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Abstract. This article deals with the existence and nonexistence of solutions for a viscoelastic wave equation with time delay
and variable exponents on the damping and on source term. Firstly, we get the existence of weak solutions by combining
the Banach contraction mapping principle and the Faedo—Galerkin method under suitable assumptions on the variable
exponents m (+) and p (-). For nonincreasing positive function g, we obtain the nonexistence of solutions with negative initial
energy in appropriate conditions.
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1. Introduction

We consider a viscoelastic wave equation with time delay and variable exponents on the damping and on
source term given by
t

it — A+ / g (t—s) Au(s)ds + pyug (,8) [ug ™7 (@, 1) + pouy (2t — 7) Jug "7 (@, = 7)

0
= bu [ulP™7% in Q x (0,00), (1.1)
with boundary conditions
u(x,t) =0 on 9N x (0,00), (1.2)
and initial data
u (z,0) =ug (z), ug (2,0) = uy (z)in Q, (1.3)
ug (x,t —7) =fo (x,t —7) in Q x(0,7), (1.4)

where  is a bounded domain with smooth boundary 92 in R™, n > 1. 7 > 0 represents the time delay,
(1 is a positive constant, ps is a real number, and b > 0 is a constant. ug, u1, and fy are the initial data
functions to be specified later. -
The exponents m (-) and p () are given as continuous functions on 2 that satisfies
{2§m‘ <m(z) <m*T < m*,

2<p <p(z)<pt <p (15)
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where
m~ = essinfm (z), mt = esssupm (z),
€N €N
p~ = essinfp(x), pT =esssupp(x),
e zEQ
and

2<m*, p*<oo, ifn<3,
2§m*,p*§% if n>3.

Generally, the problems with variable exponents arise in many branches in sciences such as electrorhe-
ological fluids, nonlinear elasticity theory, and image processing [7,8,36]. Time delay often appears in
many practical problems such as economic phenomena, thermal, biological, physical, and chemical [15].

When m (z) and p (x) are constant, the problem (1.1) becomes

t
Uy — Au + /9 (t — ) Au(s) ds + puy |ue|™ 2wy 4 poug (2,6 — 7) |ue) ™ (@, —7) = buul’~>.  (1.6)
0
Kang [19] concerned with this problem and established the blow-up of solutions for positive initial energy
E(0) > 0.
Without the delay term (uouy (2, — 7) |ut|m(gu)72 (z,t — 7)) the problem (1.1) reduces to the following
form
t
ugy — Au + /g (t—s)Au(s)ds+a |ut|m(x)_2 ug = bu |u\p(m)_2 . (1.7)
0
Related to (1.7), Park and Kang [31] established existence of solutions by using Galerkin method and
proved blow-up result for positive initial energy E (0) > 0. Pigkin [35] obtained the blow-up of solutions
for negative initial energy E (0) < 0 with m (z) < p(x). In the presence of dissipative term (—Auy),
Gao et al. [11] studied the existence of weak solutions by using the embedding theory and the Faedo—

Galerkin method. Messaoudi et al. [28] proved a global existence result using the well-depth method and
established explicit and general decay results under a general assumption on the relaxation function.
When m (z) is constant and without the delay term (pauq (2, — 7) Jue| ™™ 72 (
term (bu \u|p<x)_2), the problem (1.1) takes the form
t
uy — Au + /g(t — ) Au(s)ds + ug]™" ?up = 0.

0

x,t — 7)) and source

Belhannache et al. [6] established an existence result and some general decay results for both cases
m > 2 and 1 < m < 2. They improved the work of Messaoudi [29].

In the absence of the viscoelastic term (g = 0), the problem (5) reduces to
e — A+ g ue) ™ 72w+ oy (2t — 1) ™7 (2t — 1) = buuP 2 (1.8)

Kafini and Messaoudi [16] proved the global nonexistence and the decay estimates for (1.8).

In the absence of the viscoelastic term (g = 0) and delay term (pouy (z,t — 7) |ug| ™™ 2 (2,t — 7)),
the problem (1.1) becomes in the form with variable exponents as follows:

upy — Au+a |ut|m(gc)72 uy = bu |u\p(m)72 . (1.9)

For equation (1.9), Messaoudi et al. [27] considered the existence of a unique weak local solution by
using the Faedo-Galerkin method. The authors also established the blow-up of solutions with negative
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initial energy F (0) < 0 for this equation. Ghegal et al. [13] proved a global result and obtained the
stability result by applying an integral inequality due to Komornik.

In the absence of the viscoelastic term (g = 0), delay term (uous (z,t — 7) [ue|™ @72 (z,¢ — 7)), and
when m (z) and p (x) are constant exponents, problem (1.1) leads to
wp = uulP 2. (1.10)

Ut — Au + |ut|m_2

In the absence of the damping term |u;|™ > uy, Ball [4] showed that the source term u|u|’™> causes
blow-up of solutions for E (0) < 0. Haraux and Zuazua [14] established that the damping term assures
global existence for arbitrary initial data, in the absence of the source term. When m = 2 in the linear
damping, Levine [22] proved a finite-time blow-up result with E (0) < 0. Georgiev and Todorova [12]
improved Levine’s result to the nonlinear damping case m > 2. They obtained that, if m > p, the global
solution exists for arbitrary initial data. Also, they showed that, if p > m, solutions with sufficiently
E(0) < 0 blow up in finite time. Messaoudi [24] extended the result of Georgiev and Todorova. He
obtained blow-up of solutions in a finite time with E (0) < 0.

Nicaise and Pignotti [30] considered the following wave equation:

uge (2, 1) — Au (2, t) + apug (x,t) + auy (x,t —7) =0, (1.11)

where a¢ and a are positive real parameters. The authors proved that the system is exponentially stable
under condition 0 < a < ag. In the case a > ap, they obtained a sequence of delays that shows the
solution is unstable.

Concerning the hyperbolic-type equations with variable exponent, we refer to the work of Antontsev
[1], who studied the wave equation as follows:

u — div (a (2,1) |V P2 Vu) — aluy = b(z,t)ulu/7®D72. (1.12)

The author established several blow-up results for nonpositive initial energy, under specific conditions
on a, b, p, o and for certain solutions. Moreover, Antontsev [2] obtained the existence of local and global
weak solutions of equation (1.12) by using Galerkin’s approximations in spaces of Orlic-Sobolev type.
Also, he proved the blow-up of weak solutions for nonpositive initial energy functional.

In recent years, some other authors investigate hyperbolic-type equations with delay or variable expo-
nents (see [3,17,18,26,31,33-35,37]). Motivated by the above studies, we deal with the existence of
weak solutions and nonexistence of solutions for the viscoelastic wave equation with delay term, source
term, and variable exponents. There is no research, to our best knowledge, related to the viscoelas-

t
tic ([ g (t —s) Au(s)ds) wave equation (1.1) with delay (uouy (z,t — 7) |ug| ™™ ™2 (2, — 7)) and source
0

terms with variable exponents; hence, our paper is generalization of the previous ones. Our main goal
is to get the existence of weak solutions and establish the nonexistence of solutions for negative initial
energy F (0) < 0 under sufficient conditions on m (-) and p (-) for the problem (1.1).

In addition to the Introduction, this work consists of four sections. Firstly, in Sect. 2, we present the
definitions and some properties of the variable exponent Lebesgue spaces LP(") (©2) and the Sobolev spaces
Whr() (Q). The equivalent system to (1.1)-(1.4) with its respective energy functional is presented. In
Sect. 3, we introduce some technical lemmas. In Sect. 4, we establish the existence of weak solutions.
Finally, in Sect. 5, we prove the nonexistence of solutions for negative initial energy E (0) < 0.

2. Preliminaries

Firstly, we state the results related to Lebesgue LP(*) (Q) and Sobolev WP() (Q) spaces with variable
exponents (see [2,8,9,21,32]). At the end of the section, we present the equivalent system to (1.1)—(1.4)
with its respective energy functional.
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Let p: Q — [1,00) be a measurable function. We define the variable exponent Lebesgue space with a
variable exponent p () by

L0 (Q) = { u: Q — R; measurable in 2 : / [PV dz < 00y,
Q

with a Luxemburg-type norm

p(x)
Jull ., = inf A >0 /‘%‘ dr <1
Q

Equipped with this norm, LP(") (Q) is a Banach space, see [§].
We define the variable exponent Sobolev space W1(") (Q) as follows:

whrO) (Q) = {u e L’V (Q) : Vu exists and |Vu| € LPO) (Q)} .
Variable exponent Sobolev space with the norm
lullypey = lullocey + 1Vulloe

is a Banach space.

By Wy ") (), we denote the closure of Cg° (Q2) in W*() (Q). For u € WP (Q), we can define an
equivalent norm

||U||1,p(.) = [[Vulls) -

The dual of Wy*") (Q) is defined as Wo_l’p/(') (), similar to Sobolev spaces, where

—_
—_

We also assume the log-Holder condition,

plx)—py)|<—————and m(z) —m((y)| < —— for all z,y € Q, 2.1
(@) =) < e and () = m ()] <~ — (21)
A,B>0and 0 <6 <1 with |z —y| < 0.
In addition, m (-) satisfies
m* () = 4 m-m()” if m(x) <n,
any number in [1,00), if m(z) > n.

As usual, the notation |||, denotes L norm, and (-, ) is the L? inner product. In particular, we write
[I-]| instead of ||-|,-

We make some assumptions on g:
(A1) Let g : [0,00) — (0,00) be a nonincreasing and differentiable function, satisfying

oo

1—/g(s)ds:l>0.

0

(A2) g(s) >0, ¢ (s) <0 and

oo

1—-a p_—Q—%
/g(s)ds<( ) mk " 0<a<l.
(1-a)p =2+ 55

0
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Using the direct calculations, we get
/ 1 1
ot =5 (Vu(s). Vue () ds = 5900 [Va 0)* + 5 (0% 0) (1)
0

a0 - | [e@ds|Ivaort. @2
0

where
(goVu) (1) = / g (t—3) [V (t) = Vu(s)]* ds.
0

For coefficients pq and po, we suppose

|pa| < %m. (2.3)
Now, as in [30] we introduce the auxiliary unknown
z(z,p,t) =w (z,t —7p), z €, pe(0,1),t>0.
It is straightforward to check that z satisfies
Tzt (2, 0,) + 2, (2, p,8) =0, 2€Q, pe(0,1), t>0,
and consequently, problem (1.1)-(1.4) is equivalent to

t
s — Au+ /g (t — s) Au(s)ds + prug (@, 1) |ug (2, 8)™ 72 + poz (2,1,1) |2 (2, 1, 8) " 2
0

=bu |u\p(a¢)_2 in  x (0,00), (2.4)
Tz (z, p,t) + 2, (x,p, 1) =0,
with boundary conditions
u(z,t) =0 on 9N x (0,00), (2.6)
and initial data
w(z,0) =ug (), us (2,0) = uq (x)in £, (2.7)
z(z,p,0) = fo(x,—7p) in 2 x(0,1),
2 (2,0,t) = ug (z,t) in Q x (0,00).
For ¢t > 0, the energy functional of the system (2.4)—(2.9) is defined by
¢

B =5 lul’+5 (1= [g@)ds | IVal®+ 5 (g0 Vu) 0
0
P e 2 (. 0@ u[P@
+//5( )| ;égm d$dpfb/ |p|(x) da, (2.10)
0 Q Q

where ¢ is a continuous function satisfying (2.11)

72| (m(z) = 1) < €(z) < 7 (pam (x) — |uz|), v € Q. (2.11)
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3. Technical lemmas

Let us start this section by proving that the energy functional E(t) defined by (2.10) is non-increasing.

Lemma 3.1. Let (u,z) be a solution of (2.4)~(2.9). The energy functional E(t) is nonincreasing, that is,

E' () < —C’O/ (\ut\m(x) + |2 (=, 1,t)|m(x)) dz < 0, forsome Cj > 0.

Q

Proof. Multiplying (2.4) by u, integrating over 2, multiplying (2.5) by ¢ () \z|m(w)_2 z, integrating

over 2 x (0,1), and summing up, we obtain
t

d1, o 1 2 1
@ §Mm+5'1f/g@MS\WMI+§@oWA®
0

1

£ (2) |2 (z, p, t)|™" [P
o[ SRS dmﬂbgpmd

0 Q

mla 1 1
= [ " do = S9(s) [Vul® + 5 (0" 0 V) (1)

1
1 m(z)—
—;//f(az)|z(w,p,t)| (@) 2zzp(a:,p,t)dpdx
Q0

— U2 /utz (2,1,1) |2 (z,1,8))" ™2 da (3.1)
)

where
t

(goVu)(t) = /g (t—s) / [Vu (s) — Vu (t)]? dzds.
0 Q
Now, we estimate the last two terms of the right-hand side of (3.1) as follows:

1
1 i)
—;//f@ﬂd%mm()QwA%@ﬂwm

[ (e
0

_ 5(“”)( (.00 ~ 2 (2,1,0)") da

T m (x)
f (@) 1 @ €)@ gy
= [ oy " = [ S 10 a

Using the Young’s inequality, ¢ = m (;t ) ; and ¢’ = m () for the last term to obtain

U + ——— |z (x, 1,1 .

g |2 (2, 1,8)| ™7 <
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Consequently, we deduce that

—,ug/u,gz|z(9L',1,t)|m(w)72 dz
)

1 m(z m(x)—1 mlz
<l | [ oty b7t [ O 1,0 a0
Q Q

m(x)
So,
B0 /[ ( mm e (O da
Q
[ () g
— 59 (s) IVl + 1 (g0 V) (1)

For all = € Q the relation (2.11) leads to

fl(x)?im_( ¢ (x) N |12 ) >0,
1

Tm(z)  m(z

b (2) % §(x)  |po|(m(z

™ (:17)

Since m (z), and hence & (z), is bounded, we infer that
define

Co (z) =min{f; (z), fo(z)} >0 for any z € Q,
and take Cy (z) = infg Cy (2), so Cp (z) > Cy > 0. Moreover, by using assumptions (A1)—(A2) we have,

B () < —Cy /|ut (&)@ dx+/|z(x,1,t)|m<l‘> dz| <0. (3.2)

O

Taking into account that signal of E(t) is not defined, (3.2) is an important property that leads
E(t) < E(0). Next, we introduce some technical lemmas.

Lemma 3.2. [2] (Poincare inequality) Assume that p (-) satisfies (2.1). Then,
lullyir < ellVulley for allue Wo (),
where ¢ = c(p~,p™,|Q]) >0, Q is a bounded domain of R™.

Lemma 3.3. [2] If p: Q — [1,00) is continuous,

+ < 2n

2<p <p(x)<p n >3, (3.3)

— n — 27
holds, then the embedding H} (Q) — LPO) (Q) is continuous.

Lemma 3.4. [1] If p* < o0 and p : Q — [1,00) is a measurable function, then C§° (Q) is dense in
PO (Q).
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Lemma 3.5. [1] (Holder’ inequality) Let p,q,s > 1 be measurable functions defined on £ and
1 1

+
s pl) )
holds. If f € LPC) (Q) and g € L) (Q), then fg € L*C) (Q) and

1£9llscy <200y Ngllge -

Lemma 3.6. [1] (Unit ball property) Let p > 1 be a measurable function on Q. Then,
1fll,) < 1 if and only if gy (f) <1,

, fora.e.y €,

where

op() () = / |f (I)\p(z) dx.
Q

Lemma 3.7. [2]If p > 1 is a measurable function on ), then
min { a2l b < opy (w) < max {ullse) )}
for any v € L) (Q) and for a.e. x € Q.
Lemma 3.8. [8] Let m(-) € C(Q) and p: Q — [1,00) be a measurable function that satisfy
essinf,cq (m™ (x) —p(z)) > 0.

Then, the Sobolev embedding Wol’m(') (Q) — LPO) (Q) is continuous and compact, where

m* (1‘) _ pe—— Zf m- <n,
any number in [1,00) if m~ > n.

Lemma 3.9. [17] Suppose that p(-) satisfies
2<p” <p(x) <p < oo,
for a.e. x € Q, then the function h(s) =b |s|p(w)_2 s is differentiable function and
p(z)—2
[ (s)] =blp(z) — 1] |s|

Lemma 3.10. [16] Suppose that condition

2(n—1
2<m” <m(z)<m" <p” Sp(@éfﬁ%,nzi’:
holds. Then, depending on € only, there exists a positive C > 1, such that
o7 () < C (|Vul + o (w). (3.4)
Moreover, we have the following inequalities:
lully- < & (I9ull® + )12 (35)
1
o 2 £ vxmnW“
o (W) <O muwwmn+mw+// drdp | (36)
0

1
m(x)
s - ) at
nwfsc|wawm%ww;+//f@”@p)' dadp | . (3.7)
0 Q
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for anyu € HY () and 2 < s <p~.

o(u)>Clulb_, (3.8)
/ " dz < 0 (7 () + 0™ (W) (3.9)
Q

4. Existence of solutions

In this section, combining the contraction mapping theorem and Faedo—Galerkin method similar to
[27,31], we obtain the local existence of solution for problem (2.4)—(2.9).

Theorem 4.1. Assume that assumptions (A1)-(A2) hold. If g € L*(Q x (0,T)), u1 and ps are under the
condition (2.3), m (x) satisfies (1.5) and (2.1). Then, for every initial data (ug,u;) € H (Q) x L?(Q),
fo € L™ (2 x (0,1)) and T > 0, the problem (2.4)~(2.9) has a unique weak solution (u,z) where

" x (0,1)).

ue L ((0,T); Hy (Q)), ue € L= ((0,T); L* () N L™ (@ x (0,T)), z€ L

Proof. (Existence): Firstly, we take a basis {v;}7%, to Hj (©2) which is orthonormal in L? () and define
the finite-dimensional subspace Vi, = span {v1,...,v;}. By normalization, we have |lv;|| = 1.
Similar to [10,20,38], we define the sequence ¢; (z, p), for 1 < j < k, as follows:
j (2,0) = v; () .

We extend over L? (Q x [0,1]), ¢, (x,0) by ¢; (z, p) and denote Uy, = span {¢1,. .., ok}
Define
k

ub (z,t) = Zdj (t)vj () and 2" Zej w; (z,p)

Jj=1

where (u” (x,t), 2¥ (z,t)) are solutions of the following approximate problems as:
/utt(xt)vj( dx+/Vu (x,t) Vv (x dx—// (t — s) VuF (z, 5) Vo, (z) dsdx
m(xz)—2 k m(z)—2 L
+ 1 ’ut z,t)| ¢ (z,t)v; (x )dx+,u2 ‘z (2,1,1)| 2% (z,1,t) v (z) de

= /g (x,t)v; (z)dx, (4.1)
Q
with initial data

uf (2,0) = uf, uf (2,0) =uf, 2% (x,0,t) =ul (x,t), Vi=1,... k, (4.2)
and
/th (x,p,t) pjdx + /z]; (z,p,t) pjde =0, 2F(0)=28 vj=1,...k, (4.3)
Q Q
where
k
Z (ug,v;) v — ug in Hg (Q) as k — oo. (4.4)

j=1
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k

uf :Z (ui,vj)v; —uy in L*(Q) as k — oo. (4.5)
k

ZS:Z(fO,%) i — fo in L™ (Qx (0,1)) as k — oo. (4.6)
j=1

Considering the standard theory of ordinary differential equations, the finite-dimensional problem
(4.1)—(4.3) has solution defined on [0,t;), 0 <t < T for T > 0.

Now, we will prove that ¢, = T, Vk > 1. We multiply Eq. (4.1) by d; (¢) and sum up the product
result in j; then, we have

2dt /|k 2 de + 1f/ (s)ds /|Vuk(t)|2d:c+(goVuk)(t)

Q

m(z) () —
m/!uf () dwm/!z’“ (1) 2 (01,0 (1)
Q Q

_ —%g(t)/lvuk (t)‘gdx+%(g/oVuk) (t)+/g(x,t)uf (t)da.
Q

Q

Using the hypothesis on g and integrating over (0,t), we obtain

} /|ut | dz + 1—/gsds /fVukt|2dx—|—(goVuk)(t)

t

7n(z) mz
—&-,ul//|uf s dxds+u2//’z (z,1,9) (0)=2 2 (2,1, 8) uf (s) dads

0 Q

:%/|u| dz + - /|Vu’§| dx—l—// g (z,s)uf (s) deds
Q 0 Q

t T
1 1
< 5/]u ] do + = /yvu’g| dx+1//]u )dexds+//|g(x,s)\2dxds
0 0
< C+fsup /|ut T t| dz, Vt € [0,t). (4.7)
4(0tk)

By (4.3), we have

Cal (2, p,5) 2* (2, p, 5)™ ! dadpds

1
[ S wops)™ ™ dudpis =0,
0 Q
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which provides

1
m(x) m(x)
//C z,p,t p//C " (@,p,0)|"" dadp
m (x) m(x
0 0

(x)
[ [ ¢ [ [«
k 1 m(x) _// k m(x) —0. 4
+//m(x)7"z (2,1,5)] dxds m(x)T’Z (2,0,5)| deds =0 (4.8)
0 Q 0 Q

Summing up the identities (4.7) and (4.8), we get

/|ut )| de + 1—/ s)ds /|vu’€/2dx+ (90 Vi) (t)
Q/ iiﬁ) |zk (z,p,t) dxdp—i—//
+ O/tg (Nl - m(i:)T) |uf (s)|m(m) dads

}z (z, 1,3)|m($) dads

3

p |26 | dxdp yg//| (z,1,9) m2 ok (z,1,5) ul (s) dzds. (4.9)

Utilizing Young’s inequality, we get
t

— M2 // |zk (x,1, s)|m(x)_2 2P (2,1, 5)ul (s) dads

0

_1 xT ml
//'lm(xg‘z x,l,s i) dxds+// ,]f @ qads. (4.10)
m(x
Q

0

By combining (4.9) and (4.10), we obtain

+// <m§‘7' _(m m+) |M2|> !zk (2,1,5)| ) quds
0 Q
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§%/|u | dz + = /|Vu§} do + — //|ut | dxds
Q
T 1
+//|g(z,s)|2dzds+mi// )dxdp
0 Q 0 Q

1
<C+ - sup /|u{tC (t)}de, Vit € [0,tr) .
4o

From (2.11), we can find ¢o and cg positive constants, such that

sup /|uiC (t)‘de—F supl/|Vuk (t)’QdJ:
(0,tr) o

(0,tx) o
1
+ sup //|z x,p,t) dxdp
(0,tx)
0
tr
K m(@) k m(z)
+ ¢o lug ()| dads+cs |2" (2,1, 5)] dzds < C.
0 Q 0 Q

Hence, the solution can be extended to [0,7) and we obtain, for all k € N,
(u¥) is a bounded sequence in L™ ((0,7); Hy (),
(u¥) is a bounded sequence in L> ((0,T);L*(Q)) N L™ (Q x (0,T)),
(2%) is a bounded sequence in L*° ((0, T); L™ (€ x (0, 1))) ,
(zF (1)) is a bounded sequence in L™ (Q x (0,7)).
Then, there exists a subsequence (u*) of (u¥) such that
u" — u weak star in L™ ((0,7); Hy (Q)),
uf' — uy weak star in L ((0,7); L () and weakly in L™ (Q x (0,T))

and subsequence (2*) of (2*) such that
2 — » weak star in L® ((O,T) Lm0 (Q x (0, 1)))
2# (1) — z (1) weak star in L™ (Q x (0,7)).

On the other hand, utilizing Lions lemma (see [23]), we infer that u € C ([0,7]; L?(Q2)). Since u}’

and z* (1) are bounded in L™) (Q x (0,T)), then |u!|™ m(@)=2 uf and |2# (1 )|m(m)72 z" (1) are bounded in
o)
L™O-1 (% (0,7)).

As in [27], we have

"2 w072 4, weakly in LA (Qx(0,7)),
N— m (.
127 (1)["O72 20 (1) = |2 ()72 2 (1) weakly in L7OT (Q x (0,T)).
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Thus, we obtain, for all v € L™ ((0,T) x H} (2)),

¢
/ uyv + VuVou — /g (t —s) Vu (s) Vuds
Q 0

m(x)—2

+ p wv + g |z (2, 1,8)] ™72 2 (2,1, 8) v) dr = /gvdx,
Q
which gives
¢
= Bt [ gt =) Bu()ds + g fur (2,0 (0.
0
+ gz (2, L) 2 2 (2, 1,t) =g in D' (2% (0,7)).

(Uniqueness): Assume that (ul, z!) and (u2, 22) are two-pair solution to the problem (2.4)-(2.9). We

define u = u* — u? and z = z! — 22, then (u, z) satisfy

t

~ ~ m(x)—2
o i+ [ (e 5) AT (s)ds g ul " = "
0
1 m(z)—2 1 9 m(x)—2 9
+ p2 |2 (z,1,t) 2w, 1,t) = pg |27 (2, 1,t)] 22 (2,1,t) =01in Q x (0,7T) (4.11)
72¢ (z,p,t) + 2, (x,p,t) =0in Q x (0,1) x (0,7), (4.12)

boundary condition

u(x,t) =0on 9Q x (0,T) (4.13)
and initial conditions
7 (2,0,t) = uy (x,t) in Qx(0,7), (4.14)
Z(x,p,0)=0 in Qx(0,1), (4.15)
w(x,0) =0, u (x,0) =0 in Q. (4.16)

Multiplying (4.11) by u, and integrating over Q, we get
t
1d ~ 2 ~
G ‘ut (t)‘ dz + g(s ‘Vu ’ da:—|—(goVu) (t)
Q 0
+ i@ [Iva ’d 1(’ov)()
59 ‘ u( =59 u

tm

m(r -2 m(z)—2 ~
(lut O™l @) = u? ()" 6 (2,0)) i () do

Q
1 m(z)—2 1 9 m(w)—2 2 ~
—|—,u2/ |z a:,l,t| z (x,l,t)—|z (x,l,t)‘ 2% (x,1,t) | ug (t) dz = 0. (4.17)
Q
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Multiplying (4.12) by Z and integrating over Q x (0, 1), we obtain

2
2dt//‘ x p,t dxdp+ <H (x,1,t) H Hat (t)H ) =0. (4.18)

By combining (4.17) and (4.18), we have

t
o 2
th /‘ut t dz + 1—/g(s)ds /‘Vu(t)’ dz
0 Q

+ (govﬂ) (t )+TH (@,p, )‘ ;(Qx(o,l))}

o lF@nn| + 50 (t)/‘vﬂ 0
Q

[ (jub @ uk @) =t 0" ) @ (0)do

Q

+,UQ/ (’Zl (m,l’t)’m(z)*2 21 ({E71,t) _ ’22 (x,17t)|
Q

m(x)—2

22 (z,1, t)) uy (t) dz

1 ~ 1~ 2
=5 (gova) )+ laco] (4.19)
Since the equation y — \y|m(‘)72 y is increasing, we get
m(x)—2 m(z)—2
/(\ug O 7wl (1) [ (0" 0 (2.0)) i (1) da > 0, (4.20)
Q

m(x)—2

/ (|z1 @1 AL - |2 @y 2, 1,t)) () dz > 0. (4.21)
Q
)

1d ~ 2 ~ 2 ]_ ~ 2
s i@+ vu +ﬁ‘®””hmm@m +3|F @)
< ¢ <\ W) +1| Ve )

which implies that u = 0, z = 0. d

The following theorem shows that the problem (2.4)—(2.9) has a unique local solution under suitable
condition.

Theorem 4.2. Assume that assumptions (A1)-(A2) hold. Let py and pe satisfy the condition (2.3). If

m (x) satisfies (1.5), (2.1); p(x) satisfies (2.1) and

2(n—1

7(71 ), ifn >3, (4.22)
7 —

then, for every (ug,u1) € Hy (Q) x L?(Q), fo € L™ (Q x (0,1)) and T > 0, the problem (2.4)~(2.9) has
a unique local solution such that

we C(0,T);He (), u € C([0,T];L2 () N L™ (2% (0,T)), ze L™ (2 x (0,1)).

2<p <p(x)<p' <
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Proof. (Existence) Suppose that v € L> ((0,T); H} (€2)). Since 2(p~ —1) < 2(p* — 1) < 2%, then
HMMFﬁW/%WW*WMQW /MW‘”M+/Mwh°w < .
9) ) 9)

Therefore, we have
h(v) € L™ ((0,T);L* () C L* (2 x (0,T)).
Hence, from Theorem 4.1, for each v € L™ ((O7 T); H} (Q)), there exists a unique solution
we L ((0,T); Hy (), ue € L= ((0,7); L2 (2)) N L™ (Q x (0,T)), z € L™ (2 x (0,1))

satisfying the problem as follows:
t

wr = Bt [g(t =) Au(s)ds g fun (2,0 e o0) + gz 0] 2 01,0
=h(v) ('1)n Qx (0,7, (4.23)
Tz (x,p,t) + 2, (x,p,t) = 0in Q x (0,1) x (0,7, (4.24)
boundary condition
u(z,t)=0 on 00 x (0,T), (4.25)
and initial data
w(z,0) =ug (z), w (x,0) =wuy (x), in £, (4.26)
z(x,0,t) =uy (x,t) in Qx(0,T), (4.27)
z(z,p,0) =fo (z,—7p) in Qx(0,1). (4.28)

Similar to [5,25], we prove that the sequence (u*) is Cauchy in
Xy :=C([0,T]: Hy () nC* ([0,T]; L* (),
equipped with the norm

lull%, = max {Jluell® + 11Vl

Hence, the problem (4.23) has a unique weak solution. Next, we will verify that the problem (2.4) has
a unique weak solution.

We define the nonlinear mapping K : X7 — Xr by K (v) = u, where u is the unique solution of the
problem (4.23).

Next, we shall show that there exist T > 0, such that

(i) K : X7 — X,

(ii) K is a contraction mapping in Xr.

To show (i), we multiply the first equation in (4.23) by u; and integrate over  x (0,t), and then we
get

t

1 1 1
sl 45 (1= [o@)ds | Ivul + 5 o v (0
0
t t

5 [o@Ivalas= 5 [ o v (s

0 0
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t t

+ ,ul//|ut (s)|m(r) dxds+u2//|z(x,l,s)|m(z)72z(x,l,s)ut (s) dads

0 Q 0 Q

¢
1 1 _
= 5/u%d:L’Jr5/|Vu0|2d:c+b//|v|p(m) % vuy (s) dzds. (4.29)
Q Q 00

We multiply the second equation in (4.23) by %zm(x)‘l and integrate over Q x (0,1) x (0,t), and then
we get

1
| [t (o™ = [z w01 ) dadp
0 Q

m (z)
¢
_ // - (i) = (12 0,91 = [z (2,1, ) ")) dads. (4.30)
0 Q
From assumptions (A1)—(A2), we have
¢ ¢
% (goVu)(t) — %/(g’ oVu)(s)ds + % /g (s) || Vul*ds > 0. (4.31)
0 0

By combining (4.29), (4.30), and (4.31), we obtain

Hutu +f|\v & +// C 2 (o p,8)™ dadp

t

+ Nl//'ut (s)|m(z) dxds-y-m//|z(x,1,s)|m<m)_2z(x,1,s)ut (s) dads

0 Q

//m |Z z,1,8)| ™~ fu, (8)\7"(30)) dzds
/ ety / Vol do + / / mfx [fo (2, —7p)| ™ dadp

Q

+ b//\v|p 2 vuy (s) dzds. (4.32)

Utilizing Young’s inequality and (1.5), we get

i [t s ) un 5) do

m(L
S@/wt( ™) 4z —|— |u2|/|z z,1,s dz. (4.33)
m
Q
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By applying Sobolev embedding H} () — L (©) and Young’s inequality, we get

_ 1 _
/\v|p(m) Zouy (s)da| < §/|ut (s)|2dx+f/|v\2(p(w) Yy
€
o)

/ jue ()P dz -+ = {wel 207D 4 we 2T sy

I /\

where ¢, is the embedding constant. We insert (4.33) and (4.34 ) into (4.32); then, we obtain

1
1 l m(x
2l + 5 V0 + / / e ) dady

+ (,u1 \,u%_ >//Uf ™) qrds
m-T
¢t = 1) |l / / e
— 1
+ (m+T — |z (x,1,s)]  dzds
1
f/ 2de + = /|Vu0| dx—|—// (x, —Tp)\m(z) dzdp
2 m(

+ —bup/|ut| da:—i— /IIV || (r-1) ds+/||V11|| pr-1)
(0,T)

From (2.11), we get

1 2 l 2 C m(-)
= —sup ||V — t
o) el 2(0.1) IVul™+ 2z 112 @ 2 Ollpmcs (@ 0.y

20,17
1 1 1
< f/ufdx+f/|Vu0\2dx+if//|fo (x, —7p)| d:cdp
2 2 m
Q 0
ebT C(;bT 2(p~ —1 pT—1
+ S a4 ol )+||v\|X<T s

Taking e such that ebT" = 1, we have

1
c* c* c* -
flly, <5 [ddes S [IVuldot £ [ [0 -rp) ") dadp
Q 0 Q

Q
2(p~—1 2(pt—1
n c*T{nanS ) 1 o)l )},

where L = min{%, %} and ¢, = % For some M > 0 large, we assume that [[v||y < M. For M

large enough so that

c*/ufqutc*/
Q Q

)™ dadp < M2

0 Q



133 Page 18 of 28 H. Yiiksekkaya et al. ZAMP

and T sufficiently small so that

1
<
I'= 2¢, (MQ(I)‘—Q) + M2(p+—2))’

we infer that
lullk, < M.
This proves that K : Z — Z, where
Z = {u € X such that ull 5, < M}.
Next, we will show that K is a contraction mapping. For this goal, let K (vl) = and K (02) =2

and set u = u! —u? and z = 2! — 22 and then v and z satisfy

m(x)—2

t
up — Au+ / gt =) Au(s)ds + g Juf (2,6)] "7 ul (@,8) = g [ (2, 0)] "7 0 (a,8)
0

m(2)—2 m(e)-2
+ ,u2’21 (x,l,t)’ 2! (m,l,t)—ug‘zz (x,l,t)| 2% (x,1,t)
1 p(x)—2 1 9 p(z)—2 9 .

= b|v'| vt —b ¥ v° in Qx(0,T), (4.35)

with boundary condition
u(z,t)=0 on 00N x(0,T), (4.36)

and initial data

2 (2,0,t) = uy (z,t) in Qx(0,T), (4.37)
z(z,p,0)=0in Qx(0,1), (4.38)
u(x,0) =0, us (2,0) =0 in . (4.39)

Multiplying equation (4.35) by u; and integrating over Q x (0,t), we obtain
1 1 /
sl 5 (1= [ats)as) joul?
2 2
0
¢ ¢

[o@ivalas=3 [ (oo V) (s)as

0 0

/ (lut )™ 7l (5) = [ ()] (5)) e (5) dadls
Q

+ %(goVu)(t)+

N |

_|_

=

1

m(z)—2

zz(x,Ls)>zu(s)dxds

¢
/
¢
m(z)—2
+ ,ug//<|z1 (x,l,s)! 2 (x,1,5) — |32 (gg,l,s)’
0 0

:!!mmymwmwwmm&

where h (v) = b|v[P® 2.
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m(z)—2

Since the function u — |u| u is increasing, we infer that

t
1 l
il 51Vl < [ [ () = h(w) s (5) dods (4.40)
0 Q
Utilizing (4.22), Young’s inequality, and Sobolev embedding, we get

/|h<v1>fh<v2>||ut ()| da
Q

] 1
= [ @Il s < Z [l @P o+ g [ 11 @F ol ao
Q Q Q

<2 [l as
Q
2 +— 2 — B " 2n n;
# PO DN e D ae ) o [l Dac) | ([l
200
Q Q Q
) v (pt —1)%c, -_ +_
< 20 g (5) 2 + e [ho g0 =2) 1 w2 o
2 200
do 2 Bt -1)c 2(p-2) 2(p*-2) 2
< 3 llue (9)] +W—+_2(M ) 4 M D) v, (4.41)

where v = v; —vg and ¢ = Yv; + (1 — V) vz, 0 < ¥ < 1. Inserting (4.41) into (4.40) and choosing Jp small
enough, we get

2 2
lullx, < dlvllx, (4.42)

where d — 4 (p*—1) e T <M2(p’—2) + MQ(N—Q))

SolpT -2
We choose T' small enough that 0 < d < 1; therefore, (4.42) proves that K is a contraction. The
Banach fixed theorem implies the existence of a unique v € Z satisfies K (u) = u. Thus, it is a solution
of ( 2.4).
(Uniqueness): Assume that (u!,z!) and (u?,2?) are two-pair solution to the problem (4.23)—(4.28). We

1

define u = u* — u? and z = 2! — 22, then (E, ;) satisfy

t

ﬂtthaqL/g(tfs)Aa(s)ds

0
o "l o
tolt @ A @) — |2 @ L] 2@ ) =0 in Qx (0,T)  (4.43)
724 (,p,1) + 2, (2, p,8) =0 in Qx (0,1) x (0,7) (4.44)
with boundary condition
u(x,t) =0 on 9Q x (0,7T), (4.45)
and initial data
7 (x,0,t) = uy (z,t) in Qx(0,T), (4.46)

Z(z,p,0)=0in Qx(0,1), (4.47)
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w(z,0) =0, u (x,0) =0 in Q.
Multiplying (4.43) by u; and integrating over Q x (0,t), we get
t

%/ at(t)’2d1'+% 17/9(5)d8 /’Vﬂ (t ‘deJr%(goVﬂ) (t)

Q 0
t t

+%/g(s)/’Vﬂ(s) —%/goVu )ds

0 Q 0

ut ()™ () = [uf (5)] 77 (5)) i (5) dads

+

A5
P
—

m(z)—2

+
=
[V}
O
—_
N
B
v)—‘
~
=
3
M
N
—
&
j_‘
V2l
~
B
\:—‘
VA
=~

Multiplying (4.44) by z and integrating over Q x (0,1) x (0,t) , we obtain

1
//‘ xp,t dxdpds—|— /(H (z,1,1) H Hat(t)‘r) ds =0.
0

.49)—(4.50), and similar to (4.40)—(4.41 ), we obtain

2 - 2
| +F@ L]
L2(Q2x(0,1))

rd
2 dt

\w

By combining (

~

2
wmw+ﬂ‘@mﬂ

2
) ds.

2 N 2
}+Hz(x,l,t)” =0.
L2(2x(0,1))

W@WH

g@jo

Gronwall inequality yields
2
W@HH

U

Thus, u = 0, z = 0. Hence, the proof is completed.

—— = o

~

2
%@H+IW®

~

wmﬂ+ﬂ‘@@ﬂ

5. Nonexistence of solutions

22 (z,1, s)) uy (s) dzds = 0.

ZAMP

(4.48)

(4.49)

(4.50)

In this section, for b > 0, we prove the nonexistence of solutions to the problem (2.4)—(2.9) taking

into account the negative initial energy, that is, E (0) < 0.
We set

H(t)=-E(t),
and hence,

H' (1) = —E'(t) > 0,
|u|p(w)

0o<HO<HD<D [ o< o),

(5.1)

(5.2)



ZAMP A viscoelastic wave equation with delay and variable exponents Page 21 of 28

where

0 () = oy () = / @ de.
Q

The following theorem gives the nonexistence of the solution.

Theorem 5.1. Let m(x), p(x) satisfies the condition
2(n—1)

2<m” <m(z)<m<p <p(r)<pt < 5
-

n > 3,

133

and m(x),p(x) satisfying the log-Holder condition (2.1). If E(0) < 0, then the solution of (2.4)—(2.9)

blows up in finite time T and

- l1-«a

" walz )
where L (t) and o are given in (5.3) and (5.4), respectively.

Proof. Define

*

L(t)=H">(@)+ 5/uutd:c,
Q
where € small to be chosen later and
_fp -2 p —m p_ —m*
< a< .
osasmn Bt B )

Differentiation L (t) with respect to ¢, and using (2.4), we get
I'(t)y=1—a)H ) H (t)+¢|ul]| - |Vul?
t

+ s/g(tfs)/Vu(t)Vu(s)dxds

0 Q
p(a) m(e)=2
+ b [ |ul”" de —epy | wug (x,t) Jug (2, )] dz
Q Q
m(z)—2
- E,ug/uz (x,1,t) |z (x,1,1)] dz.

Q
=(1—a)H ) H (t)+¢|ut]| - |Vul?
t t

+ 6/9 (s)ds || Vu” —|—€/g(t —5) /Vu () [Vu(s) — Vu (t)] dads
0 0 Q

+ Eb/ |u\1’(f) dz — ey /uut (2,t) |ug (a:,t)\MI)_2 dz
Q Q

— £ln / uz (x,1,t) |2z (x,1, t)|m(1)72 dz.

Q
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By using Young’s and Cauchy—Schwarz inequalities, we have

/g (t—s) / Vu (t) [Vu (s) — Vu (t)] dzds
0 Q
< /9 (t =) [[Vu (@[ [Vu(s) = Vu(t)] ds
0

< A(goVu)(t) +

¢
1 2
ﬁ/g(s) ds||Vu|”, A > 0. (5.6)
0

Substituting (5.6) into (5.5), we have

L'(t)>(1—a)H *(t)H (t) +¢||uf ||—5||Vu||

3
¥ a/g<s> ds [Vul® = eA(g o Vu) () = 55 [ 9(5)ds |Vul®
0 0
+ eb/ u[P®) Az — e /uut (2, t) Juy (x,t)|m<m)72 dz
Q
- gNQ/uz (x,1,%) |2 (x, 1,t)|m<m)_2 dz. (5.7)
Q

By using the definition of the H (¢) and for 0 < a < 1, such that

L'(t)>Co(1—a)H [/|Ut| z)dx+/|z (z,1,1)] e x]

te-ayp i () + T 2

+ s% (1 —/g(s) ds) 1Vl

+eluf]| - e | Vul? +€ab/ @ dz
Q
t

+ e [9(s)ds][ul = ex(ge va) ()

0
t

€ 2
- o [ 9@ sVl
0
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m(z)—2

— ey | uug (x,t) |ug (2, )] dz

m(z)—2

— ez | uz(z,1,t) |z (z,1,t)] dz. (5.8)

Hence,

L'(t)> Co(1—a)H™ (1) /|ut|m<f> dm+/\z(m,17t)|m<$) da

Q Q

(l1—a)p +2
2

( —jg(S)ds —1+<1—41)\>/t9(5)d8 [Vu?
o 0

iwy / [ ezt D" ey

0 Q

/

fuut? + = (52 = 3) o 70y )

m (x)
m(z)—2
+ EabQ ('LL) — & Ut (5177 t) |ut ($7 t)| dx
m(z)—2
— epo /uz (,1,) |2z (x,1,1)] dz. (5.9)

Q

Utilizing Young’s inequality, we get

m(x)—1 1 m(z)
/|ut\ lu| dz < 7_/5’”@0) lul  dz
m

Q

Q
mt —1 _m@ | m(=)
+ m+ /5 m(w)—1 ‘Ut‘ dx7 (510)
Q
[ e s L [ 0
m
@ )
mt —1 __m(z) m()
+ mt /(S m(xz)—1 |Z (J},lﬂf)l da. (511)
Q

As in [27], estimates (5.10) and (5.11) remain valid even if § is time-dependent. Hence, taking ¢ such
that

m(z)

5T = RH (1)

for large £ > 1 to be specified later, we obtain

/5—#5”11 g de = kH (t)/|ut|m(””) dz, (5.12)
Q Q

__m(a) m(w) B m(w)
/5 m@=T |z (x,1,t)] de=kH *(t)]|z(z,1,t)] dzx (5.13)

Q
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and

/5nL(m) |u|m(x) dr = /kl—m(z)Ha(m(z)—l) (t) ‘u|M(l) dx
Q Q

S /klfm_Hoz(er—l) (t)/|u|WL(m) d.’,E
Q

Q

By using (3.8) and (3.9), we obtain

00 (1) [l do < € [(o(a)) 70 g gy el ]
Q

From (5.4), we deduce that
m- +ap” (m"‘ — 1) <p~ and mt +ap” (m"‘ — 1) <pt.

Then, by using lemma 3.10, we get

elm™=1) () / ™ dz < C (||vu||2 + g(u)) .
Q

Combining (5.10)—(5.15), we get

L't > (1—a)H (1) [co e (m;j 1) ck} /|ut\m<$) de

Q

t
1 C 2

0

n €<(1a)p)\> (goVu)(t)+e(1—a)p H(t)

2
(1—-a)p +2 2 C
+E#HU¢H +e€ ab—w Q(U)

; z) |z (x m(2)
+€(17a)p*//£( )| r(niafs);t” dzdp.
0 Q

Let us choose a small enough such that

l—a)p +2
(a)p+>

5 0

and k large enough so that

ZAMP

(5.14)

(5.15)

(5.16)
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and
t

% 1—/tg(s)ds —1+(1—;>/g(s)ds—m_,g_m>0-

0 0
Once k and a are fixed, picking € small enough such that

+ _
co—s(m 1)ck;>0
m+

and
L(0)=H'"*(0) + e/uouldx > 0.
Q

Consequently, (5.16) yields

1
/ &(x \z x p, )\m(w)

L' (0) 2 en [ H(0)+ ual + [Vul + (g0 Tu) () + o) + | / dedp|  (517)

0

for a constant n > 0. Thus, we get
L(t)>L(0)>0,Vt>0.
Now, for some constants o, I' > 0 we denote
L'(t) >TL? (t).
Also, utilizing Holder inequality, we get

1/(1-a)
[umal < O g
Q
and by using Young’s inequality gives
1/(1-a)
/uutdx <C [”quu/(lfa) + ||ut||2@/(1_a) ’

Q

where 1/ 4+ 1/6© = 1. From (5.4), the choice of ©® = 2 (1 — a) will make p/ (1 —a) =2/(1 —2a) <p
Hence,

1/(1-a)
s 2
Juwda| <l + uel?].
Q
where s = u/ (1 — «). From (3.7), we have
1/(1—a) 1
: f)lz(e o >|’”<I>
/uutd:c <C |H(t)+ |lw]” + o (u) +// dazdp| . (5.18)
0

Q

Hence, we get
1/(1-a)
L/ (=) (t) = gi-o (t) + 5/uutdm
Q



133 Page 26 of 28 H. Yiiksekkaya et al. ZAMP

1/(1—a)
20/ (A=) \ [T (t) 4 ¥/ (1= /uutdx
Q

IN

IA

c [H (t) + e + g(u)]
clu

)
< (#) + uel® + [ Vull* + (9 0 Vu) (2)

i z) |z (x m(2)
+Q(u)+//§( )| ;igm dadp| . (5.19)
0 Q

So, for some ¥ > 0, from (5.17) we arrive
L' (t) > L/ (=) (1) (5.20)
Integration of (5.20) over (0,t) yields

1
Lo/0=a) () >
) 2 T (0) = Wt/ (1 =)’

which implies that ¥ (¢) blows up in a finite time
11—«
 CalL (o)t
As a result, the proof is completed. O
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