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Abstract. In this paper, we derive a nonlocal theory for porous elastic materials in the context of Mindlin’s strain gradi-
ent model. The second gradient of deformation and the second gradient of volume fraction field are added to the set of
independent constitutive variables by taking into account the nonlocal length scale parameters effect. The obtained system
of equations is a coupling of a two hyperbolic equations with higher gradients terms due to the strain gradient length
scale parameter l and the elastic nonlocal parameter �. This poses some new mathematical difficulties due to the lack of
regularity. Under quite general assumptions on nonlinear sources terms and based on nonlinear semigroups and the theory
of monotone operators, we establish existence and uniqueness of weak and strong solutions to the one dimensional nonlinear
problem. By an approach based on the Gearhart–Herbst–Prüss–Huang Theorem, we prove that the semigroup associated
with the derived model is not analytic in general (� = 0 or not). A frictional damping for the elastic component, whose
form depends on the elastic nonlocal parameter (� = 0 or not), is shown to lead to exponential stability at a rate of decay
determined explicitly. Without frictional damping, the derived system can be exponentially stable only in the absence of
body forces and under the condition of equal wave speeds.
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1. Introduction

Recently, an increasing attention is being devoted to the effect of material length scales in the study of
mechanics of solids at micro- and/or nano-scales. Examples of such materials are provided by nematic
elastomers and carbon nanotubes (see, e.g., [19,20]). Thus, there is a need to model the mechanical
response of the new class of materials by bringing the length scales into the structural theories. Although
the classical continuum elastic models are able to analyze the mechanical behaviors of porous elastic
materials, they fail to describe satisfactorily some phenomena related to nanoscale size effect. This is due
to the absence of the material constants related to structural scale parameters in the constitutive relations
(see, e.g., [32,37]). Since material properties are size-dependent at nanoscale, the study of size effect on
mechanical properties of porous elastic becomes an important area of interest. It is necessary to improve
the classical continuum theory to deal with size-dependent material properties. New mathematical models
for nonlocal continuum elastic materials have been proposed in the last years to overcome this limitation.
One of the most interesting approach for such size effect is the nonlocal continuum elastic stress field
approach first proposed by Eringen (see, e.g., [10–12]) and another deals with the strain gradient theories
[23,24,38]. In nonlocal theory of elasticity, the stress at any reference point x within a continuous body
depends not only on the strain at that point, but also influenced by the strains at all other points x′

in the domain through a nonlocal attenuation function in an integrated sense. Thus, the nonlocal stress
forces act as a remote action forces. These types of forces are frequently encountered in atomic theory of
lattice dynamics. Hence, the cohesive forces at long range between atoms or molecules can be included in
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the continuum mechanics framework by nonlocal formulation. It turns out that the nonlocal continuum
theory potentially plays a useful role in the analyses related to size dependent mechanical behavior for
porous elastic materials. The concept of nonlocality has been extended to various other fields by Biswas
[6], Eringen [13–15]), Lim et al. [20], McCay and Narsimhan [22], Narsimhan and McCay [26], Singh et
al. [36], etc.

Nonlocal elastic models can only account for softening stiffness with increasing nanoscale parame-
ter; however, the stiffness enhancement effect noticed from experimental observation and as well as the
gradient elasticity (or modified couple stress) theories cannot be characterized. The strain gradient elas-
tic theories provide extensions of the classical equations of elasticity with additional higher-order strain
gradient terms based on the assumption that the materials cannot be modeled as collections of points.
The strain gradient elasticity theories have been extensively explored since the works by Mindlin [23,24]
and Toupin [38]. Most of the earlier researches devoted to elaborate mathematically complete gradient
theories rather than paying attention to the practical applications of interpreting physical phenomena of
interest.

The theory of porous elastic materials (called also elastic materials with voids) developed by Cowin
and his co-worker [8,27,30] is a beautiful extension of the classical theory of elasticity. In their theory,
the strain and the change in void volume fraction are considered as independent kinematic variables.
In local models, Ieşan [17,18] was recently extended the theory of elastic materials with voids in the
frame of the second gradient theory. He derived in [18] the theory of “grade consistency” by supposing
that the second-order derivatives for the displacement could exist in the constitutive equation for the
hyperstress, but only first-order derivatives in the gradient of the volume fraction. Recently, Ieşan [17]
derived the strain gradient theory for porous elastic materials where the second gradient of deformation
and the second gradient of volume fraction field are added to the set of independent constitutive variables.
Aouadi et al. [1,2] extended some local porous thermoelastic theory to Form II Mindlin’s strain gradient
where the characteristic length of the material structure is taken into account. In nonlocal models, the
constitutive relations and field equations for porous elastic materials were derived by Singh et al. [36]
(without considering the strain gradient model) and by Biswas [6] (by considering the strain gradient
model) under the Green–Naghdi model of type III for thermal transmission.

The present paper aims to establish the fact that the length scales present in nonlocal elasticity and
strain gradient theory describe two entirely different physical characteristics for porous elastic materials.
The paper presents a theory which relates the nonlocal elasticity and the strain gradient theory, and it
results in a higher-order nonlocal strain gradient theory. In this theory, a higher-order nonlocal strain
gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality
is proposed. This theory intends to generalize the classical strain gradient local porous elasticity (see,
e.g., [17,18]) and the classical nonlocal porous elasticity (see, e.g., [6,36]) by introducing the nonlocal
effects of the strain field and the second gradient strain field together. Consequently, two additional kinds
of parameters, the strain gradient length scale parameter l and the elastic nonlocal parameter �, are
introduced.

One of the important questions to be answered for any model is the decay rate of the solutions of
the proposed system of equations when certain dissipation mechanisms are taken into account. This
frictional damping will play an important role in the dissipative nature of the problem. Without trying
to be exhaustive, let us refer to some studies carried out for porous elastic materials in classical local
models (see, e.g., [4,21,25,28,33–35] among others). Of course, the question arises to know the effects
of both length scales of nonlocal and strain gradient model derived here on well-posedness, analyticity
and stability issues. We find that both length scales play an important role especially in choosing the
damped term leading to exponential stability. These results confirm those obtained previously in the
context of local Mindlin’s strain gradient model (see, e.g., [1,2]). In this article, we limit our attention to
the one-dimensional setting since the well-posedness, analyticity and stability issues for this new model
have not been studied before.
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The rest of the paper is organized as follows. In Sect. 2, we derive the constitutive relations and field
equations for porous elastic materials based on the nonlocal strain gradient theory. Under quite general
assumptions on nonlinear sources terms presented in Sect. 3 and based on nonlinear semigroups and the
theory of monotone operators, we prove in Sect. 4 the well-posedness of the one-dimensional nonlinear
problem. In Sect. 5, by an approach based on the Gearhart–Herbst–Prüss–Huang Theorem, we prove
that the semigroup associated with the derived model is not analytic in general (� = 0 or not). Then, in
Sect. 6, to increase the dissipative nature of the problem, we add in the system a frictional damping for
the elastic component whose form depends on the elastic nonlocal parameter (� = 0 or not). By using
the multipliers technique, we construct appropriate functionals leading to the exponential stability at a
rate of decay determined explicitly in terms of the physical parameters. Without frictional damping, the
derived system can be exponentially stable only in the absence of body forces and under the condition
of equal wave speeds.

2. Derivation of the field equations

Consider a porous elastic material having volume V , bounded by the surface S and occupying region
B in R

3 at time t0 of reference configuration. Let the position of a typical point of B in undeformed
state be Xi and the position of the corresponding point in the deformed state be xi. We consider a
reference configuration which is free from stresses. The basic idea in porous elastic materials is that the
mass density ρ is written as a product of matrix density γ and void volume fraction ν (0 < ν ≤ 1). The
void volume fraction is a measure of volume change of bulk material arising from void compaction and
distension. This enables to introduce a new independent kinematic variable φ corresponding to change
in volume fraction which depends on spatial coordinate x and time t. We assume that the deformations
and the changes of the volume fraction and temperature are very small with respect to the reference
configuration in such way that, if ν0 is the (constant) volume fraction field in the reference configuration,
we can write

xi − Xi = ui = εu′
i, ν − ν0 = φ = εφ′,

where ε is a constant small enough for squares and higher powers to be neglected, and u′
i and φ′ are

independent on ε. Under these hypotheses, the strain tensor is approximated with

eij =
1
2
(ui,j + uj,i),

where a comma (, ) in the subscript represents the spatial partial derivative. Within the context of linear
theory, and assuming that the initial body is free from stresses and has zero intrinsic equilibrated force,
we take the set of basic variables at points x and x′, respectively, as:

Y = {eij(x), φ(x), φ,i(x)} and Y ′ = {eij(x′), φ(x′), φ,i(x′)}. (2.1)

To obtain a nonlocal linear theory for centro-symmetric materials, we consider the free energy Ψ
function in the quadratic approximation

2Ψ = Aijkleij(x)ekl(x′) + ξφ(x)φ(x′) + Aijφ,i(x)φ,j(x′) + Bij

(
eij(x)φ(x′) + eij(x′)φ(x)

)
(2.2)

where Aijkl is the tensor of elastic constants, Aij , Bij and ξ are functions which are typical in porous
theories. All these constitutive coefficients are prescribed functions of x and x′.

Following Eringen [10], the constitutive relations are obtained from

Γ =
∫

V

(∂Ψ
∂Y

+ (
∂Ψ
∂Y ′ )

s
)
dV (x′) (2.3)
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where the superscript ‘s’ represents the symmetry of that quantity with respect to interchange of x and
x′. The set Γ = {τij , hi, F + g} is an ordered set with the set Y . Here, τij is the force stress tensor, hi is
the equilibrated stress components, g is the equilibrated force and F is a dissipation function given by

F = −
∫

V

τ(x, x′)φ̇(x′)dV (x′), (2.4)

where the non-negative coefficient τ is a constitutive coefficient and superposed dot denotes the time
derivative.

Thus, the force stress tensor τij , equilibrated stress components hi and the equilibrated force g are
obtained from relations (2.1)–(2.3), for centrosymmetric materials, as [10]

τij =
∫

V

[
Aijkl(x, x′)ekl(x′) + Bij(x, x′)φ(x′)

]
dV (x′),

hi =
∫

V

[
Aij(x, x′)φ,j(x′)

]
dV (x′),

g = −
∫

V

[
Bij(x, x′)eij(x′) + ξ(x, x′)φ(x′) + τ(x, x′)φ̇(x′)

]
dV (x′), (2.5)

where g in (2.5)3 is actually F +g). The constitutive coefficients in (2.5) satisfy the following symmetries
relations:

Aijkl(x, x′) = Aklij(x, x′) = Ajikl(x, x′), Bij(x, x′) = Bji(x, x′),
Aij(x, x′) = Aji(x, x′).

For a centro-symmetric isotropic material, the constitutive coefficients reduce to

Aijkl = λ(x, x′)δijδkl + 2μ(x, x′)δikδjl, Aij = γ(x, x′)δij , Bij = b(x, x′)δij ,

where δik is the Kronecker delta function, the coefficients λ, μ, γ, b, τ and ξ are functions of |x − x′|,
that is, λ = λ(|x − x′|), μ = μ(|x − x′|), etc. Thus, the constitutive relations (2.5) become

τij =
∫

V

[
λ(|x − x′|)δijekk(x′) + 2μ(|x − x′|)eij(x′)

+b(|x − x′|)δijφ(x′)
]
dV (x′),

hi =
∫

V

[
γ(|x − x′|)φ,j(x′)

]
dV (x′),

g = −
∫

V

[
b(|x − x′|)ekk(x′) + ξ(|x − x′|)φ(x′)

+τ(|x − x′|)φ̇(x′)
]
dV (x′). (2.6)

For most of the materials, the cohesive zone is very small, and within that zone the intermolecular
forces decrease rapidly with distance from the reference point. Hence, we consider that all constitutive
coefficients attenuate with distance [12], e.g.,

lim
(|x−x′|)→0

λ(|x − x′|) → 0.
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We also consider that all the constitutive coefficients attenuate the same degree and they attain their
maxima at x = x′. Therefore, we can take the following relations between nonlocal and local coefficients:

λ(|x − x′|)
λ0

=
μ(|x − x′|)

μ0
=

γ(|x − x′|)
γ0

=
b(|x − x′|)

b0

=
ξ(|x − x′|)

ξ0
=

τ(|x − x′|)
τ0

= G (|x − x′|). (2.7)

Here, the quantities in the denominator are constant coefficients. The λ0, μ0 are the well-known
Lame’s constants, γ0, b0, τ0 and ξ0 are constants corresponding to voids and the function G (|x − x′|) is
a nonlocal kernel representing the effect of distant interactions of material points between x and x′. Also,
the integral of nonlocal kernel G (|x − x′|) over the domain of integration is unity [12], i.e.,∫

V

G (|x − x′|)dV = 1.

Hence, the kernel function G behaves as a Dirac-delta function over the domain of influence. The function
G attains its peak at |x − x′| = 0 and generally decays with increasing |x − x′|. Eringen [12] has already
shown that the function G satisfies the relation

(I − �2∇2)G (|x − x′|) = δ(|x − x′|), (2.8)

where I is the identity operator and ∇2 is the Laplacian operator, � = e0ς is a nonlocal parameter [10,12],
ς being the internal characteristic length and e0 is a material constant. The internal characteristic length
ς is the interatomic distance, e.g., length of C − C bond (0.142 mm in carbon nanotube) [6,20,36].

Using Mindlin’s strain gradient theory (see Mindlin [23,24]) and applying the operator (I − �2∇2)
on the constitutive relations (2.6), owing to the relation (2.7) and the property (2.8), we obtain (after
suppressing the subscript ‘0’ from the constitutive coefficients)

(I − �2∇2)τij = (I − l2∇2)τ l
ij = (I − l2∇2)

[
λδijekk(x) + 2μeij(x) + bδijφ(x)

]
,

(I − �2∇2)hi = (I − l2∇2)hl
i = (I − l2∇2)γφ,i(x),

(I − �2∇2)g = (I − l2∇2)gl = (I − l2∇2)
[

− bekk(x) − ξφ(x) − τ φ̇(x)
]
, (2.9)

wherein the formula ∫
f(x)δ(x − a)dx = f(a)

has been employed. The quantities τ l
ij , hl

i and gl correspond to the local porous elastic materials. In
Mindlin’s strain gradient theory, l is the material length scale parameter introduced to account for the
effect of the strain gradient field [20,23,24].

Note that a correction pointed out by Puri and Cowin [30] has been taken care here.
Equations of motion for a nonlocal isotropic porous elastic materials are given by [8,30]

τij,j = ρ(üi − Gi),

hi,i + g = ρ(χφ̈ − J), (2.10)

where Gi is the body force, J is the extrinsic equilibrated body force, χ is the equilibrated inertia, and
ρ is the bulk density. Superposed dots represent the double time derivative.

Plugging the constitutive relations (2.9) into (2.10) and retaining only the terms of O(∇2) order, we
obtain the following equations:

ρ(I − �2∇2)üi = (I − l2∇2)
[
μ∇2ui + (λ + μ)∇(∇ · ui) + b∇φ

]

+(I − �2∇2)ρGi,

ρχ(I − �2∇2)φ̈ = (I − l2∇2)
[
γ∇2φ − ξφ − b∇ · ui − τ φ̇

]
+ (I − �2∇2)ρJ. (2.11)
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These are the governing equations of nonlocal isotropic porous elastic materials in the context of strain
gradient theory. Note that in the absence of strain gradient effects, that is, when l = 0, these equations
reduce to those derived by Singh et al. [36] for nonlocal elastic solid with voids. When the elastic nonlocal
parameter � = 0, our equations are equivalent to those derived by Ieşan [17,18] in the frame of the
classical local strain gradient porous elasticity. However, in the absence of nonlocality, that is, when
� = l = 0, these equations reduce to those of local isotropic porous elastic materials earlier derived by
Puri and Cowin [30].

Without loss of generality, we set ρ = χ = 1. In the one dimensional setting, the system (2.11) can be
written in the domain Ω = (0, L) × R

+:

(1 − �2∂xx)utt − (1 − l2∂xx)
(
auxx + bφx

)
+ f1(u, φ) = 0,

(1 − �2∂xx)φtt − (1 − l2∂xx)
(
γφxx − ξφ − bux − τφt

)
+ f2(u, φ) = 0,

(2.12)

where a = λ + 2μ, and f1 = −(1 − �2∂xx)G1 and f2 = −(1 − �2∂xx)J are nonlinear sources forces. We
assume the following initial conditions for x ∈ (0, L)

u(x, 0) = u0(x), ut(x, 0) = u1(x), φ(x, 0) = φ0(x), φt(x, 0) = φ1(x). (2.13)

For boundary conditions, we consider one of the following cases:
1. hinged-hinged boundary conditions:

u(x, t) = uxx(x, t) = φ(x, t) = φxx(x, t) = 0, x = 0, L, t > 0. (2.14)

2. or hinged-clamped boundary conditions:

u(x, t) = uxx(x, t) = φ(x, t) = φx(x, t) = 0, x = 0, L, t > 0. (2.15)

3. or clamped-hinged boundary conditions:

u(x, t) = ux(x, t) = φ(x, t) = φxx(x, t) = 0, x = 0, L, t > 0. (2.16)

4. or clamped-clamped boundary conditions:

u(x, t) = ux(x, t) = φ(x, t) = φx(x, t) = 0, x = 0, L, t > 0. (2.17)

Our purpose in this work is to investigate the well-posedness, analyticity and stability issues of the
solutions to system (2.12), with the initial conditions (2.13) and the boundary conditions (2.14) or (2.15)
or (2.16) or (2.17).

Remark 2.1. 1. The term τφt in (2.12)2 models the porous dissipation (called viscoporosity); however,
in the local porous thermoelastic model derived by Ieşan [16] such a term does not appear. In our
case, the dissipative term τφt appears naturally because we have replaced the response function g
by F + g (see (2.4)).

2. When the coupling is considered b must be different from zero, but its sign does not matter in the
analysis we propose. The internal energy and the dissipation of the system will have the form:

2W = a|ux|2 + al2|uxx|2 + (γ + ξl2)|φx|2 + γl2|φxx|2 + ξ|φ|2
+ 2b�e〈ux, φ〉 + 2bl2�e〈uxx, φx〉

and

V = τ |φt|2 + τ l2|φxt|2,
where 〈·, ·〉 denotes the inner product in L2(0, L). We also assume the positivity of the internal
energy. That is, there exists a positive constant M such that

W ≥ M
(
a|ux|2 + al2|uxx|2 + (γ + ξl2)|φx|2 + γl2|φxx|2 + ξ|φ|2

)
.
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3. Therefore, when we assume that the internal energy is positive (which is related with the elastic
stability) we have to assume that

a > 0, γ > 0, aξ > b2 (2.18)

meanwhile if we assume that the dissipation is positive we need to impose that

τ > 0. (2.19)

3. Preliminaries

Throughout this paper, we use the standard Lebesgue space L2(0, L) and the Sobolev spaces Hm(0, L) =
Wm,2 (1 ≤ m ≤ ∞) with their usual scalar products and norms. Let 〈·, ·〉 and ‖ · ‖ denote the L2− inner
product and L2− norm, respectively. As usual, C > 0 will denote a generic constant depending only on
the structural quantities of the problem. We recall the Poincaré’s inequality

‖u‖2 ≤ λ0 ‖ux‖2
, ∀u ∈ H1

0 (0, L), (3.1)

where λ0 = L2/π2. Let us introduce the inertia operator Rε = 1 − ε2∂xx with the domain D(Rε) =
H2(0, L) ∩ H1

0 (0, L) when ε �= 0 and L2(Ω) otherwise. Observe in our case ε = � or ε = l. In the
following, we limit ourselves to the cases � �= 0 or � = 0 and l �= 0. We could also consider the case
� = l = 0. As this case has already been studied (see, e.g., [21,25] among others) and is not essential to
the analysis of the article, will not be taken into account. Then, one has

Vε := D(R1/2
ε ) ≡

{
H1

0 (0, L), if ε �= 0,

L2(0, L), if ε = 0,

with the inner products and norms

〈u, v〉ε := 〈u, v〉 + ε2〈ux, vx〉 and ‖u‖2
ε := ‖R1/2

ε u‖2 := ‖u‖2 + ε2‖ux‖2, (3.2)

respectively. Let V ′
ε stand for the dual space of Vε

V ′
ε :=

{
H−1(0, L), if ε �= 0,

L2(0, L), if ε = 0.
(3.3)

For every ε �= 0, we recall that Rε : H1
0 (0, L) → H−1(0, L) is an isometrical bijection with respect to

the norm (3.2). Note that when ε = 0, R0 = I : L2(0, L) → L2(0, L). The obvious H1
0 (0, L)-ellipticity of

Rε and Lax–Milgram theorem give that R� is boundedly invertible, i.e., R−1
ε ∈ L (H−1(0, L),H1

0 (0, L)).
Thus, for ε �= 0, we have

‖R−1
ε u‖H1

0 (0,L) = ‖u‖H−1(0,L), ∀u ∈ H−1(0, L). (3.4)

Now we consider the following assumptions on fi for i = 1, 2:
fi : R

2 → R is locally Lipschitz continuous on each of its arguments, namely there exist p ≥ 1 and
C > 0 such that, for i = 1, 2,

|∇fi(u, φ)| ≤ C
(|u|p−1 + |φ|p−1 + 1

)
. (3.5)

There exists a nonnegative C2 function F : R
2 → R satisfying

∇F = (f1, f2), i.e.,
∂F

∂p
(p, ·) = f1(p, ·), ∂F

∂q
(·, q) = f2(·, q),

and there exists a small positive constant β such that for any p, q ∈ R

F (p, q) ≥ −β
(|p|2 + |q|2) . (3.6)
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Moreover, we assume that

pf1(p, q) + qf2(p, q) ≥ F (p, q) − β(|p|2 + |q|2). (3.7)

Remark 3.1. A typical example of F satisfying (3.5)–(3.7) is

F (p, q) = p2q2 − βpq,

where β is a small positive constant.

4. Well-posedness

By using the nonlinear semigroups theory and monotone operators [5,7], we study in this section the
well-posedness of the problem (2.12), (2.13) and (2.14) or ((2.15) or (2.16) or (2.17)). First, we set v = ut

and ψ = φt. Then, we consider the following Hilbert spaces:

H� :=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
H2(0, L) ∩ H1

0 (0, L)
)2 × (V�)2 , for B.C (2.14),

(
H2(0, L) ∩ H1

0 (0, L)
) × H2

0 (0, L) × (V�)2 , for B.C (2.15),

H2
0 (0, L) × (

H2(0, L) ∩ H1
0 (0, L)

) × (V�)2 , for B.C (2.16),
(
H2

0 (0, L)
)2 × (V�)2 , for B.C (2.17),

(4.1)

where the phrase “B.C’s” means that u and φ satisfy the relevant boundary conditions.
In these Hilbert spaces, we define the inner product

〈U,U∗〉H�
= 〈v, v∗〉� + 〈ψ,ψ∗〉� + γ〈φx, φ∗

x〉l + a〈ux, u∗
x〉l + ξ〈φ, φ∗〉l

+b〈ux, φ∗〉l + b〈φ, u∗
x〉l (4.2)

where U = (u, φ, v, ψ), U∗ = (u∗, φ∗, v∗, ψ∗). The corresponding norm in H� is given by

‖U‖2
H�

= ‖v‖2
� + ‖ψ‖2

� + γ‖φx‖2
l + a‖ux‖2

l + ξ‖φ‖2
l + 2b�e〈ux, φ〉l. (4.3)

Note that (2.18)3 leads to

a‖ux‖2
l + ξ‖φ‖2

l + 2b�e〈ux, φ〉l > 0. (4.4)

Consequently, ‖U‖2
H�

is nonnegative. Moreover, the induced norm ‖·‖H�
is equivalent to the usual norm

in the Hilbert space H�,

C1‖U‖H�
≤ ‖u‖H2 + ‖φ‖H2 + ‖v‖H1 + ‖ψ‖H1 ≤ C2‖U‖H�

,

with positive constants C1 and C2. While the estimate from below is obvious, the estimate from above
can be obtained by choosing ε > 0 sufficiently small such

(a − ε)(ξ − ε) > b2

and then

a‖ux‖2
l + 2b�e〈ux, φ〉l + ξ‖φ‖2

l = (a − ε)‖ux‖2
l + 2b�e〈ux, φ〉l + (ξ − ε)‖φ‖2

l + ε(‖ux‖2
l + ‖φ‖2

l )
≥ ε‖ux‖2

l + ε‖φ‖2
l . (4.5)

In particular, there exists a positive constant � such that

‖u‖2 + ‖φ‖2 ≤ �(a‖ux‖2
l + ξ‖φ‖2

l ) ≤ �‖U‖2
H�

, (4.6)

where

�β <
1
4
. (4.7)
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Problem (2.12), (2.13) and (2.14) or ((2.15) or (2.16) or (2.17)) can be written as a Cauchy problem
{

dU(t)
dt + (A� + B)U(t) = F(U(t)), t > 0,

U(0) = U0 = (u0, φ0, u1, φ1) ∈ H�,
(4.8)

where A� : D(A�) ⊂ H� → H� and B : D(B) ⊂ H� → H� are defined by

A�U =

⎛
⎜⎜⎜⎜⎝

−v
−ψ

−R−1
� Rl

(
auxx + bφx

)

−R−1
� Rl

(
γφxx − ξφ − bux

)

⎞
⎟⎟⎟⎟⎠

, BU =

⎛
⎜⎜⎝

0
0
0

τR−1
� Rlψ

⎞
⎟⎟⎠ , (4.9)

and F : H� → H� is defined by

F(U(t)) =

⎛
⎜⎜⎝

0
0

−R−1
� f1(u, φ)

−R−1
� f2(u, φ)

⎞
⎟⎟⎠ (4.10)

with the domains for l �= 0 and � �= 0

D(A�) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
H3(0, L) ∩ H1

0 (0, L)
)2

×
(
H2(0, L) ∩ H1

0 (0, L)
)2

, for B.C (2.14),
(
H3(0, L) ∩ H1

0 (0, L)
) × (

H3(0, L) ∩ H2
0 (0, L)

)

× (
H2(0, L) ∩ H1

0 (0, L)
) × H2

0 (0, L), for B.C (2.15),
(
H3(0, L) ∩ H2

0 (0, L)
) × (

H3(0, L) ∩ H1
0 (0, L)

)

×H2
0 (0, L) × (

H2(0, L) ∩ H1
0 (0, L)

)
, for B.C (2.16),

(
H3(0, L) ∩ H2

0 (0, L)
)2 × (

H2
0 (0, L)

)2
, for B.C (2.17),

(4.11)

D(B) = H�, D(A� + B) = D(A�) ∩ D(B) = D(A�).

For l �= 0 and � = 0, we obtain D(A0) by replacing in (4.11) H3(0, L) by H4(0, L).
We start by proving two auxiliary results (Lemmas 4.1 and 4.2) which will be used in the sequel.

Lemma 4.1. The operator A� + B is maximal monotone in H�.

Proof. We divide the proof into two steps.
Step 1: A� is maximal monotone. Let us denote U = (u, φ, v, ψ), Ũ = (ũ, φ̃, ṽ, ψ̃) ∈ D(A�). Using
integration by parts and the boundary conditions, we obtain

〈A�U − A�Ũ , U − Ũ〉H�
= 0

and thereby A� is monotone. In order to prove that A� is maximal monotone, we need to prove that
Range (I + A�) = H�. We must prove that

U + A�U = U∗

has a solution U = (u, φ, v, ψ) ∈ D(A�) for any U∗ = (u∗, φ∗, v∗, ψ∗) ∈ H�. This equation leads to the
system ⎧

⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u − v = u∗,
φ − ψ = φ∗,
v − R−1

� Rl

(
auxx + bφx

)
= v∗,

ψ − R−1
� Rl

(
γφxx − ξφ − bux

)
= ψ∗.

(4.12)
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Replacing (4.12)1 and (4.12)2 into (4.12)3 and (4.12)4, respectively, we obtain the following system:
⎧
⎨
⎩

R�u − Rl

(
auxx + bφx

)
= R�(v∗ + u∗) ∈ V ′

�,

R�φ − Rl

(
γφxx − ξφ − bux

)
= R�(φ∗ + ψ∗) ∈ V ′

�,
(4.13)

where V ′
ε is defined by (3.3). We define

Λ :=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
H2(0, L) ∩ H1

0 (0, L)
)2

, for B.C (2.14),
(
H2(0, L) ∩ H2

0 (0, L)
) × H2

0 (0, L), for B.C (2.15),

H2
0 (0, L) × (

H2(0, L) ∩ H1
0 (0, L)

)
, for B.C (2.16),

(
H2

0 (0, L)
)2

, for B.C (2.17).

(4.14)

Consequently, for any (u, φ) ∈ Λ, problem (4.13) is equivalent to

B
(
(u, φ), (w,ϕ)

)
= L(w,ϕ), ∀ (w,ϕ) ∈ Λ, (4.15)

where the bilinear form B : Λ × Λ → R and the linear form L : Λ → R are defined by

B
(
(u, φ), (w,ϕ)

)
= 〈u,w〉� + 〈φ, ϕ〉� + γ〈φx, ϕx〉l + a〈ux, wx〉l

+ξ〈φ, ϕ〉l + b〈φ,wx〉l + b〈ux, ϕ〉l,

L(w,ϕ) = 〈v∗ + u∗, w〉� + 〈ψ∗ + φ∗, ϕ〉�, (4.16)

for any (w,ϕ) ∈ Λ. The bilinear form B(·, ·) is bounded since for any (u, φ) and (w,ϕ) ∈ Λ, we have

B
(
(u, φ), (w,ϕ)

)
≤ ‖u‖‖w‖ + (a + �2)‖ux‖‖wx‖ + al2‖uxx‖‖wxx‖

+(�2 + ξl2 + γ)‖φx‖‖ϕx‖ + (ξ + 1)‖φ‖‖ϕ‖
+γl2‖φxx‖‖ϕxx‖ + b(‖φ‖‖wx‖ + l2‖φx‖‖wxx‖
+‖ux‖‖ϕ‖ + l2‖uxx‖‖ϕx‖)

≤ C‖(u, φ)‖Λ‖(w,ϕ)‖Λ.

From (4.5), we obtain for any (u, φ) ∈ Λ

B
(
(u, φ), (u, φ)

)
= ‖u‖2

� + ‖φ‖2
� + γ‖φx‖2

l + a‖ux‖2
l + ξ‖φ‖2

l + 2b�e(ux, φ)

≥ ‖u‖2
� + ‖φ‖2

� + γ‖φx‖2
l +

1
2
(a − b2

ξ
)‖ux‖2

l +
1
2
(ξ − b2

a
)‖φ‖2

l .

By assuming aς − b2 > 0, we get

a − b2

ξ
> 0, ξ − b2

a
> 0,

then there exists a positive constant M0 such that for any (u, φ) ∈ Λ, we have

B
(
(u, φ), (u, φ)

)
≥ M0‖(u, φ)‖2

Λ.

Thus, B is coercive. Since L is continuous, from the Lax–Milgram Theorem, problem (4.15) admits a
unique solution (u, φ) ∈ Λ for all (w,ϕ) ∈ Λ. From (4.121,2), we get

(ut, φt) ∈ Λ.
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Then, by (4.13), we have for l �= 0,
⎧
⎨
⎩

Rl

(
auxx + bφx

)
= R�(u − v∗ − u∗) ∈ V ′

�,

Rl

(
γφxx − ξφ − bux

)
= R�(φ − φ∗ − ψ∗) ∈ V ′

�.
(4.17)

If � = 0, by the definition of weak derivatives, uxxxx and φxxxx belong to L2(0, L), hence u, φ ∈ H4(0, L).
If � �= 0, by the definition of weak derivatives, uxxxx and φxxxx belong to H1

0 (0, L), hence u, φ ∈
H3(0, L).
Finally, the vector (u, φ, ut, φt) ∈ D(A�). Therefore, Range (I +A�) = H�. This complete the proof of
the maximal monotonicity of A�.

Step 2: B is maximal monotone. To prove that B is maximal monotone, by Theorem 2.4 of [5] we only
need to prove that B is monotone and hemicontinuous. For any U = (u, φ, ut, φt), Ũ = (ũ, φ̃, ũt, φ̃t) ∈
H�, by using (2.19), (3.4) and (4.9)2 we have

〈BU − BŨ , U − Ũ〉H�
= τ‖R−1

� Rl(φt − φ̃t)‖2
� = τ‖Rl(φt − φ̃t)‖2

= τ‖φt − φ̃t)‖2
l � 0,

which implies that B is monotone. We observe that∣∣∣〈B(U + λŨ), U∗〉H�
− 〈B(U), U∗〉H�

∣∣∣ = |λ||〈BŨ , U∗〉H�
|

= τ |λ||〈R−1
� Rlφ̃t, φ

∗
t 〉�|

= τ |λ||〈Rlφ̃t, φ
∗
t 〉|

≤ τ |λ|‖φ̃t‖l‖φ∗
t ‖ λ→0−→ 0

which yields that

lim
λ→0

〈B(U + λŨ), U∗〉H�
= 〈B(U), U∗〉H�

.

Therefore, B is hemicontinuous and the maximal monotonicity follows.
Now, since A� and B are both maximal monotone and int(D(A�))∩D(B) �= ∅, by [5, Theorem 2.6]

we conclude that A� + B is maximal monotone. �

Lemma 4.2. We assume that assumptions (3.5)–(3.7) and (4.7) hold. Let (u, φ, ut, φt) a strong solution
to problem (2.12), (2.13) and (2.14) or ((2.15) or (2.16) or (2.17)) and the total energy defined by

E�(t) =
1
2
‖U(t)‖2

H�
+

L∫

0

F (u, φ)dx

=
1
2

(
‖ut‖2

� + ‖φt‖2
� + γ‖φx‖2

l + a‖ux‖2
l + ξ‖φ‖2

l + 2b�e〈ux, φ〉l

)

+

L∫

0

F (u, φ)dx. (4.18)

(1) The total energy satisfies

d

dt
E�(t) = −τ‖φt‖2

l . (4.19)

(2) Moreover, there exists a positive constant β0 such that

β0‖U(t)‖2
H�

≤ E�(t), ∀t ≥ 0. (4.20)
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Proof. (1) We multiply the first equation of the system (2.12) by ut and the second equation by φt,
integrate over (0, L) and using integration by part and the boundary conditions (2.14) or ((2.15) or (2.16)
or (2.17)), we get (4.19).

(2) By (4.6) and (3.6), we have
L∫

0

F (u, φ)dx ≥ −β
(‖u‖2 + ‖φ‖2

) ≥ −β�
(
a‖ux‖2

l + ξ‖φ‖2
l

) ≥ −β�‖U‖2
H�

. (4.21)

Substituting (4.21) in (4.18), it follows that

E�(t) ≥ (
1
2

− β�) ‖U(t)‖2
H�

. (4.22)

From (4.7), we obtain (4.20) with
1
4

< β0 =
1
2

− β� <
1
2
. (4.23)

�

We are now in a position to give the definitions of mild solutions, strong solutions (according to [29],
Chapter 6) and weak solutions to problem (2.12), (2.13) and (2.14). Similar definitions can be formulated
for the boundary conditions (2.15), (2.16) or (2.17).

Definition 4.1. (i) Given T > 0. A solution U(t) ∈ C([0, T ];H�) to the integral equation

U(t) = e−(A�+B)tU(0) +

t∫

0

e−(A�+B)(t−s)F(U(s))ds (4.24)

is called a mild solution to problem (2.12)–(2.14) on the interval [0, T ].
(ii) Given T > 0. A function U : [0, T ) → H� is called strong solution to (2.12)–(2.14) on [0, T ), T > 0,

if U is continuous on [0, T ), continuously differentiable on (0, T ), with U(t) ∈ D(A� + B) for
t ∈ (0, T ), and (2.12)–(2.14) is satisfied on [0, T ) almost everywhere.

(iii) Given T > 0 and initial data (u0, φ0, u1, φ1) ∈ H�. We say that a set of functions (u, φ, ut, φt) is a
weak (or generalized) solution to (2.12)–(2.14) if

(u, φ, ut, φt) ∈ C([0, T ),H�)

satisfies (2.13) and the following identity in the sense of distributions
d

dt
〈u,w〉� − 〈auxx + bφx, w〉l + 〈f1(u, φ), w〉 +

d

dt
〈φ, ϕ〉�

− 〈γφxx − ξφ − bux − τφt, ϕ〉l + 〈f2(u, φ), ϕ〉 = 0,

in [0, L] × [0, T ] and for all w,ϕ ∈ H2(0, L) ∩ H1
0 (0, L).

To prove the existence of global solutions, we need first to show two energy estimates.
We are now in a position to give the main result of this section.

Theorem 4.1. We assume that assumptions (3.5)–(3.7) and (4.7) hold.
(i) Given U0 = (u0, φ0, u1, φ1) ∈ H�, then problem (4.8) has a unique global mild solution satisfying

U(t) ∈ C([0,∞);H�) given by (4.24).
(ii) The weak solutions depend continuously on the initial data in H�. More precisely, given any two

weak solutions U1 and U2 are two mild solutions to problem (4.8), then there exists a positive
constant C depending on U1(0) and U2(0), such that

‖U1(t) − U2(t)‖H�
≤ eCT ‖U1(0) − U2(0)‖H�

, 0 ≤ t ≤ T. (4.25)
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(iii) If U0 = (u0, φ0, u1, φ1) ∈ D(A� + B), then the corresponding mild solution is strong, that is, it is
continuously differentiable, it takes values in D(A� +B) and it satisfies (4.8) in H� for almost all
t ∈ [0, T ].

Proof. (i) We need to prove first that F(U) = (0, 0,−R−1
� f1(u, φ),−R−1

� f2(u, φ)) defined in (4.10) is
locally Lipschitz in H�. Let us denote U1 = (u1, φ1, u1

t , φ
1
t ) ∈ H� and U2 = (u2, φ2, u2

t , φ
2
t ) ∈ H�,

such that ‖U1‖H�
, ‖U2‖H�

≤ R, where R > 0 is a constant. The quantities to control are

‖F(U1) − F(U2)‖H�
= ‖R−1

� (f1(u1, φ1) − f1(u2, φ2))‖�

+‖R−1
� (f2(u1, φ1) − f2(u2, φ2))‖�

= ‖f1(u1, φ1) − f1(u2, φ2)‖
+‖f2(u1, φ1) − f2(u2, φ2)‖. (4.26)

Using (3.5), we have
∣∣fi(u1, φ1) − fi(u2, φ2)

∣∣2 =
∣∣∇fi(θ(u1, φ1) + (1 − θ)(u2, φ2))

∣∣2 |(u1, φ1) − (u2, φ2)|2

≤ Cf

(|u1|p−1 + |u2|p−1 + |φ1|p−1 + |φ2|p−1 + 1
)2

.
(|u1 − u2|2 + |φ1 − φ2|2)

(4.27)

where 0 ≤ θ ≤ 1 and Cf > 0 is a constant depending on the initial data. For the boundary conditions
(2.14), it follows from (4.27) and the embedding H2(0, L) ∩ H1

0 (0, L) ↪→ H1
0 (0, L) ↪→ L∞(0, L) that

there exist a constant CR > 0 such that
L∫

0

∣∣fi(u1, φ1) − fi(u2, φ2)
∣∣2 dx ≤ CR

∥∥(u1, φ1) − (u2, φ2)
∥∥2 ≤ CR‖U1 − U2‖2

H�
(4.28)

for i = 1, 2. Substituting the last estimate in (4.26), we conclude that there exists LR > 0 such that

‖F(U1) − F(U2)‖2 ≤ LR‖U1 − U2‖2
H�

.

Therefore, F satisfying the local Lipschitz condition. We obtain the same result for the other bound-
ary conditions (2.15), (2.16) or (2.17).

Since A� +B is maximal monotone and, for each t ∈ [0,∞) fixed, F(·) : H� → H� is locally
Lipschitz. Then, by [7, Theorem 7.2], for all U0 ∈ D(A� + B), there exists tmax ≤ ∞ and a unique
strong solution U for (4.8) defined on the interval [0, tmax). Moreover, if U0 ∈ H�, then (4.8) has
a unique weak solution U ∈ C ([0, tmax) ,H�), and such solutions satisfy lim supt→tmax

‖U(t)‖H�
=

∞, provided tmax < ∞.
Next we prove that the solution is global, that is, tmax = ∞. From (4.20), we have

‖U(t)‖2
H�

� 1
β0

E�(t), ∀t � 0. (4.29)

Hence, by (4.29), we conclude ‖U(t)‖H�
< ∞ for any t � 0, which implies that tmax = ∞. This

concludes the proof of item (i) of Theorem 4.1.
(ii) On the other hand, given T > 0 and any t ∈ (0, T ), we consider two mild solutions U1(t) and U2(t)

with initial data U1(0) and U2(0), respectively. Let us also assume that ‖U i‖H�
≤ R. Then, using

(4.24),
∥∥∥U1(t) − U2(t)

∥∥∥
H�

≤
∥∥∥e−(A�+B)t(U1(0) − U2(0))

∥∥∥
H�

+

t∫

0

∥∥∥e−(A�+B)(t−s)
(
F(U1(s)) − F(U2(s))

)∥∥∥
H�

ds.
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Using the local Lipschitz property of F and (4.29), we obtain

‖U1(t) − U2(t)‖H�
≤ ‖U1(0) − U2(0)‖H�

+ CR,T

t∫

0

‖U1(s) − U2(s)‖H�
ds.

Then, the Gronwall’s lemma gives

‖U1(t) − U2(t)‖H�
≤ eCR,T ‖U1(0) − U2(0)‖H�

, 0 ≤ t ≤ T,

which implies (4.25) and the continuous dependence of the mild solution on the initial data. This
concludes the proof of item (ii) of Theorem 4.1.

(iii) Finally, as noticed above, from an abstract result [29, Theorem 6.1.5] any mild solution with initial
data in D(A� + B) is strong. This proves the item (iii) of Theorem 4.1. The proof is complete.

�

5. Lack of exponential stability and analyticity

In this section, we prove that the viscoelastic term, −τRlφt, is not strong enough to bring the solutions
of (2.12) to exponential stability when � �= 0 or analyticity when � = 0. To show the lack of exponen-
tial decay, we use the following well-known result due to Gearhart–Herbst–Prüss–Huang for dissipative
systems, from semigroup theory (see, e.g., [9,31]).

Theorem 5.1. Let S(t) = eAt be a C0–semigroup of contractions on Hilbert space H. Then, S(t) is
exponentially stable if and only if

iR := {iα; α ∈ R} ⊂ ρ(A), lim sup
|α|→∞

||(iαI − A)−1||L (H) < ∞, (5.1)

where α ∈ R and ρ(A) is the resolvent set of the differential operator A.

On the other hand, we use the following characterization of analytic semigroups (see, e.g., [9,31]).

Theorem 5.2. Let S(t) = eAt be a C0–semigroup of contractions on Hilbert space H. Then, S(t) is of
analytic type if and only if

iR := {iα; α ∈ R} ⊂ ρ(A), lim sup
|α|→∞

||α(iαI − A)−1||L (H) < ∞, α ∈ R. (5.2)

For the rest, we need to prove the following

Lemma 5.1. The operator (A� + B)−1 : H� → H� is compact.

Proof. Let us consider (Fn) a bounded sequence in H� and (Un) the sequence in D(A� +B) such that
Fn = (A� +B)Un, Un = (un, φn, vn, ψn). Since (A� +B)−1 ∈ L (H�), there exists a positive constant
C such that

‖Un‖H�
+ ‖(A� + B)‖H�

≤ C, for all n ∈ N. (5.3)

From (5.3), we conclude that (un, φn, vn, ψn) is bounded in D(A� +B). Since the embedding of Hm(0, L)
in Hj(0, L), m > j, is compact, there exists a subsequence (uν , φν , vν , ψν) and functions (u, φ, v, ψ) such
that

(uν , φν , vν , ψν) → (u, φ, v, ψ) in H�,

that is, the subsequence ((A� + B)−1Fν) converges in H�. �

Lemma 5.2. The operator A� + B satisfies (5.1)1.



ZAMP Well-posedness, lack of analyticity and exponential... Page 15 of 27 111

Proof. We only need to show that there is no point spectrum on the imaginary axis, i.e., iR∩σp(A�+B) =
∅.

Let us suppose that iR ∩ ρ(A� + B) is not true. Since 0 ∈ ρ(A� + B) (see Lemma 4.1), then there
exists χ ∈ R, with ‖(A� + B)−1‖−1 ≤ |χ| < ∞, such that {iα : |α| < |χ|} ⊂ ρ(A� + B) and
sup{‖(iαI − (A� + B))−1‖ : |α| < |χ|} = ∞. Since (A� + B)−1 is compact, there exists a sequence of
real numbers αn, with αn → χ, |αn| < |χ| when n → ∞, and a sequence of unit norm vectors in the
domain of A� + B, Un = (un, φn, vn, ψn), such that

‖(iαnI + A� + B)Un‖H�
→ 0, as n → ∞. (5.4)

Writing (5.4) term by term we get

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

iαnun − vn → 0,
iαnφn − ψn → 0,

iαnR�vn − Rl

(
aunxx − bφnx

)
→ 0,

iαnR�ψn − Rl

(
γφnxx − ξφn − bunx − τψn

)
→ 0.

(5.5)

Since

�e〈(iαnI + A� + B)Un, Un〉H�
= −τ‖ψn‖2

l → 0, (5.6)

we infer from (3.2) that ψn, ψnx → 0 in L2(0, L). By (5.5)2, we have φn, φnx → 0 in L2(0, L).
Considering the inner product of (5.5)4 times φn and removing the terms that tend to zero, yields

γ‖φnx‖2
l + b〈unx, φn〉l → 0.

Hence, having in mind that φn, φnx → 0 in L2(0, L) and the fact that ‖unx‖l is bounded, we get

‖φnx‖2
l → 0. (5.7)

Then, φnxx → 0 in L2(0, L) and by (5.5)2 ψnxx → 0 in L2(0, L).
Next, we take the inner product of (5.5)4 with unx to obtain that

〈iαnψn, unx〉� − γ〈φnxx, unx〉l + b‖unx‖2
l → 0.

As ψn, ψnx → 0 in L2(0, L) and unx and unxx are bounded (because of (5.5)3,4), we get after applying
integration by parts of the second term of the aforementioned equation,

γ〈φnx, unxx〉l − γφnxunx

∣∣∣
L

0
− γl2φnxxunxx

∣∣∣
L

0
+ b‖unx‖2

l → 0.

As φnx, φnxx → 0 in L2(0, L) and unxx and unxxx are bounded (because of (5.5)3,4), we have

−γφnxunx

∣∣∣
L

0
− γl2φnxxunxx

∣∣∣
L

0
+ b‖unx‖2

l → 0.

The first and second boundary terms of the equation mentioned above vanish for the boundary conditions
(2.15) and (2.16), while the first term vanishes for the boundary conditions (2.17) and the second one
vanishes for the boundary conditions (2.14). To eliminate the first term, for the boundary conditions
(2.14), we use the Gagliardo–Nirenberg inequality,

‖φnx‖L∞(0,L) ≤ K1‖φnx‖1/2‖φnxx‖1/2 + K2‖φnx‖ → 0,

and

‖unx‖L∞(0,L) ≤ K1‖unx‖1/2‖unxx‖1/2 + K2‖unx‖ → 0.
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The same procedure can be applied in case of the boundary conditions (2.17). We then conclude that

γφnxunx

∣∣∣
L

0
+ γl2φnxxunxx

∣∣∣
L

0
→ 0

and therefore

‖unx‖2
l → 0. (5.8)

Then, we take the inner product of (5.5)3 with un, we obtain

〈iαnvn, un〉� + a‖unx‖2
l + b〈φnx, un〉l → 0.

Using (5.5)1 and previous results, it is clear that

‖vn‖2
� → 0.

Thus, we have a contradiction since Un cannot be of unit norm and, in consequence, the first condition
of Theorem 5.1 holds. �

Often and in particular in one-dimensional setting, the non-uniform boundedness of the resolvent
operator is shown by giving an explicit sequence of exact solutions of the system. This requires adequate
boundary conditions. As the method used here is not adequate for any of the considered boundary
conditions, we will consider the particular case γ = 0 to consider the following boundary conditions:

u(x, t) = uxx(x, t) = φx(x, t) = 0, on x = 0, L, t > 0, (5.9)

which is more adapted to the method we are going to apply.
Under the boundary conditions (5.9), the problem is well-posed and is governed by a C0−contraction

semigroup S(t) on K� = (H2(0, L) ∩ H1
0 (0, L)) × H1

∗ (0, L) × V� × V ∗
�, where

V ∗
� ≡

{
H1

∗ (0, L), if � �= 0,
L2

∗(0, L), if � = 0,

and

L2
∗(0, L) =

{
w ∈ L2(0, L) :

L∫

0

w(s)ds = 0
}

, H1
∗ (0, L) = H1(0, L) ∩ L2

∗(0, L).

The corresponding norm in K� will be given by (4.3) with γ = 0.

5.1. Lack of exponential decay when � �= 0.

The lack of exponential stability is based on the well-known criterion for contraction semigroups, which
states that the semigroup is exponentially stable if and only if the imaginary axis belongs to the resolvent
set (see assertion (5.1)1 of Theorem 5.1) and the resolvent operator is uniformly bounded on the imaginary
axis (see assertion (5.1)2).

Lemma 5.3. Let S(t) = e−(A�+B)t the C0−semigroup of contraction on Hilbert space K� associated with
the problem (2.12), (2.13) and (5.9) with γ = 0 and � �= 0. Then, S(t) is not exponentially stable.

Proof. Because of Theorem 5.1 and Lemma 5.2, we have to prove that (5.1)2 does not hold. To prove this
result we will argue by contradiction, that is, we will show that there exists a sequence of imaginary number
αn with limn→∞ |αn| = ∞ and Un = (un, φn, vn, ψn)T ∈ D(A� +B) for Fn = (f1n, f2n, f3n, f4n)T ∈ K�

with ‖Fn‖K�
< 1 such that

iαnUn + (A� + B)Un = Fn, (5.10)
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where Fn is bounded in K�, but ‖Un‖K�
tends to infinity. Rewriting the above spectral equation in

term of its components, we have
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

iαnun − vn = f1n,
iαnφn − ψn = f2n,

iαnR�vn − Rl

(
aun,xx − bφn,x

)
= R�f3n,

iαnR�ψn + Rl

(
ξφn + bun,x + τψn

)
= R�f4n.

(5.11)

We choose for all n ∈ N, Fn = (0, 0, sin(nνx), 0). Then, Fn is bounded in K�. On the basis of the
boundary conditions (5.9), we can try solutions of the type

un = An sin(nνx), φn = Bn cos(nνx), (5.12)

where ν = π
L , An and Bn are unknown functions. Substituting (5.12) in (5.11), we find that An and Bn

satisfy
⎧
⎨
⎩

(
− α2

nΞ� + aΞln
2ν2

)
An − bΞlnνBn = Ξ�,

bΞlnνAn −
(
α2

nΞ� − Ξl(ξ + iαnτ)
)
Bn = 0,

(5.13)

where Ξε = 1 + ε2n2ν2. We choose αn so that −α2
n(1 + �2n2ν2) + a(1 + l2n2ν2)n2ν2 = 0 which implies

that αn = ±nν
√

a
√

1+l2n2ν2

1+�2n2ν2 . Moreover, (5.13)1 leads to

Bn = − 1 + �2n2ν2

b(1 + l2n2ν2)nν
.

The asymptotic behavior of the coefficient Bn will give us Bn ∼ − �2

bl2nν as n → ∞. This gives φn(x) ∼
− �2

bl2nν cos(nνx) and ψn(x) ∼ ±i�
√

a
bl cos(nνx) as n → ∞. On the other hand, as n → ∞, we have

‖Un‖2
K�

≥ �2 ‖ψnx‖2 =
�4a

b2l2
n2ν2

L∫

0

| sin(nνx)|2dx ∼ �4aL

2b2l2
n2ν2, (5.14)

from where it follows that

‖Un‖K�
→ ∞ as n → ∞

which proves the lack of exponential stability. �

5.2. Lack of analyticity when � = 0

Lemma 5.4. Let S(t) = e−(A0+B)t the C0−semigroup of contraction on Hilbert space K0 associated with
the problem (2.12), (2.13) and (5.9) with γ = 0 and � = 0. Then, S(t) is not analytic.

Proof. Taking into account Theorem 5.2 and Lemma 5.2, to prove our statement, we will argue by
contradiction, that is, we will show that there exists a sequence of real number αn with limn→∞ |αn| = ∞
and Un = (un, φn, vn, ψn)T ∈ D(A0 + B) for Fn = (0, 0, sin(nνx), 0)T ∈ K0 with ‖Fn‖K0 < 1 such that
(5.10) holds, where the vector Fn is bounded in K0, but ‖Un‖K0 tends to infinity. Repeating the same
previous procedure and choosing the same type solution (5.12), the system (5.13) becomes

⎧
⎨
⎩

(
− α2

n + aΞln
2ν2

)
An − bΞlnνBn = 1,

bΞlnνAn −
(
α2

n − Ξl(ξ + iαnτ)
)
Bn = 0.

(5.15)
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By choosing αn = ±nν
√

a(1 + l2n2ν2), we obtain the following asymptotic behavior:

An ∼ −
√

a(
√

a ± iτ l)
b2l2n2ν2

, Bn ∼ − 1
bl2n3ν3

as n → ∞.

This gives un(x) ∼ −
√

a(
√

a±iτl)
b2l2n2ν2 sin(nνx) as n → ∞. On the other hand, we have

‖Un‖2
H ≥ al2 ‖unxx‖2 =

a2(a + τ2l2)
b4l2

L∫

0

| sin(nνx)|2dx

∼ a2(a + τ2l2)L
2b4l2

, as n → ∞. (5.16)

Thus, we obtain

lim
αn→∞ ‖αnUn‖H = ∞,

which completes the proof of the theorem. �

Remark 5.1. 1. The solutions are not analytic in general. In fact, they are not analytic when � = 0
and not exponentially stable when � �= 0, which means that the corresponding semigroup is not
analytic.

2. The case γ = 0 is considered here only to use the boundary conditions (5.9) which is more adapted
to the above method than the considered boundary conditions. Note that, in these cases, we can-
not apply the procedure used previously, because we do not have appropriate solutions (satisfying
boundary conditions) to solve system (2.12). Explicitly speaking, the lack of exponential stability
or the lack of analyticity of the semigroups associated to system (2.12) with boundary conditions
(2.14)–(2.17) is an open problem.

6. Exponential decay

In this section, we show that the presence of frictional damping in the elastic component, whose form
depends on the elastic nonlocal parameter (� = 0 or not), leads to exponential stability. Without frictional
damping, the exponential stability can only obtained in the absence of nonlinear body forces and under
the well-known condition of equal speed waves propagation, which can be written here as:

γ = a. (6.1)

An approach based on the construction of a Lyapunov functional is applied to obtain the optimal rate
of decay of solutions in terms of the physical parameters.

6.1. Case � = 0

In this subsection, we prove that when � = 0, we need to add a frictional damping for the elastic
component characterized by αut where α > 0, to get exponential stability of the nonlinear problem. This
leads to the following:

utt − (1 − l2∂xx)
(
auxx + bφx

)
+ αut + f1(u, φ) = 0,

φtt − (1 − l2∂xx)
(
γφxx − ξφ − bux − τφt

)
+ f2(u, φ) = 0,

(6.2)

subjected to the initial conditions (2.13) and the boundary conditions (2.14).
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From Theorem 4.1, the problem (6.2) subjected to the initial conditions (2.13) and the boundary
conditions (2.14) is well-posed and is governed by a C0−contraction semigroup S(t) on the Hilbert space
H0 :=

(
H2(0, L) ∩ H1

0 (0, L)
)2 × (

L2(0, L)
)2.

Lemma 6.1. Suppose that assumptions (3.5)–(3.7) and (4.7) hold and (u, φ, ut, φt) be a solution to the
problem (6.2), (2.13) and (2.14). Then, there exists a positive constant ε defined by (6.14) such that

E0(t) ≤ 3e− 2ε
3 (1− β�

β0
)tE0(0), ∀t ≥ 0, (6.3)

where E0(t) is the total energy of the problem (6.2), (2.13) and (2.14), defined by

E0(t) =
1
2

(
‖ut‖2 + ‖φt‖2 + γ‖φx‖2

l + a‖ux‖2
l + ξ‖φ‖2

l + 2b�e〈ux, φ〉l

)

+

L∫

0

F (u, φ)dx. (6.4)

Proof. In this case, the total energy defined by (6.4) satisfies

d

dt
E0(t) = −α‖ut‖2 − τ‖φt‖2

l . (6.5)

For each ε > 0, we shall define the perturbed energy by

Eε(t) = E0(t) + εN(t), t ≥ 0, (6.6)

where

N(t) =

L∫

0

uutdx +

L∫

0

φφtdx +
α

2
‖u‖2.

Firstly, let us prove that there exists ε0 > 0 such that
1
2
E0(t) ≤ Eε(t) ≤ 3

2
E0(t), ∀t ≥ 0, 0 < ε ≤ ε0. (6.7)

Indeed, by Young’s inequality, we have that

|N(t)| ≤ ‖u‖ ‖ut‖ + ‖φ‖ ‖φt‖ +
α

2
‖u‖2 +

τ

2
‖φ‖2

l

≤ 1
2
(‖ut‖2 + ‖φt‖2) +

1
2

(‖u‖2 + ‖φ‖2
)

+
α

2
‖u‖2 +

τ

2
‖φ‖2

l (use (4.6))

≤ 1
2

max{1, �, α�,
τ

ξ
} ‖U(t)‖2

H0
(use (4.20))

≤ 1
2β0

max{1, �, α�,
τ

ξ
}E0(t).

Choosing

ε0 = β0 min
{

1,
1
�
,

1
α�

,
ξ

τ

}
, (6.8)

then the inequality (6.7) holds. Now, we want to get

d
dt

N(t) ≤ −(1 − β�

β0
)E0(t) +

3
2
(‖ut‖2 + ‖φt‖2

l ) − 1
2
Υ(t), (6.9)

where

Υ(t) = γ‖φx‖2
l + a‖ux‖2

l + ξ‖φ‖2
l + 2b�e〈ux, φ〉l. (6.10)
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Let us multiply the first equation of (6.2) by u and the second one by φ, we obtain

d

dt
N(t) = (‖ut‖2 + ‖φt‖2) − Υ(t) +

L∫

0

(uf1(u, φ) + φf2(u, φ))dx. (6.11)

By adding and subtracting (6.4) to (6.11), we get

d
dt

N(t) = −E0(t) +
3
2
(‖ut‖2 + ‖φt‖2) − 1

2
Υ(t)

−
L∫

0

(uf1(u, φ) + φf2(u, φ))dx +

L∫

0

F (u, φ)dx. (6.12)

From (3.7) and (4.6), we have

−
L∫

0

(uf1(u, φ) + φf2(u, φ))dx +

L∫

0

F (u, φ)dx ≤ β(‖u‖2 + ‖φ‖2)

≤ β� ‖U(t)‖2
H0

≤ β�

β0
E0(t). (6.13)

By plugging (6.13) into (6.12) and using the fact that ‖φt‖2 ≤ ‖φt‖2
l , (6.9) follows immediately.

From (4.7) and (4.23), we infer that 1 − β

β0

> 0.
Finally, we shall prove that inequality (6.3) holds. Now substituting (6.5) and (6.9) in (6.6), we get

d
dt

Eε(t) ≤ −α‖ut‖2 − τ‖φt‖2
l +

3ε

2
(‖ut‖2 + ‖φt‖2

l ) − ε(1 − β�

β0
)E(t)

− ε

2
Υ(t) (use (4.4))

≤ −
(

α − 3ε

2

)
‖ut‖2 −

(
τ − 3ε

2

)
‖φt‖2

l − ε

(
1 − β�

β0

)
E0(t).

By choosing

ε =
2
3

min
{

3
2
ε0, α, τ

}
, (6.14)

yields

d
dt

Eε(t) ≤ −ε

(
1 − β�

β0

)
E0(t).

Using the second inequality in (6.7), we conclude that

d
dt

Eε(t) ≤ −2ε

3

(
1 − β�

β0

)
Eε(t).

Integrating from 0 to t, yields

Eε(t) ≤ e
− 2ε

3

(
1− β�

β0

)
tEε(0). (6.15)

Combining the inequalities (6.15) together with (6.7), it follows that (6.3) holds. The proof is complete.
�
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6.2. Case � �= 0

When � �= 0, we need to add a frictional damping for the elastic component characterized by −αuxxt

where α > 0, to get exponential stability of the nonlinear problem. This leads to the following:

(1 − �∂xx)utt − (1 − l2∂xx)
(
auxx + bφx

)
− αuxxt + f1(u, φ) = 0,

(1 − �∂xx)φtt − (1 − l2∂xx)
(
γφxx − ξφ − bux − τφt

)
+ f2(u, φ) = 0,

(6.16)

subjected to the initial conditions (2.13) and the boundary conditions (2.14).

Lemma 6.2. Suppose that assumptions (3.5)–(3.7) and (4.7) hold and (u, φ, ut, φt) be a solution to the
problem (6.16), (2.13) and (2.14). Then, there exists a positive constant ε defined by (6.26) such that

E�(t) ≤ 3e− 2ε
3 (1− β�

β0
)tE�(0), ∀t ≥ 0, (6.17)

where E�(t) is the total energy of the problem (6.16), (2.13) and (2.14) defined by (4.18).

Proof. In this case, the total energy defined by (4.18) satisfies

d

dt
E�(t) = −α‖uxt‖2 − τ‖φt‖2

l . (6.18)

For each ε > 0, we shall define the perturbed energy by

Eε(t) = E�(t) + εN(t), t ≥ 0 (6.19)

where

N(t) = 〈u, ut〉� + 〈φ, φt〉� +
α

2
‖ux‖2 +

τ

2
‖φ‖2

l .

Following the previous argument, one can prove that there exists ε0 > 0 such that
1
2
E�(t) ≤ Eε(t) ≤ 3

2
E�(t), ∀t ≥ 0, 0 < ε ≤ ε0. (6.20)

Now, we want to get

d
dt

N(t) ≤ −(1 − β�

β0
)E�(t) +

3
2
(λ0 + �2)‖uxt‖2 +

3
2
‖φt‖2

� − 1
2
Υ(t). (6.21)

Let us multiply the first equation of (6.16) by u and the second one by φ, we obtain

d

dt
N(t) = (‖ut‖2

� + ‖φt‖2
�) − Υ(t) +

L∫

0

(uf1(u, φ) + φf2(u, φ))dx, (6.22)

where Υ is given by (6.10). By adding and subtracting (4.18) to (6.22), we get

d
dt

N(t) = −E�(t) +
3
2
(‖ut‖2

� + ‖φt‖2
�) − 1

2
Υ(t)

−
L∫

0

(uf1(u, φ) + φf2(u, φ))dx +

L∫

0

F (u, φ)dx. (6.23)

Similar to (6.13), we have

−
L∫

0

(uf1(u, φ) + φf2(u, φ))dx +

L∫

0

F (u, φ)dx ≤ β�

β0
E�(t). (6.24)
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Substituting (6.24) in (6.23) and using the fact that ‖ut‖2 ≤ λ0‖uxt‖2 (see (3.1)), we conclude that (6.21)
holds.
Finally, we shall prove that inequality (6.17) holds. Substituting (6.18) and (6.21) in (6.19), we obtain

d
dt

Eε(t) ≤ −α‖uxt‖2 − τ‖φt‖2
l +

3
2
(λ0 + �2)ε‖uxt‖2 +

3
2
ε‖φt‖2

�

− ε(1 − β�

β0
)E�(t)

≤ −
(
α − 3ε(λ0 + �2)

2

)
‖uxt‖2 − (τ − 3ε

2
)‖φt‖2

− (τ l2 − 3ε�2

2
)‖φxt‖2 − ε(1 − β�

β0
)E�(t). (6.25)

By choosing

ε =
2
3

min
{

3
2
ε0,

α

λ0 + �2
, τ,

τ l2

�2

}
, (6.26)

and following the previous arguments, we arrive at (6.17). The proof is complete. �
Remark 6.1. 1. We consider here the hinged-hinged boundary conditions (2.14), since they provide a

lot of symmetry due to the commutativity of the operators Rε∂xx. But in both cases (� = 0 or
not), the obtained results can be extended to the other boundary conditions (2.15), (2.16) or (2.17)
with some little modifications.

2. It is worth mentioning that Magaña and Quintanilla in [21] used the Routh–Hurwitz theorem to
prove the lack of exponential decay of system (6.2) without nonlocality (� = l = 0), viscoporosity
(τ = 0) and body forces (f1 = f2 = 0). However, they showed that the presence of both viscoporosity
(τ �= 0) and viscoelasticity (α �= 0) stabilized the system exponentially. Rivera and Quintanilla [25]
proved that the solutions to the same system (studied in [21]) decays polynomially by a rate decay
of type 1

t .

6.3. Case f1 = f2 = 0 and γ = a

The aim of this subsection is to prove that the problem (2.12) (when γ = a), (2.13) and (2.17) is
exponentially stable in the absence of body forces and under the condition of equal wave speeds (6.1).
For this, we consider in this section the following system:

(1 − �2∂xx)utt − (1 − l2∂xx)
(
auxx + bφx

)
= 0,

(1 − �2∂xx)φtt − (1 − l2∂xx)
(
γφxx − ξφ − bux − τφt

)
= 0,

(6.27)

subjected to the initial conditions (2.13) and the clamped-clamped boundary conditions (2.17).
From Theorem 4.1, the problem (6.27), (2.13) and (2.17) is well-posed and is governed by a

C0−contraction semigroup S(t) on H� = (H2
0 (0, L))2 × (V�)2.

Lemma 6.3. Suppose that (u, φ, ut, φt) be a solution to the problem (6.27), (2.13) and (2.17) with γ = a.
Then, there exists a positive constant δ (given by (6.38)3) such that

d
dt

F1(t) ≤ −γ‖φx‖2
l − (ξ − b2

a
)‖φ‖2

l + (1 +
1
2δ

)‖φt‖2
� +

δ

2
‖ut‖2

�, (6.28)

where

F1(t) = 〈φ, φt〉� +
τ

2
‖φ‖2

l +
b

a

L∫

0

φ

x∫

0

(1 − �2∂xx)ut(y)dydx. (6.29)
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Proof. The time derivative of (6.29) gives

d

dt
F1(t) = ‖φt‖2

� + 〈γφxx − ξφ − bux, φ〉l

+
b

a

L∫

0

φt

x∫

0

(1 − �2∂xx)ut(y)dydx +
b

a
〈aux + bφ, φ〉l

= ‖φt‖2
� − γ‖φx‖2

l − (ξ − b2

a
)‖φ‖2

l

+
b

a

L∫

0

φt

x∫

0

(1 − �2∂yy)ut(y)dydx

≤ (1 +
1
2δ

)‖φt‖2
� − γ‖φx‖2

l − (ξ − b2

a
)‖φ‖2

l

+
δ

2

L∫

0

( x∫

0

(1 − �2∂yy)ut(y)dy
)2

dx. (6.30)

By the Cauchy–Schwarz inequality, it is clear that

L∫

0

( x∫

0

(1 − �2∂yy)ut(y)dy
)2

dx ≤
L∫

0

( L∫

0

(1 − �2∂xx)ut(x)dx
)2

dx

≤ ‖ut‖2
�.

Estimate (6.28) follows by combining the two inequalities above and using ξ − b2

a > 0 (see (2.18)3). �

Lemma 6.4. Suppose that (u, φ, ut, φt) be a solution to the problem (6.27), (2.13) and (2.17) with γ = a.
Then, we have

d
dt

F2(t) ≤ − b

2
‖ux‖2

l + (b +
ξ2(λ0 + l2)

b
)‖φx‖2

l +
1
b
‖φt‖2

l , (6.31)

where

F2(t) = 〈φx, ut〉� + 〈ux, φt〉�. (6.32)

Proof. The time derivative of (6.32) gives

d

dt
F2(t) =

L∫

0

φxt(1 − �2∂2
xx)utdx +

L∫

0

φx(1 − l2∂2
xx)(auxx + bφx)dx

+

L∫

0

uxt(1 − �2∂2
xx)φtdx

+

L∫

0

ux(1 − l2∂2
xx)(γφxx − ξφ − bux − τφt)dx

= b‖φx‖2
l − b‖ux‖2

l − ξ〈ux, φ〉l − τ〈ux, φt〉l + (a − γ)〈uxx, φx〉l.

Since γ = a, we obtain (6.31) after using Young’s inequality together with (3.1). �
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Lemma 6.5. Suppose that (u, φ, ut, φt) be a solution to the problem (6.27), (2.13) and (2.17) with γ = a.
Then, we have

d
dt

F3(t) ≤ −‖ut‖2
� +

3a

2
‖ux‖2

l +
b2

2a
‖φ‖2

l , (6.33)

where

F3(t) = −〈u, ut〉�. (6.34)

Proof. The time derivative of (6.32) gives

d

dt
F3(t) = −‖ut‖2

� − 〈auxx + bφx, u〉l

= −‖ut‖2
� + a‖ux‖2

l − 〈bφx, u〉l. (6.35)

Using an integration by parts and Young’s inequality, we obtain (6.33). �

Lemma 6.6. Suppose that (u, φ, ut, φt) be a solution to the problem (6.27), (2.13) and (2.17) with γ = a.
Then, there exists two positive constants d1 and d2 such that

E�(t) ≤ d1e
−d2tE�(0), ∀t ≥ 0, (6.36)

where E�(t) is defined by (4.18) with F = 0 and satisfies (4.19).

Proof. For each ε > 0, we shall define the perturbed energy by

Eε(t) = εE�(t) + ε1F1(t) + ε2F2(t) + F3(t), t ≥ 0

where ε, ε1 and ε2 are positive constants to be properly chosen later.
Exploiting Young’s and Poincaré’s inequalities, we obtain

|Eε(t)| ≤ c

L∫

0

(
‖ut‖2

� + ‖φt‖2
� + ‖ux‖2

l + ‖φx‖2
l + ‖φ‖2

l

)
≤ cE�(t)

where 0 < c < ε. Consequently, we obtain

|Eε(t) − εE�(t)| ≤ cE�(t),

that is

(ε − c)E�(t) ≤ Eε(t) ≤ (ε + c)E�(t). (6.37)

Using Lemmas 6.3-6.5, we obtain
d

dt
Eε(t) ≤ −(1 − ε1

δ

2
)‖ut‖2

� −
(
τε − ε1(1 +

1
2δ

)
)
‖φt‖2

� +
ε2
b

‖φt‖2
l

− 1
2
(bε2 − 3a)‖ux‖2

l −
(
γε1 − ε2(b +

ξ2(λ0 + l2)
b

)
)
‖φx‖2

l

−
(
(ξ − b2

a
)ε1 − b2

2a

)
‖φ‖2

l

≤ −(1 − ε1
δ

2
)‖ut‖2

� −
(
τε − ε1(1 +

1
2δ

) − ε2
b

)
‖φt‖2

−
([

τε − ε1(1 +
1
2δ

)
]
l2 − ε2

b
�2

)
‖φxt‖2

− 1
2
(bε2 − 3a)‖ux‖2

l −
(
γε1 − ε2(b +

ξ2(λ0 + l2)
b

)
)
‖φx‖2

l

−
(
(ξ − b2

a
)ε1 − b2

2a

)
‖φ‖2

l .



ZAMP Well-posedness, lack of analyticity and exponential... Page 25 of 27 111

We choose ε1, ε2, δ and ε such that

ε1 =
1
δ
, ε2 =

4a

b
, δ ≤ min

{ γ

4a
(
1 + ξ2

b2 (λ0 + l2)
) ;

2a
(
ξ − b2

a

)

b2

}
, (6.38)

ε ≥ 1
τ

sup
{1

δ
(1 +

1
2δ

) +
4a

b2
;

1
δ

(
1 +

1
2δ

)
+

4a�2

b2l2

}

and by following the previous arguments, we arrive at (6.36). The proof is complete. �

7. Conclusion

We summarize the obtained results as follows:
(i) In this paper, we have derived a nonlocal theory for porous elastic materials in the context of

Mindlin’s strain gradient model. By comparison with other nonlocal [6,20,36] or local [17,18] theories,
the model proposed in this paper is more reasonable in predicting the propagation of porous elastic
waves. This work, which has not been obtained in any reference yet, represents a first step towards
understanding the fundamental limits of porous elastic waves propagation in nonlocal Mindlin’s strain
gradient materials. In fact we have obtained two nonlocal hyperbolic equations for displacement and void
volume fraction propagating with finite waves speeds. When the elastic nonlocal parameter � = 0, our
equations propagate with infinite waves speeds. This has a great impact on the general dynamics of the
solutions as we can see.

(ii) By means of nonlinear semigroups and the theory of monotone operators, the well-posedness of
the nonlocal Mindlin’s strain gradient porous elasticity for a one-dimensional nonlinear problem was
proved. The exponential stability and analyticity issues were discussed as well. By an approach based on
the Gearhart–Herbst–Prüss–Huang Theorem, we prove that the semigroup associated with the derived
model is not exponentially stable when � �= 0 and is not analytic when � = 0. We have proved that
a frictional damping for the elastic component, whose form depends on the elastic nonlocal parameter
(� = 0 or not), is shown to lead to exponential stability. Without frictional damping, the derived system
can be exponentially stable only in the absence of body forces and under the condition of equal wave
speeds. These results confirm our previous results obtained in [1–3] in the frame local Mindlin’s strain
gradient model.

(iii) In comparison with plates and beams theory in classic elasticity, the elastic nonlocal parameter of
our model �, represents the rotational inertia parameter related with the thickness of the plate. From the
literature, we know that if the rotational inertia parameter is different from zero, then the corresponding
problem is of hyperbolic-like dynamics with finite speed of propagation. The corresponding semigroup is
not analytic, but the exponential stability of solutions is kept. Without the rotational inertia parameter,
the dynamics has infinite speed of propagation and the corresponding semigroup is analytic. In our case,
the solutions are generally not analytic. This lack of analyticity is due to the nonlocality and the strain
gradient effects which cause a lack of regularity.

(iv) The importance of the multi-dimensional counterpart of these results is clear, but this question is
difficult from a mathematical point of view. The important question is whether or not this exponential
stability will be preserved in multi-dimensional problem. From [1–3] and this study, one would expect
that a frictional damping for the elastic component of the form −αij u̇j when � = 0 or characterized by
αΔu̇i when � �= 0, can lead to exponential stability in a multi-dimensional setting for α > 0.

(v) The study presented in this paper should prove useful for researchers working on qualitative
properties of materials or designers of nonlocal strain gradient models. In particular, it will be useful in
predicting and better understanding the mathematical and mechanical responses of nonlocal materials
comparing to local one.
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