Schwarz rearrangement, we know that

E(v) ≤ E(w) and P (v) ≤ P (w) = 0.

If P (v) = 0, it contradicts to (4.13). If P (v) < 0, noticing that (ϕv)′(0) = P (v) < 0 and the claim of
step 1 of the proof of Lemma 4.5, we get that tv < 0, which still leads to a contradiction. In fact, since
tv 	 v ∈ Vr(a) and (4.13), one has
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E(w) < E(tv 	 v) = E(tv 	 v) − 1
2
P (tv 	 v)

=
se2∗

sstv

N
|v|2∗

s
2∗

s
=

se2∗
sstv

N
|w|2∗

s
2∗

s
= e2∗

sstvE(w) < E(w).

So,

E(ua) = σr(a) = mr(a) = m(a) = inf
u∈V (a)

E(u) = inf
u∈V (a)−

E(u)

and ua is a ground state. �

5. L2-supercritical perturbation case

In this section, we deal with the case 2∗
s > p > 2 + 4s

N and prove Theorem 1.3. For convenience, we still
use the notations and definitions in Sect. 4.

Lemma 5.1. Let 2∗
s > p > 2 + 4s

N . Then we have
(1) there exists a sequence {un} ⊂ Sr(a) such that

⎧
⎪⎨

⎪⎩

E(un) → σr(a) as n → ∞,

P (un) → 0 as n → ∞,

E′|Sr(a)(un) → 0 as n → ∞;

(2) σr(a) = mr(a) > 0, where mr(a) .= infu∈Vr(a) E(u) and σr(a) .= infη∈Γa
maxt∈[0,1] E(η(t))

where

Γa = {η ∈ C([0, 1], Sr(a)) : η(0) ∈ Ak1 , η(1) ∈ E0}.

Proof. Noticing that

E(u) ≥ 1
2
|(−Δ)

s
2 u|22 − C(s,N, p)

p
ap−pγp,s |(−Δ)

s
2 u|pγp,s

2 − 1

2∗
sS

2∗
s
2

s

|(−Δ)
s
2 u|2∗

s
2 ,

P (u) ≥ |(−Δ)
s
2 u|22 − C(s,N, p)ap−pγp,sγp,s|(−Δ)

s
2 u|pγp,s

2 − 1

S
2∗

s
2

s

|(−Δ)
s
2 u|2∗

s
2 ,

and also recalling that pγp,s > 2, the results follow from the similar arguments of Lemma 4.1, Propositions
4.2–4.4 and Lemma 4.5. �

In the following lemma, we give an upper bound estimate for the mountain pass level σr(a).

Lemma 5.2. Let N2 > 8s2, 2∗
s > p > 2 + 4s

N and 0 < a < α4, where α4 is defined in (1.9). Then

σr(a) < s
N S

N
2s
s , where Ss is defined in (2.1).

Proof. We define, as in Lemma 4.6, uε and vε. It suffices to prove that sup
R

ϕvε
(τ) < s

N S
N
2s
s . It is easy to

see that ϕvε
(τ) has a unique critical point τε,1 and

e2∗
ssτε,1 |vε|2

∗
s

2∗
s

= e2sτε,1 |(−Δ)
s
2 vε|22 − γp,se

psγp,sτε,1 |vε|pp ≤ e2sτε,1 |(−Δ)
s
2 vε|22.

It follows that

esτε,1 ≤
(

|(−Δ)
s
2 vε|22

|vε|2
∗
s

2∗
s

) 1
2∗

s −2

.
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Combining the above inequality with pγp,s > 2, we deduce that

e(2∗
s−2)sτε,1 =

|(−Δ)
s
2 vε|22

|vε|2
∗
s

2∗
s

− γp,se
(pγp,s−2)sτε,1

|vε|pp
|vε|2

∗
s

2∗
s

≥ |(−Δ)
s
2 vε|22

|vε|2
∗
s

2∗
s

−
(

|(−Δ)
s
2 vε|22

|vε|2
∗
s

2∗
s

) pγp,s−2
2∗

s −2 |vε|pp
|vε|2

∗
s

2∗
s

=
|uε|2

∗
s−2

2

a2∗
s−2

|(−Δ)
s
2 uε|22

|uε|2
∗
s

2∗
s

− γp,s
|uε|p−2

2

a2∗
s−p

|uε|pp
|uε|2

∗
s

2∗
s

(
|uε|2

∗
s−2

2 |(−Δ)
s
2 uε|22

a2∗
s−2|uε|2

∗
s

2∗
s

) pγp,s−2
2∗

s −2

=
|uε|2

∗
s−2

2

a2∗
s−2

|(−Δ)
s
2 uε|22

|uε|2
∗
s

2∗
s

⎛

⎜
⎝|(−Δ)

s
2 uε|

2(2∗
s −pγp,s)
2∗

s −2

2 − γp,sa
(1−γp,s)p|uε|pp

|uε|
2∗

s (pγp,s−2)
2∗

s −2

2∗
s

|uε|p(1−γp,s)
2

⎞

⎟
⎠ . (5.1)

We claim that there exists ε0 > 0 small enough and a positive constant C = C(s,N, p, a) such that

e(2∗
s−2)sτε,1 ≥ C|uε|2

∗
s−2

2 for any 0 < ε < ε0. (5.2)

Indeed, by (4.5), (4.6) and (4.7), there exist positive constants C1, C2 and C3 depending on N , s and p
such that

|(−Δ)
s
2 uε|2 ≥ C1,

1
C2

≥ |uε|2∗
s

≥ C2, (5.3)

and

|uε|pp
|uε|(1−γp,s)p

2

≤

⎧
⎪⎨

⎪⎩

C3ε
N− p(N−2s)

2 −ps(1−γp,s) = C3, N > 4s,

C3ε
N− p(N−2s)

2 −ps(1−γp,s)| log ε|− (1−γp,s)p

2 = C3| log ε|− (1−γp,s)p

2 , N = 4s,

C3ε
N− p(N−2s)

2 − p(N−2s)
2 (1−γp,s) = C3ε

( N2
4s +2s− 3N

2 )p+2N− N2
2s N < 4s.

(5.4)

For N > 4s, by (5.1) and (5.3), it is sufficient to verify that

γp,sa
(1−γp,s)p <

|(−Δ)
s
2 uε|

2(2∗
s−pγp,s)
2∗

s −2

2 |uε|
2∗

s (pγp,s−2)
2∗

s −2

2∗
s

|uε|p(1−γp,s)
2

|uε|pp . (5.5)

Using the interpolation inequalities, we have that

|(−Δ)
s
2 uε|

2(2∗
s−pγp,s)
2∗

s−2

2 |uε|
2∗

s (pγp,s−2)
2∗

s−2

2∗
s

|uε|p(1−γp,s)
2

|uε|pp

≥ |(−Δ)
s
2 uε|

2(2∗
s−pγp,s)
2∗

s−2

2 |uε|
2∗

s (pγp,s−2)
2∗

s−2

2∗
s

|uε|p(1−γp,s)
2

|uε|
2∗

s (p−2)
2∗

s−2

2∗
s

|uε|
2(2∗

s−p)
2∗

s−2

2

=
|(−Δ)

s
2 uε|

2(2∗
s−pγp,s)
2∗

s−2

2

|uε|
2∗

s (p−pγp,s)
2∗

s−2

2∗
s

=

(
|(−Δ)

s
2 uε|22

|uε|22∗
s

) 2∗
s (p−pγp,s)
2(2∗

s−2)

= S
N
4s (1−γp,s)p
s + O(εN−2s).

Therefore, (5.5) holds by a < α4.
For N = 4s, it easy to obtain (5.2) by (5.1), (5.3), (5.4) and the fact 0 < γp,s < 1.
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For N < 4s, it suffices to prove that from (N2

4s + 2s − 3N
2 )p + 2N − N2

2s > 0. From N2 > 8s2, we can
deduce that

N2

4s
+ 2s − 3N

2
=

1
4s

(N − 2s)(N − 4s) < 0.

So,
(

N2

4s
+ 2s − 3N

2

)

p + 2N − N2

2s
>

(
N2

4s
+ 2s − 3N

2

)

2∗
s + 2N − N2

2s
= 0.

Finally, we estimate upper bound for ϕvε
(τ) on R. By (4.9) and (5.5)

sup
R

ϕvε
(τ) ≤ sup

R

ψvε
(τ) − 1

p
epsγp,sτε,1 |vε|pp

=
s

N
S

N
2s
s + O(εN−2s) − C

p
|uε|pγp,s

2

ap|uε|pp
|uε|p2

=
s

N
S

N
2s
s + O(εN−2s) − C

ap|uε|pp
|uε|p(1−γp,s)

2

,

where C > 0 is independent of ε. Similarly as in (5.4), we have that

|uε|pp
|uε|(1−γp,s)p

2

≥

⎧
⎪⎨

⎪⎩

C4ε
N− p(N−2s)

2 −ps(1−γp,s) = C4, N > 4s,

C4ε
N− p(N−2s)

2 −ps(1−γp,s)| log ε|− (1−γp,s)p

2 = C4| log ε|− (1−γp,s)p

2 , N = 4s,

C4ε
N− p(N−2s)

2 − p(N−2s)
2 (1−γp,s) = C4ε

( N2
4s +2s− 3N

2 )p+2N− N2
2s , N < 4s,

for a constant C4 > 0, hence we can infer that sup
R

ϕvε
(τ) < s

N S
N
2s
s for any ε > 0 small enough. The

result follows. �

Proof of Theorem 1.2. We can proceed exactly as in the proof of Theorem, using Lemma 5.1 and Lemma
5.2.

Remark 5.3. Actually σr(a) < s
N S

N
2s
s for any 0 < a < ∞ when N ≤ 4s (see the proof of Lemma 5.2).

Thus, Theorem 1.3 holds for any 0 < a < ∞ when N ≤ 4s. �
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[2] Applebaum, D.: Lévy processes and stochastic calculus. In: Cambridge Studies in Advanced Mathematics, vol. 116, 2nd
edn. Cambridge University Press, Cambridge (2009)

[3] Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Models
6, 1–135 (2013)

[4] Bartsch, T., Soave, N.: Multiple normalized solutions for a competing system of Schrödinger equations. Calc. Var.
Partial Differ. Equ. 58, 1–22 (2019)



ZAMP Normalized solutions to a kind of fractional Schrödinger Page 23 of 23 149
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